低红外发射率涂层的制备及其耐腐蚀性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低红外发射率涂层是以降低和削弱敌方红外探测设备效能为目的的红外隐身材料,属红外隐身技术领域,涉及材料、化学、能源、信息等专业,对我国第四代飞机、远程轰炸机、巡航导弹等的隐身化改造具有重大的研究意义。本论文较系统地研究了低红外发射率涂层的制备、表征、机理及其工程应用性能。从理论上系统研究了红外发射率与涂层微观因素的内在关系和物理本质,建立了涂层红外辐射与微观组织结构的关系模型,揭示了涂层低红外发射率的机理;完成了低发射率涂层的制备与优化技术;全面评估了涂层的工程应用性能,初步实现了低红外发射率涂层从实验室到工程实用化。取得了如下主要研究成果:
     1.通过研究涂层低红外发射率的设计原理,揭示了涂层组织结构与红外发射率的内在关系和物理本质,即低红外发射率涂层必须具备高导电率、高反射率、高散射率和低吸收率。
     2.依据涂层低红外发射率的设计原理,研究了填料尺寸、形貌、形态、导电性、填充量对涂层红外发射率的影响,提出了微米级片状导电性漂浮态填料是获得低红外发射率涂层的关键因素,成功地解决了低红外发射率涂层制备技术基础理论方面的空白。
     3.根据低红外发射率涂层的制备技术,结合涂层优化方法,制备了在8~14μm波段发射率低至0.10的低红外发射率涂层,经项目专家组鉴定,达到国内领先、国际先进水平。
     4.采用界面改性技术及面漆涂覆方法,在保持涂层低发射率的前提下大大提高涂层耐腐蚀性能,使涂层具备基本力学、耐环境及耐老化等性能,初步实现涂层工程化。
Low infrared emissivity coating (LIEC) which belongs to camouflage technology field and involve many professionals such as materials, chemical, energy, and information have received considerable attention due to their efficiency for protecting vehicles from infrared detection. The project has great research significance on the stealth transformation of national fourth-generation aircraft, long-range bombers and cruise missiles. In this thesis, synthesis, characterization, mechanism and engineering application of LIEC were systematically investigated. The theoretical model between the infrared radiation and microstructure was illustrated by optical theories related to the inherent relationship and physical nature between the infrared emissivity and the coating structure factors. According to the mechanism of low emissivity, the key factor of the formation of LIEC was obtained. LIEC with extremely low emissivity near to 0.10 was obtained by illustrated the preparation and optimization techniques. The engineering application performances of LIEC were also studied. Based on the modification techniques, the LIEC have implemented the transform from the laboratory to the practical engineering of LIEC. The obtained research results were as follows:
     1. By studied the design principle of low infrared emissivity coating, the inherent relationship and physical nature between the infrared emissivity and the coating microstructure were obtained. The results indicated that high conductivity, reflectivity, dispersion and low absorption are contributed to form low infrared emissivity coating.
     2. According to the design principle, Effects of size, shape, floatage, conductivity and content of pigments on infrared emissivity of the coatings were examined. It found that the pigments with micron-flake, high conductivity and floating play an important role in the formation of LIEC.
     3. By studied the preparation and optimization techniques of LIEC, the coatings with low infrared emissivity near to 0.10 were prepared by a simple and convenient process, which were identified up to domestic leading and international advanced level by project expert group.
     4. The modification was carried out to improve anti-corrosion of LIEC. The result showed that the modified samples present better corrosion resistance than that without modification. Moreover, the mechanical, anti-environment and anti-aging properties were also achieved engineering application.
引文
[1]孟新强,朱绪宝.隐身技术和隐身武器的研究和应用现状[J].中国航天, 1999, (8): 31~34.
    [2]胡传.隐身涂层技术[M].北京:化学工业出版社, 2004. 1~5.
    [3] P.K. Biswas, A. De, N.C. Pramanik, et al. Effects of tin on IR reflectivity, thermal emissivity, Hall mobility and plasma wavelength of sol-gel indium tin oxide films on glass[J]. Mater. Lett., 2003, 57: 2326~2330.
    [4] J. Zueco, F. Alhama. Inverse estimation of temperature dependent emissivity of solid metals[J]. J. Quant. Spectrosc. Radiat. Transfer. 2006, 101: 73~75.
    [5] A. Singh, S. G. Avachat, S. A. Joshi, et al. Evaluation of Pyrotechnic smoke for anti-infrared and anti-laser roles[J]. Propellants Explosives Pyrotechnics, 1995, 19: 16~20.
    [6]哈恩华,黄大庆,王智勇.雷达与红外兼容隐身材料的研究及进展[J].材料导报, 2006, 20: 325~327.
    [7] C. F. Lews. Materials keep a low profile[J]. Materials Engineering, 1988, 105: 37~41.
    [8] L. Liu, R. Gong, Y. Cheng, et al. Emittance of a radar absorber coated with an infrared layer in the 3~5μm window[J]. Opt. Express, 2005, 13: 10382~10391.
    [9]谢国华.红外隐身涂料与雷达波吸收材料相容性研究[J].材料工程, 1993, (5): 5~7.
    [10]王智勇,刘俊能.红外隐身的八毫米雷达波吸收材料的研究[J].材料工程, 1998, (11): 11~13.
    [11]潘霞,王建营,孙家跃,等.红外隐身功能涂料的研究进展[J].国防科技, 2001, 171(8): 44~46.
    [12]朱永安,姚兰芳,汪国庆,等.红外隐身涂料的研究进展[J].材料导报, 2007, 20(11):319~321.
    [13]王博,王自荣,孙晓泉.热红外波段隐身涂层的对比度分析[C].全国隐身功能料学术研讨会论文集,北京, 2000.
    [14]付伟.红外隐身原理及其应用技术[J].红外与激光工程, 2002, 31(1): 88~93.
    [15]胡永茂,方静华,陈秀华,等.红外隐身技术的研究与进展[J].云南大学学报(自然科学版), 2002, 24(1A): 90~94.
    [16]崔杰.红外隐身技术在动力系统中的应用[J].推进技术, 1995, (3): 81~83.
    [17]王自荣,余大斌,於定华,等. ITO涂料在8~14μm波段红外发射率的研究[J].红外技术, 1999, 21(1): 41~44.
    [18]田乃林.红外隐身方法与材料的发展[J].化工进展, 2002, 21(4): 283~286.
    [19]蒋耀庭,王跃.红外隐身技术与发展[J].红外技术, 2003, 25(5): 7~9.
    [20]郦江涛,姜卫陵,赵云峰.红外隐身涂料的研究进展[J].宇航材料工艺, 2000, (5): 15~18.
    [21]张帆,王建营,杜海燕,等.红外隐身涂料研究进展[J].化学与粘合, 2004, (2): 87~89.
    [22]庄海燕,郑添水,任润桃,等.红外隐身涂料的研究现状及发展趋势[J].材料开发与应用, 2006, (3): 43~46.
    [23]候振宁.红外隐身技术的发展[J].光电信息技术, 2001, 11: 41~45.
    [24]高红霞,余建祖.导弹新型热隐身技术研究[J].导弹与航天运载技术, 2003, (1): 59~63.
    [25]董延庭,张捷,翁小龙,等.高透明红外隐身涂料粘合剂的研制[J].中国涂料, 2005, 20(3): 14~17.
    [26]张立德.纳米材料[M].北京:化学工业出版社, 2000. 146~147.
    [27]林文学.激光与红外隐身兼容技术发展现状[J].科技信息, 2007, (5): 56~58.
    [28]汪世平.建筑隔热保温涂料及其研究进展[J].上海涂料, 2005, 43(3): 13~15.
    [29]靳新全,李国珍.高发射率远红外涂料作用的探讨[J].红外技术, 1994, (2): 34~37.
    [30]王金台,路国忠.太阳热反射隔热涂料[J].涂料工业, 2004, 34(10): 17~20.
    [31]高君芳,刘直承,万景华,等.一种8~12μm波段高发射率涂料的研制[J].红外技术, 1995, 17(5): 39~40.
    [32]潘儒宗,邓尉林,毛祖纲,等.红外辐射涂料用胶粘剂的研制[J].红外技术, 1996, 18(5): 39~40.
    [33]孙汉东,常大定,樊震.高发射率红外涂层的研究[J].红外研究, 1990, 9(5): 401~404.
    [34]汪小舟.红外隐身涂料的制备及性能研究[D].东南大学, 2006.
    [35] M. Farooqa, M.G. Hutchins. Optical properties of higher and lower refractive index composites in solar selective coatings[J]. Sol. Energy Mater. Sol. Cells, 2002, 71: 73~83.
    [36] B.P. Lin, J. N. Tang, S.X. Zhang, et, al. Structure and infrared emissivity of silicon-containing polyimide/BaTiO3 nanocomposite films[J]. J. Solid State Chem., 2004, 177: 3849~3852.
    [37] S. Yun, Y.M. Zhou, Y. Cao, et al. Preparation and infrared emissivity study of collagen-g-PMMA /In2O3 nanocomposite[J]. Mater. Lett., 2004, 58: 1655~1660.
    [38] K.S. Chou, Y.C. Lu. The application of nanosized silver colloids in far infrared low-emissive coating[J]. Thin Solid Films, 2007, 515: 7217~7221.
    [39] J. Chen, Y.M. Zhou, Q.L. Nan, et al. Preparation and properties of optically active polyurethane /TiO2 nanocomposites derived from optically pure 1,10-binaphthyl[J]. European Polymer Journal, 2007, 43: 4151~4159.
    [40] T. Furusawa, K. Honda, E. Ukaji. The microwave effect on the properties of silica-coated TiO2 fine particles prepared using sol–gel method[J]. Mater. Res. Bull., 2008, 43: 946~957.
    [41]葛新石.金属及其它物质的热辐射性质表[M].北京:科学出版社, 1958. 1~5.
    [42]胡素芬.近代物理基础[M].北京:浙江大学出版社, 1988. 21~25.
    [43]曾谨言.量子力学[M].北京:科学出版社, 2000. 33~35.
    [44]黄昆原,韩汝琦.固体物理学[M].北京:高等教育出版社, 1988. 42~66.
    [45] R. Vilaplana, F. Moreno, A. Molina. Study of the sensitivity of size-averaged scattering matrix elements of nonspherical particles to changes in shape, porosity and refractive index[J]. Quantitative Spectroscopy and Radiative Transfer, 2006, 100: 415~428.
    [46]林琨智,田贵才. ZnS微粒子的光学截面及红外发射率光谱的计算[J].分子科学学报, 2000, 16(4): 242~245.
    [47]赵剑琦,石广玉.非球形小粒子的光散射特性[J].科学技术与工程, 2005, 24(5): 1872~1875.
    [48]吴伶芝.红外隐身材料的现状与展望[J].宇航材料工艺, 2001, 31(4): 45~48.
    [49]宋兴华,於定华.涂料型红外隐身材料研究进展[J].红外技术, 2004, 26(2): 9~12.
    [50]王自荣,余大斌,於定华,等. ITO涂料在8~14μm波段红外发射率的研究[J].红外技术, 1999, 21(1): 41~44.
    [51]潘遵,赵振声,何华辉.低红外发射率材料的研究[J].华中科技大学学报(自然科学版), 2003, 7(7): 28~30.
    [52]费逸伟,黄之杰,唐卫红,等.填料对低发射率涂料红外辐射特性的影响[J].材料科学与工程, 2002, 20(3): 449~452.
    [53]费逸伟,黄之杰,唐卫红,等.聚合物微球——新型热红外涂料用填料性能研究[J].材料科学与工程学报, 2003, 21(2): 270~273.
    [54]崔宝生,汪长春,贾永科.材料微结构对红外发射率的影响[J].复旦大学学报, 2006, 45(3): 385~340.
    [55]马格林,曹全喜,黄云霞.红外和雷达复合隐身材料——掺杂氧化物半导体[J].西安电子科技大学, 2003, 4(7): 25~27.
    [56]游毓聪,杜仕国.红外隐身涂料黏合剂的应用与研究[J].特种涂料与涂装, 2006, 50(7): 50~54.
    [57]杜永,李梅,邢宏龙,等.热红外隐身涂料粘合剂的制备[J].山西化工, 2006, 26(6): 1~3.
    [58]费明冰.红外隐身涂料的研究.上海:上海交通大学, 1999. 16~18.
    [59]吕绪良,许卫东,崔传安,等.席夫碱的合成及其在热红外伪装涂料中的应用[J].解放军理工大学学报, 2000, 1(6): 54~57.
    [60]韩景平.涂料涂装隐身技术[J].中国涂料, 2000, (3): 37~39.
    [61]张梅,崔占臣,蔡红莉,等.织物用热红外伪装涂料在8~14μm波段红外发射率的研究.天津工业大学学报[J], 2002, 21(2): 34~37.
    [62]吴伶芝,谢国华,吴瑞彬,等.激光、红外隐身兼容涂料的前景分析[J].宇航材料工艺, 2001,31(2): 1~9.
    [63]邹南治,朱又迈,赵广福.关于红外半球全发射率与温度关系的讨论[J].红外技术, 1997, 19(3): 1~4.
    [64]王智永,刘俊能,熊克敏.兼具红外隐身的八毫米雷达波吸收材料的研究[J].材料工程, 1998, 11: 11~13.
    [65]费明冰.红外隐身涂料的研究[M].上海:上海交通大学, 1999. 16~18.
    [66]刘福春,韩恩厚,柯伟.纳米复合涂料的研究进展[J].材料保护, 2001, 34(2): 1~5.
    [67]谢国华.红外隐身材料的现状与展望[J].宇航材料工艺, 2001, (4): 5~10.
    [68]宋兴华,於定华.涂料型红外隐身材料研究进展[J].红外技术, 2004, 26(2): 9~12.
    [69] J. Chen, Y.M. Zhou, Q.L. Zhou, Y.Q. Sun, X.Y. Ye, Z.Q. Wang. Synthesis, characterization and infrared emissivity study of polyurethane/TiO2 nanocomposites[J]. Appl. Surf. Sci., 2007, 253: 9154~9157.
    [70]徐文兰,罗宁胜,张珉,等.非均与涂层的热辐射[J].红外研究, 1990, 9(5): 384~388.
    [71] D.K. Chattopadhyay, Dean C.Webster. Thermal stability and flame retardancy of polyurethanes[J]. Prog. Polym. Sci., 2009, 34: 1068~1133.
    [72] K. M. Zia, H. N. Bhatti, I. A. Bhatti. Methods for polyurethane and polyurethane composites, recycling and recovery: A review[J]. React. Funct. Polym., 2007, 67: 675~692.
    [73] Q.L. Zhao, X.G. Li, J. Gao. Aging behavior and mechanism of ethylene–propylene-diene monomer (EPDM) rubber in fluorescent UV/condensation weathering environment[J]. Polym. Degrad. Stab., 2009, 94: 339~343.
    [74]余大斌,孙晓泉,王自荣.改性乙丙橡胶红外透明粘合剂研究[J].红外技术, 1999, 21(5): 40~42.
    [75] S.P. Wu, S.Y, Meng. Preparation of micron size copper powder with chemical reduction method[J]. Mater. Lett., 2006, 60: 2438~2442.
    [76] Y.K. Kim, D.H. Riu, S.R. Kim. Preparation of shape-controlled copper oxide powders from copper-containing solution[J]. Mater. Lett., 2002, 54: 229~237.
    [77] S. P. Wu, H.L. Qin, P. Li, et al. Preparation of fine copper powders and their application in BME-MLCC[J]. Journal of University of Science and Technology Beijing, 2006, 13: 250~255.
    [78] S.P. Wu, R.Y. Gao, L.H. Xu, et al. Preparation of micron-sized flake copper powder for base-metal-electrode multi-layer ceramic capacitor[J]. Journal of Materials Processing Technology, 2009, 209: 1129~1133.
    [79] A. Agrawal, S. Kumari, D. Bagchi, et al. Hydrogen reduction of copper bleed solution from an Indian copper smelter for producing high purity copper powders[J]. Hydrometallurgy, 2006, 84:218~224.
    [80] D.X. Zhang, H. Xu, Y.Z. Liao, et al. Synthesis and characterisation of nano-composite copper oxalate powders by a surfactant-free stripping–precipitation process[J]. Powder Technol., 2009, 189: 404~408.
    [81] S.P. Wu. Preparation of fine copper powder using ascorbic acid as reducing agent and its application in MLCC[J]. Mater. Lett., 2007, 61: 1125~1129.
    [82] S.P. Wu, J. Ni, L. Jiao, et al. Preparation of ultra-fine copper–nickel bimetallic powders with hydrothermal–reduction method[J]. Macromol. Chem. Phys., 2007, 105: 71~75.
    [83] DIN standard 55923 (1983).
    [84] R. Siegle, J.R. Howell. THERMAL RADIATION HEAT TRANSFER. McGraw-Hill Book Company[M], 1972, 1~7.
    [85] H.J. Yu,G.Y. Xu, X.M. Shen, et, al. Low infrared emissivity of polyurethane/Cu composite coatings[J]. Appl. Surf. Sci., 2009, 255: 6077~6081.
    [86] H.J. Yu,G.Y. Xu, X.M. Shen, et al. Preparation of leafing Cu and its application in low infrared emissivity coatings[J]. J. Alloys Compd., 2009, 484: 395~399.
    [87] H.J. Yu,G.Y. Xu, X.M. Shen, et al. Effects of size, shape and floatage of Cu particles on the low infrared emissivity coatings[J]. Prog. Org. Coat., 2009, 66: 161~166.
    [88] H.J. Yu,G.Y. Xu, X.M. Shen, et al. Corrosion resistance and infrared emissivity properties of EPDM (EPDM-g-MAH) film on low infrared emissivity PU/Cu coating[J]. Electrochim. Acta, 2010, 55: 1843~1847.
    [89] X.X. Yan, G.Y. Xu. Corrosion and mechanical properties of polyurethane/Al composite coatings with low infrared emissivity[J]. J. Alloys Compd., in press.
    [90] C. Hu, G.Y. Xu, X.M. Shen, et al. Preparation and characteristics of thermal resistance polysiloxane/Al composite coatings with low infrared emissivity[J]. J. Alloys Compd., 2009, 486: 371~375
    [91]邵春明,徐国跃,余慧娟,等.改性三元乙丙橡胶用于红外隐身涂层的研究[J].宇航材料工艺, 2008, (3): 62~65.
    [92]邵春明,徐国跃,郭腾超,等.改性聚乙烯作为低红外辐射材料的研究[J].红外技术, 2008, 30(7): 412~415.
    [93]黄嵘,徐国跃,程传伟,等. EPDM基红外隐身涂层耐热性及使用寿命预测研究[J].红外技术, 2008, 30(12): 693~696.
    [94]蔡力锋,杨俊,林志勇.玻璃微珠填充聚合物复合材料界面[J].工程塑料应用, 2003, 31(3): 66~68.
    [95] A. Conde, J.D. Damborenea, A. Duran, et al. Protective properties of a sol-gel coating on zinc coated steel[J]. J. Sol-Gel Sci. Technol., 2006, 37: 79~84.
    [96] F. Chen, H. Zhou, B. Yao, et al. Corrosion resistance property of the ceramic coating obtained through microarc oxidation on the AZ31 magnesium alloy surfaces[J]. Surf. Coat. Technol., 2007, 201: 4905~4908.
    [97] H. Liang, T.L. Mogne, J.M. Martin. Interfacial transfer between copper and polyurethane in chemical-mechanical polishing[J]. J. Electron. Mater., 2002, 31: 872~876.
    [98] M. Shon, H. Kwon. Effects of surface modification with amino branched polydimethylsiloxane (ABP) on the corrosion protection of epoxy coating[J]. Corros. Sci., 2007, 49: 4259~4263.
    [99] H.J. Yu, L. Wang, Q. Shi, et al. Dong. Study on nano-CaCO3 modified epoxy powder coatings[J]. Prog. Org. Coat., 2006, 55: 296~300.
    [100] Y. Tsuzuki, Y. Oikubo, Y. Matsuura, et al. Vacuum ultraviolet irradiation on siliceous coatings on polycarbonate substrates[J]. J. Sol-Gel Sci. Technol., 2008, 47: 131~134.
    [101] P. Wang, D.W. Schaefer. Why does silane enhance the protective properties of epoxy films[J]. Langmuir, 2008, 24: 13496~13499.
    [102] S.Y. Park, T.W. Yoon, C.H. Lee, et al. Surface modification of Ag coated Cu conductive metal powder for conductive silicone sealant gasket paste[J]. Prog. Powder Metall., 2007, 534: 933~938.
    [103]王兴业,唐羽章.复合材料力学性能[M].长沙:国防科技大学出版社, 1988. 366~382.
    [104]黄大庆,王智永,刘俊能.偶联剂对吸波涂层力学性能的影响及其作用机理的研究[J].材料工程[J], 1999, 28(9): 28~31.
    [105]王其祥,宋宝珍,李洪钟.α-Fe金属磁记录粉表面化学改性[J].无机材料学报, 2002, 17(5): 953~958.
    [106] F.T. Tan, X.L. Qiao, J.G. Chen, et al. Effects of coupling agents on the properties of epoxy-based electrically conductive adhesives[J]. Int. J. Adhes. Adhes., 2006, 26: 406~413.
    [107] H. Liu, H.Q. Ye, Y.C. Zhang, et al. Preparation and characterization of poly(trimethylolpropane triacrylate)/flaky aluminum composite particle by in situ polymerization[J]. Dyes and Pigments, 2008, 79: 236~241.
    [108] H. Liu, H.Q. Ye, Synthesis and property of poly(trimethylolpropane triacrylate)/Al nanocomposite particle by in situ solution polymerization[J]. Appl. Surf. Sci., 2008, 254: 4432~4438.
    [109]杨毅,刘永峙,李凤生,等.纳米氧化亚镍包覆铝复合粒子的制备[J].化工学报, 2005, 56(11): 2228~2232.
    [110] P. Karlsson, E.C. Palmqvist, K. Holmberg, et al. Surface modification for aluminium pigment inhibition[J]. Adv. Colloid Interface Sci., 2006, 128-130: 121~134.
    [111] H. Liu, H.Q. Ye, Y.C. Zhang, et al. Preparation and characterization of PMMA/flaky aluminum composite particle in the presence of MPS[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 315: 1~6.
    [112] W.Y. Ho, H.J. Pan, C.L. Chang, et al. Corrosion and electrical properties of multi-layered coatings on stainless steel for PEMFC bipolar plate applications[J]. Surf. Coat. Technol., 2007, 202: 1297~1301.
    [113] V. Shinde, S.R. Sainkar, P.P. Patil. Corrosion protective poly(o-toluidine) coatings on copper[J]. Corros. Sci., 2005, 47: 1352~1369.
    [114] V. Shinde, A.B. Gaikwad, P.P. Patil. Synthesis and characterization of corrosion protective poly(2,5-dimethylaniline) coatings on copper[J]. Appl. Surf. Sci., 2006, 253: 1037~1045.
    [115] S. Chaudhari, P.P. Patil. Corrosion protective poly(o-ethoxyaniline) coatings on copper[J]. Electrochim. Acta, 2007, 53: 927~933.
    [116] T. T¨uken, B. Yaz?c?, M. Erbil. Polypyrrole/polythiophene coating for copper protection[J]. Prog. Org. Coat., 2005, 53: 38~45.
    [117]王润珩,高忠良,陈连周.粘接过程中配位键力的研究[J].粘接, 1999, 20(6): 8~10.
    [118]郑国娟.漆膜附着力及其测试方法[J].分析测试, 2003, (2): 30~32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700