非线性光学晶体Ca_5(BO_3)_3F及其Nd~(3+)掺杂的生长与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究了紫外非线性光学晶体的Ca_5(BO_3)_3F(简写为CBF)生长以及Nd~(3+)掺杂的生长与光谱性能的研究,并且发现稀土硼酸盐体系新化合物CsLi_2Gd_4(BO_3)_5。
     1. Ca_5(BO_3)_3F晶体的研究
     本部分主要是探索新的助熔剂体系生长Ca_5(BO_3)_3F晶体,找到了适合生长Ca_5(BO_3)_3F晶体的几种助熔剂:用Li_2O-B_2O_3-CaF_2-LiF助熔剂能够在较低的生长温度(850°C左右)生长出透明部分较大、质量较高的完整的Ca_5(BO_3)_3F晶体,并且体系的挥发程度较轻。
     测试了CBF晶体的透过范围,发现该晶体的紫外吸收边在190nm,300-2500nm范围的透过率有80%以上。CBF晶体可能是一种性能优异的紫外非线性光学晶体。
     2. Nd~(3+)掺杂Ca_5(BO_3)_3F晶体的研究
     利用Li_2O-B_2O_3-CaF_2-LiF助熔剂体系,分别生长出掺杂浓度为1%、2%、4%和6%的Nd:Ca_5(BO_3)_3F晶体。也分别尝试用泡生法和顶部籽晶两种方法来生长Nd:CBF晶体,在晶体的生长过程中发现同样的助熔剂体系生长出的Nd:CBF晶体要比纯的CBF晶体的质量要好,更加完整。
     使用电感耦合等离子原子发射光谱对两种不同掺杂离子浓度进行分析,Nd:CBF晶体的Nd~(3+)离子的分凝系数是65.8%(4%Nd:CBF)和52.8%(2%Nd:CBF)。
     此外对2%Nd:CBF晶体的透过、荧光光谱等进行了研究。根据J-O理论计算了Nd:CBF晶体中的Nd~(3+)离子偶极跃迁的谱线强度S以及唯象强度系数Ωt (t=2,4,6),它们的值分别是Ω_2 = 5.22×10~(-20) cm~2,Ω_4 = 1.91×10~(-20) cm~2和Ω_6 = 1.30×10~(-20) cm~2。同时计算了~4F_(3/2)→~4I_(9/2)和~4F_(3/2)→~4I_(11/2)跃迁几率: 589.0s-1和536.8 s-1,辐射寿命τr=817.6μs。各个发射带的荧光分支比分别为β(877nm)=0.48,β(1051 nm)=0.44,β(1330 nm)=0.076,β(1830 nm)=0.004。通过测量Nd:CBF晶体的荧光光谱和荧光寿命(51.8μs),计算得到发射截面σ_e (877nm)=0.69×10-19cm~2,σ_e (1051nm)=0.63×10~(-19)cm~2,和量子效率η_c=6.3%。由于~4F_(3/2)→~4I_(9/2)的跃迁几率A_r和发射截面σ_e都比~4F_(3/2)→~4I_(11/2)稍大,因此在877nm的辐射较强,有利于自倍频产生蓝光。对比于其他自倍频晶体,Nd:CBF晶体的荧光寿命同NGAB晶体差不多,比Nd:GdCOB晶体的发射截面大,同时Nd:CBF晶体也具有较大的倍频系数,因此,Nd:CBF晶体可能是一种潜在的、新型自倍频晶体。
     3.稀土硼酸盐CsLi_2Gd_4(BO_3)_5化合物
     CsLi_2Gd_4(BO_3)_5化合物,空间群为P2/n,单胞参数为:a=10.644(2)A,b=6.4661(15)A,c=20.093(4)A,β=105.250(16)。Z=4;它的阴离子结构基团是平面的B03基团,5个不同晶体学位置的Gd原子形成两种类萤石结构的基本框架的Gd-O链,一条是包含Gd2和Gd4的Gd_3O_(17)链,另一条是包含Gd1,Gd3和Gd5的链,其中该链的两端分别与BO_3基团相连形成Gd_5O_(29)(BO_3)_2链。两条Gd-O链通过共享的O原子在ac平面形成二维的[Gd_8O_(16)(BO_3)_2]_(14)-的层状结构,这个层与平面外的BO_3基团在b方向相连形成三维的网络结构。
     用Rb来替代CsLi_2Gd_4(BO_3)_5晶体中的Cs时,同样能够得到相应的化合物。由于该化合物与CsLi_2Gd_4(BO_3)_5的结构同构,对RbLi_2Gd_4(BO_3)_5指标化,得出单胞参数为a=10.433 A,b=6.325 A,c=19.688 A,β=105.09
In this dissertation, the new NLO crystal Ca_5(BO_3)_3F (hereafter, abbreviated as CBF) and Nd~(3+) doped CBF crystal were studied, and a new rare earth borate compound was found. The main work is listed in following:
     1. Study on Ca_5(BO_3)_3F crystal
     Because CBF compound is incongruently melting, we must seek a flux system for growing CBF crystal. A new Li_2O-B_2O_3-CaF_2-LiF flux system was considered to be appropriate for crystal growth through various test growths. The new flux system has many advantages over the other fluxes reported in the literature, such as lower crystal growing temperature and lower volatility. Besides, some transparent CBF crystals were with both Kyropoulos and top seeded solution growth methods.
     The transmission spectrum was collected in the Lambda 900 UV/VIS/NIR instrument with wavelength ranging from 180 to 3500nm. The crystal shows high transmittance (>80%) in the wavelength range 350-2500nm with a UV transmission cut-off of 190nm.
     2. Study on Nd:Ca_5(BO_3)_3F crystal
     Since the crystal structures of CBF and RCOB are nearly identical, Nd~(3+) doped CBF crystals with Nd contents of 1%, 2%, 4% and 6%, were grown for studying their luminescence and potential laser properties. The segregation coefficients of Nd:CBF crystals were found to be 65.8% (4%Nd:CBF) and 52.8% (2%Nd:CBF) using ICP-AES measurements, respectively.
     The spectra of transmission, absorption and fluorescence were performed in the 2%Nd:CBF crystal. According to J-O theory, the experimental oscillator strength Smea was calculated and the oscillator strength parametersΩt(t=2,4,6) were obtained as follows:Ω_2 = 5.22×10~(-20) cm~2,?4 = 1.91×10~(-20) cm~2, ?6 = 1.30×10~(-20) cm~2。The fluorescence branch rations were also obtained:β(877 nm) = 0.48,β(1051 nm) = 0.44,β(1330 nm) = 0.076,β(1830 nm) = 0.004. The radiative lifetime isτ_r = 817.6μs and quantum efficiencyη_c=6.3%. The radiative transition rate and emission cross section for the ~4F_(3/2)→~4I_(9/2) and ~4F_(3/2)→~4I_(11/2) transiton were 589.0s-1, 536.8 s-1 andσ_e (877nm)=0.69×10~(-19)cm~2,σ_e (1051nm)=0.63×10~(-19)cm~2, respectively. Since the radiative transition rate and emission cross section for the ~4F_(3/2)→~4I_(9/2) was larger than ~4F_(3/2)→~4I_(11/2) transition and its larger second harmonic coefficient, it is hoped Nd:CBF can be a promising material to generate blue laser via self-frequency doubling.
     3. A new rare earth borate compound CsLi_2Gd_4(BO_3)_5
     A new rare earth borate compound CsLi_2Gd_4(BO_3)_5 was found. Its space group is P2/n and cell parameters are as following: a=10.644(2) A, b=6.4661(15) A, c=20.093(4) A,β=105.250(16)°, Z=4; The crystal structure features chains of edge and corner-sharing GdOn polyhedra. The GdOn polyhedra yield two types of Gd-O chains. The chain containing Gd1, Gd3 and Gd5 atoms is terminated by two BO3 groups, the other Gd3O7 chain containing Gd2 and Gd4 joins other three-element chains to form infinite zig-zag chain. Both chains can be classified as fluorite-related ribbons, which are common in the other rare earth borate, such as Li_3Gd(BO_3)_2 andLiGd_6O_5(BO_3)_3 compounds. The two chains in CsLi_2Gd_4(BO_3)_5 are interlocked by sharing edges of the GdO polyhedra to form a two dimensional [Gd_8O_(16)(BO_3)_2]~(14-) layer in the ac plane. The layers are inter-linked by out of plane BO3 group in the b direction into a 3 dimensional network. Both Li atoms are five-coordinated, and the Cs atom is coordinated by seven O atoms and resides in a big basket-like cage.
     The Rb analogue of the CsLi_2Gd_4(BO_3)_5 compound can also be synthesized by solid-state reaction and its cell parameters are determined as: a=10.433 A, b=6.325 A, c=19.688 A,β=105.09°.
引文
1. G. D,Boyd, H. Kasper, J.H.McFee, Linear and nonlinear optical properties of AgGaS2, CuGaS2 and CuInS2, and the theory of the wedge technique for the measurement of nonlinear coefficients. IEEE J. Quant. Electr. QE-7 (12), 563-573, 1971.
    2. G.C. Catella, D. Burlage, Crystal growth and optical properties of AgGaS2 and AgGaSe2. MRS Bulletin, 23(7), 28-36, 1998.
    3. H. Matthes, R. Viehmann, N. Marschall., Improved optical quality of AgGaS2. Appl. Phys. Lett. 26(5), 237-239, 1975.
    4. G. W. Iseler, Thermal expansion and seeded Bridgman growth of AgGaSe2. J. Cryst. Growth. 41(1),146-150,1977.
    5. D. Eimerl, J .Marion, E.K. Graham, H.A.McKinstry, S. Haussuhl, Elastic components and thermal fracture of AgGaSe2 and d-LAP. IEEE J. Quant. Electr. 27, (1) 142-145, 1991.
    6. J. E. Tucker, C. L. Marquardt, S. R. Bowman, B. J. Feldman, Transient thermal lens in a ZnGeP2 crystal. Appl. Opt. 34(15), 2678-2682, 1995.
    7. D. E. McCarthy, The Reflection and Transmission of Infrared Materials. V: Spectra from 2 Micrometers to 50 Micrometers, Appl. Opt., 7(1968),1997.
    8. Chen, W. Cousin, J. Sigrist, M.W. Gao, X. Zondy, J.-J. Isaenko, L. Yelisseyev, A. Lobanov, S. LiInS2 and LiInSe2: New Nonlinear Crystals for Continuous-Wave Difference-Frequency Generation in the Mid-Infrared. Lasers and Electro-Optics Society, 19th Annual Meeting of the IEEE. 2006, 88-89.
    9. Isaenko L.; Yelisseyev A.; Lobanov S.; Petrov V.; Rotermund F.; Zondy J.-J.; Knippels G.H.M, LiInS2: A new nonlinear crystal for the mid-IR. Materials Science in Semiconductor Processing, 4( 6), 2001 , 665-668(4).
    10. 张克从,晶体生长. 北京:科学出版社.1981.
    11. Belouet, C. Prog. Growth Charact, 1981(3):121-156.
    12. Dmitriev V G, Gurzadyan G G, Nikogosyan D N. Handbook of Nonlinear Optical Crystals. Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong,Springer-verlag,1991.
    13. R. Masse, J. C. Grenier, Bull Soc. Frand. Mineral Crystallogr. 1971,94,347-439.
    14. F. C, Zumsteg, J. D, Bierlein, T. E, Gier, J. Appl. Phys.1976,47(11),4980-4985.
    15. J. D, Bierlein, H. Vanherzeele, Potassium titanyl phosphate: properties and new applications, J. Opt. Soc. Am. B,6(4),622-633,1989.
    16. K. I, Avdienko, S. V, Bogdanov, et al, Lithium Iodate, Growth , Properties and Applications, Nauka, Novosibirsk, 1980.
    17. B. H. T. Chai, Optical Crystals. In: CRC Handbook of Laser Science and Technology: Supplement 2: Optical Materials, 1995, 3-65.
    18. D.Redfield, W.J Burke, Optical absorption edge of LiNbO3, J. Appl. Phys. 45(10), 4566-4571, 1974.
    19. P. F, Bordui, R. G, Norwood, D. H, Jundt, M. M, Fejer, Preparation and characterization of off-congruent lithium niobate crystals, J. Appl. Phys. 71(2), 875-879, 1992.
    20. D.A. Bryan, R. Gerson, H.E. Tomaschke. Increased optical damage resistance in lithium niobate. Appl. Phys. Lett., 1984, 44(9): 847-849.
    21. C.T Chen, B. C Wu, A. D Jiang et al , A new-type ultraviolet SHG crystal-β-BaB2O4, Sci. Sin. B, 18(1985), 235.
    22. C.T Chen, Y. C Wu, A. D Jiang et al , New Nonlinear Optical Crystal: LiB3O5, J.Opt. Soc. Am. B, 6, 1989, 616.
    23. Y.C. WU, T.Sasaki, S. Naki et al, CsB3O5, A new nonlinear optical crystal, Appl. Phys. Lett. 62, 993, 2614.
    24. T. Sasaki, Y. Mori, I. Kuroda et al, Caesium lithium borate: a new nonlinear optical crystal. Acta Crystallogr. C 51(11), 2222-2224,1995.
    25. J-M. Tu, D.A, Keszler, CsLiB6O10: a noncentrosymmetric polyborate. Mat.Res. Bull. 30(2), 209-215, 1995.
    26. N. Ye, W.R.Zeng, B.C.Wu, C.T. Chen, Two new nonlinear optical crystal:BaAl2B2O7 and K2Al2B2O7, SPIE Vol.3556. 21-23.
    27. Z.G, Hu, Y.Mori, et al , K2Al2B2O7-A new nonlinear optical crystal. SPIE Vol3556, 156-161.
    28. 陈创天、刘丽娟、李如康、王晓洋。一种去除紫外吸收的含铝光学晶体的生长方法,中国专利(申请号:200710086512.4)
    29. P. Becker, Borate Materials in Nonlinear Optics,Adv. Mater, 10, No13,1998:979-992.
    30. T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, T. Kamimura, Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light, Materials Science and Engineering, 30(2000)1-54.
    31. C. Chen,Z,Lin,Z,Wang, The development of new borate-based UV nonlinear optical crystals, Appl. Phys., B80, 1-25(2005).
    32. Li Rukang, The Interpretation of UV Absorption of borate glasses and crystals. J. Non-Cryst. Solids, 111, 199-204, 1989.
    33. Chen CT, Wang YB, Xia YN et al , New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach. J. Appl. Phys. 77(6), 2268-2272, 1995.
    34. S. Lei, Q. Huang, Y. Zheng, A. Jiang, C. Chen, Structure of Calcium Fluoroborate Ca5(BO3)3F, Acta Crystallogr.C,1989,45:1861-1863.
    35. James G. F, Frederik P. G, R.Alan Howie. P,Triborate Fluoride and Its Relationship to Fluorapatite , Acta Cryst. C, 1991, 47: 12/4.
    36. G. J.Chen, Y.C.Wu, P. Z. Fu, Growth and characterization of a new nonlinear optical crystal Calcium Fluoroborate , J.Cryst. Growh.,292(2006)449-453.
    37. 陈国军, 中国科学院研究生院博士学位论文,2007.
    38. I. A. Baidina, V. V. Bakakin, V. I .Alekseev, L. R. Batsanova and V. S. Pavlyuchenko, Zhurnal Strukturnoi Khimii, 125, 19(1978).
    39. 夏文兵, 中国科学院研究生院博士学位论文,2004.
    40. L. Mei, X. Huang, Y. Wang, et al. Crystal-structure of KBe2BO3F2, Z. Krist. 1995, 210: 93-95
    41. C. T. Chen, J. H. Lu, T. Togashi et al. Second-harmonic generation from a KBe2BO3F2 crystal in the deep ultraviolet, Opt. Lett. 2002, 27(8): 637-639
    42. C. T. Chen, S. Watanabe, Z. Y. Xu, J. Y. Wang, Recent advances of deep and vacuum –UV harmonic generation with new borate crystals, technical program, 19Invited paper (CTuT3), CLEO/QELS’ 2003, Baltimore, Maryland, June 3-5, 2003
    43. N. Ye, D. Tang, Hydrothermal growth of KBe2BO3F2 crystals, J. Crystal Growth 293 (2006) 233.
    44. C. D. McMillen, J. W. Kolis, Hydrothermal crystal growth of ABe2BO3F2(A = K, Rb, Cs, Tl) NLO crystals,J. Cryst. Growth(2008),doi:10.1016/j.jcrysgro.2007.11.193.
    45. T. Kiss, F. Kanetaka, et al. Phys. Rev. Lett. Photoemission spectroscopic evidence of gap anisotropy in an f-electron superconductor, 2005, 94: 057001-1-4.
    46. Zhang WT, Liu GD, Zhao L et al. Identification of a new form of electron coupling in the Bi2Sr2CaCu2O8 superconductor by laser-based angle-resolved photoemission spectroscopy Phys. Rev. Lett. 2008, 100: No10,107002.
    47. 温小红,中国科学院研究生院博士学位论文,2006.
    48. D.A. Keszler, A. Akella, K.I. Schaffers et al. New Borate Structure for NLO Application, In: Proc. 1994 Mater. Res. Soc. Conf., 1994, 15-22.
    49. Zhang GC, Liu HJ, Wang, XA et al. Growth and characterization of nonlinear optical crystal BaCaBO3F, J. Cryst. Growth. 2006,289,188-191.
    50.H.Park, J. Barbier, Crystal Structures of the New Borate Fluorides BaMBO3F2(M=Ga,Al), J. Solid. State. Chem., 2000(155),354.
    51. Z. G. Hu, K. Muramatsu, N. Kanehisa, et al. Reinvestigation of the crystal structure of barium aluminum borate diflouride, BaAlBO3F2, a new nonlinear optical material, Z. Krist. NCS, 2003(218),1.
    52. Z. Hu, M. Yoshimura, K. Muramatsu, et al. A New Nonlinear Optical Crystal BaAlBO3F2 (BABF), Jpn. J. Appl. Phys., 2002(41),L1131.
    53. Zhang-Gui Hu, M. Yoshimura, Y. Mori, T. Sasaki, Growth of a new nonlinear optical crystal- BaAlBO3F2, J .Cryst. Growth, 2004, 260, 287.
    54. Yue YC, Hu,ZG, Chen, CT. Flux growth of BaAlBO3F2 crystals, J. Cryst. Growth. 2008,310,1264-1267.
    55. 张克从, 王希敏著. 非线性光学晶体材料科学.北京:科学出版社,1996..
    56. L.F. Johnson, A.A. Ballman. Coherent Emission from Rare Earth Ions in Electro-optic Crystals, J. Appl. Phys., 1969, 40(1): 297-302.
    57. V.G. Dmitriev, E.V. Raevskii, N.M. Rubina, et al. Sov. Tech. Phys. Lett., 1979,5(11): 590-591.
    58. J A.A. Ballman. A new series of synthetic borates isostructural with the carbonate mineral huntite, Am. Mineral, 1962, 47: 1380-1383.
    59. A.D. Mills. Crystallographic data for new rare earth borate compounds RX3(BO3)4, Inorg. Chem., 1962, 1(4): 960-961.
    60. L.M. Dorozhkin, I.I. Kuratev, N.I. Leonyuk, et al. Sov Tech. Phys. Lett., 1981, 7(11): 555-556.
    61. G. Aka, N. Viegas, B. Teisseire, et al. Flux growth and characterization of rare-earth-doped non-linear huntite-type borate crystals: Y1-xNdx(Al0.7Ga0.3)3(BO3)4 and Y1-xYbxAl3(BO3)4, J. Mater. Chem., 1995, 5(4): 583-587.
    62. Chaoyang Tu, Minwang Qiu, YichuanHuang, et al. The study of a self-frequency-doubling laser crystal Nd3+:GdAl3(BO3)4, J. Cryst. Growth, 2000, 208(1-4): 487-492.
    63. G.F. Wang, Z.B. Lin, Z.S. Hu, et al. Crystal growth and optical assessment of Nd3+:GdAl3(BO3)4 crystal, J. Cryst. Growth, 2001, 233(4): 755-760.
    64. P. Dekker, Y.J. Huo, J.M. Dawes, et al. Continuous wave and Q-switched diode-pumped neodymium, lutetium: yttrium aluminium borate lasers, Opt. Commun., 1998, 151(3-4): 406-421.
    65. E.V. Koporulina, N.I. Leonyuk, A.V. Mokhov, et al. Flux growth of (Y, RE)Al3(BO3)4 solid solutions (RE=Nd, Gd, Ho, Yb, Lu), J. Cryst. Growth, 2000, 211(1-4): 491-496.
    66. M. Iwai, Y. Mori, T. Sasaki, et al. Growth and optical characterization of Cr3+:YAB and Cr3+:YGAB crystal for new tunable and self-frequency doubling laser, Jpn. J. Appl. Phys., 1995, 34(5A): 2338-2343.
    67. G.F. Wang, H.G. Gallagher, T.P.J. Han, et al. The growth and optical assessment of Cr3+-doped RX(BO3)4 crystals with R = Y, Gd; X = Al, Sc , J. Cryst. Growth, 1996, 163(3): 272-278.
    68. J.P. Meyn, J. Jensen, G. Huber. Spectroscopic properties and efficient diode-pumped laser operation of neodymium-doped lanthanum scandium borate, IEEE J. Quantum Electron., 1994, 30(4): 913-917.
    69. B. Beier, J. P. Meyn, Knappe. 180 mW Nd:LaSc3(BO3)4 single-frequency TEM00 microchip laser pumped by an injection-locked diode-laser array, Appl. Phys. B, 1994, 58(5): 381-388.
    70. V. Ostroumov, K. Petermann, G. Huber, et al. Crystal growth, spectroscopic and laser characterization of Nd:CSB crystals, J. Lumin., 1997, 72-74: 826-828.
    71. J.T. Lin. Double jeopardy: the blue-green race's new players. Laser & Optronics., 1990, 9(12): 34-40.
    72. F. Torabi-Goudarzi and E. Riis. Efficient cw high-power frequency doubling in periodically poled KTP. Opt. Commun., 2003, 227(4-6): 389-403.
    73. A. Arie, G. Rosenman, V. Mahal, et al. Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4. Opt. Commun., 1997, 42(4-6): 265-268.
    74. 张克从, 刘晓峰, 王希敏. 激光自倍频Cr:KTP晶体的研究. 科学通报, 1994, 739(18): 1679-1682.
    75. 张克从, 龚亚京, 王希敏. 掺质KTP型晶体生长与性能研究. 人工晶体学报, 1999, 28(4): 314-322.
    76. R.G. Smith, J.E. Geusic, H.J. Levinstein, et al. Continuous optical parametric oscillation in Ba2NaNb5O15. Appl. Phys. Lett., 1968, 12(9): 308-310.
    77. A.A. Kaminskii, V.A. Koptsik, Y.A. Maskaev, et al. Stimulated emission from Nd/sup 3+/ ions in ferroelectric Ba2NaNb5O15 crystals. Phys. Stat. Sol. A, 1975, 28(1): K5-10.
    78. M. Ferriol, G. Foulon, A. Brenier, et al. Phenomenological investigation of inhomogeneities in Nd3+-doped Ba2NaNb5O15 single-crystal fibres grown by the laser-heated pedestal growth technique. J. Mater. Sci., 1998, 33 (5): 1227-1232.
    79. K. Lebbou, H. Itagaki, A. Yoshikawa, et al. Effect of Yb3+ content on purity and crystal growth of Ba2NaNb5O15. J. Cryst. Growth, 2000, 210(4): 655-662.
    80. A.A. Kaminskii, D. Jaque, S.N. Bagaev, et al. New nonlinear-laser properties of ferroelectric Nd3+:Ba2NaNb5O15-CW stimulated emission (4F3/2→4I11/2 and 4F3/2→4I13/2), collinear and diffuse self-frequency doubling and summation. Quant. Electro., 1999, 29(2): 95-97.
    81. A.A. Kaminskii, A.V. Butashin, I.A. Malsyanizin. Pure and Nd3+-, Pr3+-ion doped trigonal acentric LaBGeO5 single crystals. Phys. Stat. Sol. (a), 1991, 125(2): 671-696.
    82. J. Capmany, D. Jaque, J. García Solé, et ali. Continuous wave laser radiation at 524 nm from a self-frequency-doubled laser of LaBGeO5:Nd3+. Appl. Phys. Lett., 1998, 72(5): 531-533.
    83. J. Capmany, D. Jaque, and J. García Solé. Continuous wave laser radiation at 1314 and 1386 nm and infrared to red self-frequency doubling in nonlinear LaBGeO5:Nd3+ crystal. Appl. Phys. Lett., 1999, 75(18): 2722-2724.
    84. R. Norrestam, M. Nygren, J.O. Bovin. Structure investigations of new calcium-rare earth oxyborates with the composition Ca4RO(BO3)3, Chem. Mater., 1992, 4: 737-743.
    85. A.B. Ilyukhin, B.F. Dzhurinskii. Crystal structure of binary oxoborate LnCa4O(BO3)3, Russ. J. Inorg. Chem., 1993, 38: 847-850.
    86. G. Aka, A. Kahn-Harari, D. Vivien, et al. A new non-linear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3(GdCOB), Eur. J. Solid State Inorg. Chem., 1996, 33(8): 727-736.
    87. F. Mougel, F. Augé, G. Aka, et al. New green self-frequency-doubling diode-pumped Nd:Ca4GdO(BO3)3 laser, Appl. Phys. B, 1998, 67(5): 533-535.
    88. D. Vivien, F. Mougel, G. Aka, et al. Neodymium-activated Ca4GdB3O10 (Nd:GdCOB): a multifunctional material exhibiting both laser and nonlinear optical properties, Laser Phys., 8(3): 759-763.
    89. F. Mougel, G. Aka, A. Kahn-Harari, et al. Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB), Opt. Mater., 1997, 8(5): 161-173.
    90. 孙渝明, 侯学元, 李宇飞等. Nd:GdCOB晶体1331.0 nm基频光运转和自倍频红光的观察. 光学学报, 1999, 19(9): 1296.
    91. J.H. Lü, G.M. Li, J.H. Liu, et al. Self-frequency doubling laser performance of Nd:GdCOB crystal with a phase-matching angle out of principal plane. Chin. Phys. Lett., 1999, 16(9): 651-652.
    92. G. Lucas-Leclin, F. Auge, S. C. Auzanneau, et al. Diode-pumpedself-frequency-doubling Nd:GdCa4O(BO3)3 lasers: toward green microchip lasers. J. Opt. Soc. Am. B, 2000, 17(9): 1526-1530.
    93. B.H.T. Chai, D.A. Hammons, J.M. Eichenholz, et al. In: Bosenberg, M.M. Fejer eds. Volume 19 of OSA Proceeding series Washington D. C. (Optical Society of America, 1998). 59-61.
    94. D. A. Hammons, J. M. Eichenholz, Q. Ye, et al. Scaling of longitudinally diode-pumped self-frequency-doubling Nd:YCOB lasers. Opt. Commun., 1998, 156(4-6): 327-330.
    95. 孟宪林, 张怀金, 祝 俐, 等. Nd:YCa4O(BO3)3单晶研制成功并实现基频和自倍频激光运转.中国激光, 1999, 26(2): 108.
    96. Y.C. Wu, J.G. Liu, P.Z. Fu, et al. A new lanthanum and calcium borate La2CaB10O19. Chem. Mater., 2001, 13(3): 753-755.
    97. Rui Guo, Yicheng Wu, Peizhen Fu, Fangli Jing. Growth and spectroscopic properties of ytterbium-doped lanthanum calcium borate (Yb3+:La2CaB10O19) crystal. Opt. Commun., 2005, 244(1-6): 321-325.
    98. Rui Guo, Yicheng Wu, Peizhen Fu, Fangli Jing. Optical transition properties of Er3+ ions in Er:La2CaB10O19 crystal. Chem. Phys. Lett. 2005
    99. 郭锐,中国科学院研究生院博士学位论文,2005.
    100. A. Brenier, Yicheng Wu, Peizhen Fu, Rui Guo, Fangli Jing. First evidence of self-frequency doubling from two inequivalent Nd3+ centers in the La2CaB10O19:Nd3+ bifunctional crystal. J. Appl. Phys., 2005
    101. K.I. Schaffers, L.D. DeLoach, S.A. Payne. Crystal growth, frequency doubling, and infrared laser performance of Yb3+:BaCaBO3F. IEEE J. Quantum Electron., 1996, 32(5): 741-748.
    102.P. Gravereau, J.P. Chaminade, S. Pechev, et al. Na3La9O3(BO3)8, a new oxyborate in the ternary system Na2O–La2O3–B2O3: preparation and crystal structure. Solid State Sci. 2002, 4 (7): 993-998.
    103.张国春,傅佩珍,李云阁,等. Na3La9O3(BO3)8的晶体结构. 人工晶体学报,2005, 34(5): 765-771.
    104.G.C. Zhang, Y.C. Wu, Y.G. Li, et al. Flux growth and characterization of a newoxyborate crystal Na3La9O3(BO3)8. J. Cryst. Growth, 2005, 275: e1997-e2001.
    105.Y.G. Li, Y.C. Wu, G.C. Zhang, et al. Flux growth and optical properties of Na3La9O3(BO3)8 crystals. J. Cryst. Growth, 2006, 292: 468-471.
    106. R. Balda,V. Jubera, C. Frayret et al. First luminescence study of the new oxyborate Na3La9O3(BO3)8:Nd3+, Optics Mater. 30,2007, 122-125.
    107. 刘海涛,杨郦,张树军,林蔚,无机材料合成,化学工业出版社,2003.
    108. 徐如人,庞文琴等编著,无机合成与制备化学,高等教育出版社,2001.
    109. 张克从,张乐潓,晶体生长科学与技术,上册,第二版,北京:科学出版社,1997.
    110. 张克从,张乐潓,晶体生长科学与技术,下册,第二版,北京:科学出版社,1997.
    111. D. Elwell,H. J. Scheel Crystal Growth from High-Temperature Solutions,Academic Press,1975.
    1. T. Kiss, F. Kanetaka, et al. Photoemission spectroscopic evidence of gap anisotropy in an f-electron superconductor, Phys. Rev. Lett. 2005, 94: 057001-1-4
    2. Zhang WT, Liu GD, Zhao L et al. Identification of a new form of electron coupling in the Bi2Sr2CaCu2O8 superconductor by laser-based angle-resolved photoemission spectroscopy ,Phys. Rev. Lett. 2008, 100: No10,107002.
    3. Yue YC, Hu,ZG, Chen, CT. Flux growth of BaAlBO3F2 crystals, J. Cryst. Growth. J. Cryst. Growth. 2008,310,1264-1267.
    4. S. Lei, Q. Huang, Y. Zheng, A. Jiang, C. Chen, Structure of Calcium Fluoroborate Ca5(BO3)3F. Acta Crystallogr.C, 1989, 45: 1861-1863.
    5. James G. F, Frederik P. G, R.Alan Howie. P,Pentacalcium Triborate Fluoride and Its Relationship to Fluorapatite. Acta Cryst. C, 1991, 47: 12-14.
    6. T.N. Khamaganova, V.K. Trunov, B.F. Dzhurinskii. The crystal structrue of calcium samarium oxide borate Ca3Sm2(BO3)4. Russ. J. Inorg. Chem., 1991, 36: 484-485.
    7. R. Norrestam, M. Nygren, J.O. Bovin. Structure investigations of new calcium-rare earth oxyborates with the composition Ca4RO(BO3)3. Chem. Mater., 1992, 4: 737-743.
    8. G. Aka, N. Viegas, B. Teisseire, et al. A new non-linear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3(GdCOB). J. Mater. Chem., 1995, 5(4): 583-587.
    9. M. Iwai, Y. Mori, T. Sasaki, et al. Crystal Growth and Optical Characterization of Rare-Earth (Re) Calcium Oxyborate ReCa4O(BO 3) 3 (Re = Y or Gd) as New Nonlinear Optical Material. Jpn. J. Appl. Phys., 1995, 34(5A): 2338-2343.
    10. G. J.Chen, Y.C.Wu, P. Z. Fu, Growth and characterization of a new nonlinear optical crystal Calcium Fluoroborate. J.Cryst. Growh., 292(2006)449-453.
    11.吴以成,陈国军,傅佩珍,一种氟硼酸钙非线性光学晶体的助熔剂生长方法,专利(200610089011.7).
    12. 陈国军, 中国科学院研究生院博士学位论文,2007.
    13. Xu Ke, Pascal L, Aka G, Lejay J,ICCG-15, Invited Report,Session: CRYSTALGROWTH OF LASER HOST AND NLO CRYSTALS,2007.
    14. Wu YC, Liu JG, Fu, PZ, et al., A new lanthanum and calcium borate La2CaB10O19. Chem. Mater., 2001,13(3):753-755.
    15. F L, Jing,Y C, Wu,P Z, Fu,Growth of La2CaB10O19 Single Crystals from CaO-Li2O-B2O3 Flux. J. Cryst. Growth, 2005, 285(1-2):270-274.
    1. P. E Mackie, R. A Young Location of Nd dopant in fluorapatite, Ca5(PO4)3F: Nd J. Appl. Cryst. Volume 6 Issue 1 Page 26-31, February 1973
    2. B.R. Judd.Optical Absorption Intensity of Rare –Earth Ions. Phys. Rev., 1962, 127(3): 750-761.
    3. G.S. Ofelt. Intensity of Crystal Spectra of Rare-Earth Ions. J. Chem. Phys., 1962, 37(3): 511-519.
    4. W.T. Carnall, P.R. Fields, K. Rajnak. Spectra Intensity of the Trivalent Lanthanides and Actinides in Solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+ and Ho3+. J. Chem. Phys., 1968, 49(10): 4412-4423.
    5. W.T. Carnall, P.R. Fields, K. Rajnak. Electronic Energy Levels in the Trivalent Lanthanides Aquo Ions.I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+ Dy3+ Er3+ and Tm3+. J. Chem. Phys., 1968, 49(10): 4424-4442.
    6. 郭锐 中国科学院研究生院博士学位论文,2005.
    7. H. Hemmati. Diode-pumped self-frequency-doubled neodymium yttrium aluminum borate (NYAB) laser. IEEE J. Quantum Electron., 1992, 28(4): 1169-1171.
    8. G.F. Wang, Z.B. Lin, Z,S. Hu, et al. Crystal growth and optical assessment of Nd3+:GdAl3(BO3)4 crystal. J. Cryst. Growth, 2001, 233(4): 755-760.
    9. F. Mougel, G. Aka, A. Kahn-Harari, et al. Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB). Opt. Mater., 1997, 8(3): 161-173.
    10. D.G. Matthew, J.R. Boon, R.S. Conroy. A comparative study of diode pumped microchip laser materials: Nd-doped YVO4, YOS, SFAP and SVAP. J. Modern Opt., 1996, 43(5): 1079-1087.
    1. Jubera, V., Chaminade, J. P., Garcia, A., Guillen, F. & Fouassier, C. Luminescent properties of Eu3+-activated lithium rare earth borates and oxyborates, (2003). J. Lumin. 101, 1–10.
    2. Sablayrolles, J., Jubera, V., Chaminade, J. P., Manek-Honninger, I., Murugan, S., Cardinal, T., Olazcuaga, R., Garcia, A. & Salin, F. (2005). Crystal growth, luminescent and lasing properties of the ytterbium doped Li6Y(BO3)3 compound, Opt. Mater. 27, 1681–1685.
    3. R. Norrestam, M. Nygren, J.O. Bovin. Structure investigations of new calcium-rare earth oxyborates with the composition Ca4RO(BO3)3. Chem. Mater., 1992, 4: 737-743.
    4. M. Tukia, J.Hosla, M. Lastusaari, J. Niittykoski, Eu3+ doped rare-earth orhoborates, RBO3(R=Y, La and Gd), obtained by combustion synthesis, Opt. Mater. 27, (2005), 1516.
    5. A.B. Ilyukhin, B.F. Dzhurinskii. Crystal structure of binary oxoborate LnCa4O(BO3)3. Russ. J. Inorg. Chem., 1993, 38: 847-850.
    6. G. Aka, A. Kahn-Harari, D. Vivien, et al. A new non-linear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3(GdCOB). Eur. J. Solid State Inorg. Chem., 1996, 33(8): 727-736.
    7. F. Mougel, F. Augé, G. Aka, et al. New green self-frequency-doubling diode-pumped Nd:Ca4GdO(BO3)3 laser. Appl. Phys. B, 1998, 67(5): 533-535.
    8. J A.A. Ballman. A new series of synthetic borates isostructural with the carbonate mineral huntite. Am. Mineral, 1962, 47: 1380-1383.
    9. L.M. Dorozhkin, I.I. Kuratev, N.I. Leonyuk, et al. Sov Tech. Phys. Lett., 1981, 7(11): 555-556.
    10. YC, Wu, JG, Liu, PZ, Fu et al,A New Lanthanum and Calcium Borate La2CaB10O19, Chem. Mater. 13(2001),753.
    11. R. Guo, YC. Wu, PZ, Fu, FL, Jing, Growth and spectroscopic properties of ytterbium-doped lanthanum calcium borate (Yb3+: La2CaB10O19) crystal, Opt.Commun, 2005, 244(1-6):321-325.
    12. FL. Jing ,YC. Wu, PZ. Fu, Growth of La2CaB10O19 single crystals from CaO-Li2O-B2O3 flux, J. Cryst. Growth. 2005,285,270-274.
    13. Carel W.E. van Eijk, Inorganic-scintillator development , Nucl. Instrum. Methods Phys. Res. A, 460 (2001) 1–14
    14. . Czirr, J. B., MacGillivray, G. M., MacGillivray, R. R. & Seddon, P. J. (1999). Nucl. Instrum. Methods Phys. Res. A, 424, 15–19.
    15.. Chaminade, J. P., Viraphong, O., Guillen, F., Fouassier, C. & Czirr, B. (2001). IEEE Trans. Nucl. Sci. 48, 1158–1161.
    16. Abdullaev, G.K.,Mamedov, H.S,Crystal structure of the double lithium ytterbium orthoborate Li6Yb(BO3)3, Kristallografiya,(1977), 22, 389-392.
    17. Mascetti,J, Fouassier, C, Hagenmuller, P. Concentration quenching of the Nd3+ emission in alkali rare earth borates, J.Solid.State.Chem, 1983, 50, 204.
    18. Chaminade, J.P.;Gravereau, P.;Jubera, V.;Fouassier, C. A new family of lithium rare-earth oxyborates, LiLn6O5(BO3)3 (Ln= Pr-Tm): crystal structure of the gadolinium phase Li Gd6O5(BO3)3, J.Solid.State.Chem, (1999), 146, 189-196.
    19. Jubera, V.;Gravereau, P.;Chaminade, J.P. crystal structure of the new borate Li3Gd (BO3)2. Comparison with the homologous Na3Ln(BO3)2 (Ln: La, Nd) compounds Solid State Sciences, (2001), 3, 469-475.
    20. Jubera, V.;Gravereau, P.;Chaminade, J.-P.;Fouassier, C. A new oxyborate in the ternary phase diagrams Li2O-Ln2O3-B2O3: Li2Ln5O4(BO3)3 (Ln = Yb, Lu): Crystal structure of the ytterbium phase, J.Solid.State.Chem, (2001), 156, 161-167.
    21. Abdullaev, G.K.;Mamedov, Kh.S.;Dzhafarov, G.G., Structure cristalline de l'orthoborate double de lithium et d'europium - Li3Eu2(BO3)3, Azerbaidzhanskii Khimicheskii Zhurnal, (1977), 1977, 115-119. 7. P Gravereau, J-P Chaminade, S Pechev, et al. Na3La9O3(BO3)8, a new oxyborate in the ternary system Na2O-La2O3-B2O3: preparation and crystal structure, Solid State Sciences, 2002, 4(7)993-998.
    22. G. C, Zhang, Y C, Wu, P Z, Fu et al. Flux growth and characterization of a new oxyborate crystal Na3La9O3(BO3)8 ,J. Cryst. Growth, 275(2005),1997.
    23. G. C, Zhang, Y C, Wu, P Z, Fu et al. A new nonlinear optical borate crystal Na3La2(BO3)3. Chem. Lett, 30(2001), 456.
    24. J.H. Gao, R.K. Li, Potassium rich rare earth (RE) borates K3RE(BO3)2, Solid State Sciences , 10 (2008) 26- 30.
    25. J.H. Gao, R.K. Li, Preparation, structure and luminescent properties of a new potassium yttrium borate K3Y3(BO3)4, Mater. Res.Bull, 43 (2008) 882–888.
    26. J.H. Gao, R.K. Li, Rb3Y2(BO3)3 with a noncentrosym-metric structure, Acta Cryst. (2007). C63, i112-i114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700