咔唑类染料敏化剂的合成及在太阳能电池中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化剂在染料敏化太阳能电池(DSSC)中主要起光电转化的作用,是染料敏化太阳能电池的核心部件之一。纯有机染料敏化剂由于其自身特点的原因,已经逐渐成为染料敏化太阳能电池敏化剂的首选。寻找转化效率高且合成方法简单、成本低廉的纯有机染料敏化剂成为人们研究工作的重点。
     通过阅读大量的参考文献,结合前人的研究成果和合成方法,本论文设计合成了七个咔唑类染料敏化剂。以N-乙基咔唑作为供电子基团,氰基乙酸为拉电子基团,通过变换不同的Π桥键来合成。所有染料均通过核磁共振氢谱,质谱和红外吸收光谱对其结构进行表征。对所有光敏染料进行了光物理和电化学性质测试,并将其制作成染料敏化太阳能电池器件,系统的研究了染料的光伏性能。另外,还对所有染料分子进行了密度泛函理论方面的理论计算研究。
     染料分子的光物理和电化学性质与其结构密切相关。通过变换不同的Π桥键,可以改变染料的吸收光谱范围。实验数据表明,染料分子的共轭性和共平面性会影响其光物理性质和分子内电子传输能力。染料分子的空间位阻越大,其分子的共平面性就越差,导致使染料分子吸收光谱发生蓝移,使电池器件的光电转化效率下降。通过密度泛函理论计算出所有染料分子的HOMO和LUMO能级同时满足了染料激发态电子向TiO2导带注入和染料再生的能级要求。
     对这七种染料敏化剂进行电化学性质和光伏特性的测试,从电化学和光伏特性的测试结果分析得出这一系列染料的光电转化效率和结构变化的关系;结合其紫外吸收光谱数据,分析得出了染料分子结构和紫外吸收波长的关系。在电池器件制作条件未经过优化的情况下进行测试的,其中染料Ⅴ、Ⅵ和Ⅶ的光电转化效率依次为2.03%、4.18%和2.74%.若将其制备条件加以优化,其光电转化效率有可能提高至5%-6%左右。
Dye sensitizer plays a mainly important role in the terms of photoelectric conversion,and which is one of the core member in dye sensitized solar cells. Pure organic dye sensitizers has gradually become the first choice of the dye-sensitized solar cell sensitizer due to its own characteristics. Looking for a high conversion efficiency and simple synthetic method, low-cost organic dye sensitizer become the focus of people's work around the world.
     By reading a lot of references, combined with the results of previous studies and the synthesis method, designed seven carbazoles dye sensitizer. We use N-ethyl carbazole as the electron donating group, and the cyanoacetate as the electron-withdrawing group, connecting the two parts together by converting different II bridge bonds. The structures of these dyes are confirmed by1HNMR, mass spectrometry and infrared absorption spectrum.The photophysical and electrochemical properties of these photosensitive dye was studied. These dyes were made into dye-sensitized solar cell devices and studied relationship between the structures of dyes and the cell performances. In addition, the theory of the density functional theory calculations of all dye molecules have been studied.
     Photophysical and electrochemical properties of the dye molecules is closely related to its structure. The absorption spectral range of the dye can be changed by varying the type of Ⅱ bridge. Experimental data show that the conjugated and coplanar of the dye molecules affect their photophysical properties and intramolecular electron transfer. Steric hindrance of Dye molecules are larger,the plane of the Dye molecules are the worse,which are resulting blue-shifted absorption spectrum of the the dye molecules and the photoelectric conversion efficiency of the battery device down.. Through the density functional theory calculations of dye molecules HOMO and LUMO levels while they are all meeting the dye excited electrons injected into the conduction band of TiO2and dye renewable energy level requirements.
     We have also tested electrochemical and photovoltaic properties of these dye sensitizers. Analyzed the results,we may get the relationship of these Dye sensitizers which are between the photoelectric conversion efficiency and the structural; Combined with the UV absorption spectrum data of the dye molecules, we can analyzes the relationship between the structure of the photosensitions and absorption spectrum. At the condition of the battery device fabrication unoptimized test case, in which the photoelectric conversion efficiency of the dye Ⅴ、 Ⅵ and Ⅶ are followed by2.03%,4.18%and2.74%.Replace their preparation conditions to be optimized, the photoelectric conversion efficiency may be increased to about5%-6%.
引文
[1]. Becquerel C.Memoire surles effets electriques produits sousl influence des rayons solarires[J].C.R.Acad.Sci.Pairs,1839,9:561-567.
    [2]. Chapin D M, Fuller C S,Pearson G L. A New Silicon p-n Junction Photocell for Converting Solar Radiation Into Electric Power[J].J.Appl.Phys,1954,25(5):676-677.
    [3].Desilvestro,J.;Gratzel,M.;Kavan,L.;Moser,J.;Augustynski,J. Highly efficient sensitization of titanium dioxide[J] J.Am.Chem,Soc.1985,107(10).2988-2990.
    [4]. O'Regan B.Gratzel M.A low-cost,high-efficiency solar cell based on dye-sensitized colloidal TiO2 films.[J].Nature,1991,353:737-740.
    [5].Mori Y.Chiba T,Odani T,Matsumoto A.Molecular Arrangement and Photoreaction of Sorbamides and Hexadienyl Crabamates with Various N-Substituents in the Solid State.[J].Crystal Growth& Design,2007,7(7).1356-1643.
    [6]. T Bessho, Yoneda, E, Yum, J. H, M Guglielmi, I Tavernelli, H Imai, U Rothlisberger, Nazeeruddin, M. K.; Gra"tzel, M. New Paradigm in Molecular Engineering of Sensitizers for Solar Cell Applications.J.Am.Chem. Soc.2009,131(16),5930-5934.
    [7].何俊杰,陈舒欣,王婷婷,曾和平。有机染料敏化剂分子设计新进展[J].有机化学,2012,32,472-485.
    [8].陈瑞奎.四氢喹啉类光敏染料用于染料敏化太阳能电池的研究[D].大连:大连理工大学化工学院,2007.
    [12].郑冰,牛海军,白续铎。有机染料敏化纳米晶太阳能电池[J].化学进展,2008,6(20)828-838.
    [13]. Nazeeruddin Md K Kay A,Gratzel M,et al.Conversion of light to electricity by cis-X2 Bis (2,2'-bipyridyl-4,4'-diearboxylate) ruthenium(Ⅱ) charge-transfer sensitizers (X=C1-,Br-,I-,CN-,and SCN-) on nanocrystalline TiO2 electrodes [J].J.Am.Chem.Soc.,1993,115:6382-6390.
    [14].Gratzel M, Hagfeldt A,Light-induced redox reactions in nanocrystalline systems [J].Chem.Rev.,1995,95(1):49-68.
    [15].Shah A,Torres P,Tschamer R,et al.Photovoltaic technology:the case for thin-film solar cells[J].Science.1999,285:692-698.
    [16].唐笑,钱觉时,黄佳木.染料敏化太阳能电池中的光电极制备技术[J].材料导报,2006,20:97-103.
    [17]. P Hoyer, H Weller. Potential-Dependent Electron Injection in Nanoporous Colloidal ZnO Films[J].J Phys.Chem.1995,99(38):14096-14100.
    [18].A Solbrand,H Lindstrom,H Rensmo,A Hagfeldt,S Sodergren etal[J]. Electron Transport in the Nanostructured Ti02-Electrolyte System Studied withTime-Resolved Photocurrents. J Phys.Chem B,1997,101(14):2514-2518
    [19].E Galoppini,J Rochford,Chen H,G Saraf et al.Fast Electron Transport in Metal Organic Vapor Deposition Grown Dye-sensitized ZnO Nanrod Solar Cells.[J].J Phys Chem.B,2006,110:16159-16161.
    [20].Prashant V,Kamat,Idriss Bedja,S Hotchandani,K Larry et al. Photosensitization of Nanocrystalline Semiconductor Film.Modulation of Electron Transfer between Excited Ruthenium Complex and SnO2Nanocrystallites with an Externally Applied Bias [J].Phys Chem.B,1996,100(12):4900-4908.
    [21].F Lenzmann,J Krueger,S Burnside,K Brooks M Gratzel,D Cahen et al..Surface Photovoltage Spectroscopy of Dye-Sensitized Solar Cells with TiO2,Nb2O5,and SrTiO3 Nanocrystalline Photoanodes:Indication From Higher Excited Dye States [J]J Phys Chem.B,2001,105(27):6347-6352.
    [22].Gratzel M.Conversion of sunlight to electric power by nanocrystalline dye-sensitized soler cells[J]. Jphotobio A Chem.2004,164:3-14.
    [23].李斌,邱勇.染料敏化纳米太阳能电池. [J].感光科学与光化学,2000,18:336-347.
    [24]梁茂,陶占良,陈军.染料敏化太阳能电池中的敏化剂[J].化学通报,2005,889-896.
    [25].蒋银花.染料敏化太阳能电池中纳米半导体材料及染料的合成研究.学位论文.2009.
    [26].田海宁.芳胺类光敏染料用于染料敏化太阳能电池的研究。学位论文.2008
    [27]Sapp, S. A.; Elliott, C. M.; Contado, C; Caramori, S.; Bignozzi, C. A., Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells. J Am Chem Soc 2002,124 (37),11215-11222.
    [28].Bergeron, B. V.; Kelly, C. A.; Meyer, G. J., Thin film actinometers for transient absorption spectroscopy:Applications to dye-sensitized solar cells. Langmuir 2003,19 (20),8389-8394.
    [29].Gratzel, M., Dye-sensitized solar cells. J Photoch Photobio C 2003,4 (2),145-153.
    [30].Bandaranayake, K. M. P.; Senevirathna, M. K. I.; Weligamuwa, P. M. G. M. P.; Tennakone, K., Dye-sensitized solar cells made from nanocrystalline TiO2 films coated with outer layers of different oxide materials. Coordin Chem Rev 2004,248 (13-14),1277-1281.
    [31].(a) Chatzivasiloglou, E.; Stergiopoulos, T.; Spyrellis, N.; Falaras, P., Solid-state sensitized solar cells, using [Ru(dcbpyH(2))(2)Cl-2]center dot 2H(2)O as the dye and PEO/titania/I-/I-3(-) as the redox electrolyte. J Mater Process Tech 2005,161 (1-2),234-240; (b) Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Gratzel, M., A binary ionic liquid electrolyte to achieve >= 7%power conversion efficiencies in dye-sensitized solar cells. Chem Mater 2004,16 (14), 2694-2696.
    [32].Young-Min, S.; Vaidya, B., CTLA4 exon 1 polymorphism, rheumatoid arthritis and autoimmune endocrinopathy. Clin Rheumatol 2004,23 (6),568-569.
    [33].Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Moser, J. E.; Gratzel, M., Molecular-scale interface engineering of TiO2 nanocrystals:Improving the efficiency and stability of dye-sensitized solar cells. Adv Mater 2003,15 (24),2101-+.
    [34].Wang, P.; Zakeeruddin, S. M.; Comte, P.; Exnar, I.; Gratzel, M., Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J Am Chem Soc 2003,125 (5),1166-1167.
    [35].Sharma, G. D.; Sharma, S.; Roy, M. S., Electrical and photoelectrical properties of dye-sensitized allyl viologen-doped polypyrrole solar cells. Sol Energ Mat Sol C 2003,80 (2), 131-142.
    [36].Yanagida, M.; Islam, A.; Tachibana, Y; Fujihashi, G; Katoh, R.; Sugihara, H.; Arakawa, H., Dye-sensitized solar cells based on nanocrystalline TiO2 sensitized with a novel pyridylquinoline ruthenium(II) complex. New J Chem 2002,26 (8),963-965.
    [37].Adachi, M.; Murata, Y.; Okada, I.; Yoshikawa, S., Formation of titania nanotubes and applications for dye-sensitized solar cells. J Electrochem Soc 2003,150 (8), G488-G493.
    [38].Fredin, K.; Ruhle, S.; Grasso, C; Hagfeldt, A., Studies of coupled charge transport in dye-sensitized solar cells using a numerical simulation tool. Sol Energ Mat Sol C 2006,90 (13), 1915-1927.
    [39].Chen, C. Y.; Wu, S. J.; Li, J. Y; Wu, C. G.; Chen, J. G.; Ho, K. C, A new route to enhance the light-harvesting capability of ruthenium complexes for dye-sensitized solar cells. Adv Mater 2007,19 (22),3888-+.
    [40].Diguna, L. J.; Shen, Q.; Kobayashi, J.; Toyoda, T., High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Appl Phys Lett 2007,91 (2),-
    [41].Ferber, J.; Luther, J., Modeling of photovoltage and photocurrent in dye-sensitized titanium dioxide solar cells. J Phys Chem B 2001,105 (21),4895-4903.
    [42].Hara, K.; Sugihara, H.; Singh, L. P.; Islam, A.; Katoh, R.; Yanagida, M.; Sayama, K.; Murata, S.; Arakawa, H., New Ru(II) phenanthroline complex photo sensitizers having different number of carboxyl groups for dye-sensitized solar cells. J Photoch Photobio A 2001,145 (1-2), 117-122.
    [43].Gregg, B. A.; Pichot, F.; Ferrere, S.; Fields, C. L., Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces. J Phys Chem B 2001,105 (7), 1422-1429.
    [44].Eguchi, K.; Koga, H.; Sekizawa, K.; Sasaki, K., Nb2O5-based composite electrodes for dye-sensitized solar cells. J Ceram Soc Jpn 2000,108 (12),1067-1071.
    [45].Murai, T.; Oida, S.; Min, S.; Kato, S., Thiophilic Halogenation of Thiocarboxylic Acid O-Silyl Esters-a Facile Preparation of Acylsulfenyl Halides. Tetrahedron Lett 1986,27 (38), 4593-4594.
    [46].Gebeyehu, D.; Brabec, C. J.; Sariciftci, N. S.; Vangeneugden, D.; Kiebooms, R.; Vanderzande, D.; Kienberger, F.; Schindler, H., Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials. Synthetic Met 2001,125 (3),279-287.
    [47].Hara, K.; Tachibana, Y; Ohga, Y; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H., Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes. Sol Energ Mat Sol C 2003,77 (1),89-103.
    [48].(a) Kado, T.; Yamaguchi, M.; Yamada, Y; Hayase, S., Low temperature preparation of nano-porous TiO2 layers for plastic dye sensitized solar cells. Chem Lett 2003,32 (11), 1056-1057; (b) Kang, J.; Li, W.; Wang, X.; Lin, Y.; Xiao, X.; Fang, S., Polymer electrolytes from PEO and novel quaternary ammonium iodides for dye-sensitized solar cells. Electrochim Acta 2003,48 (17),2487-2491.
    [49].Mahrov, B.; Hagfeldt, A.; Lenzmann, F; Boschloo, G., Comparison of charge accumulation and transport in nanostructured dye-sensitized solar cells with electrolyte or CuSCN as hole conductor. Sol Energ Mat Sol C 2005,88 (4),351-362.
    [50].Mikoshiba, S.; Murai, S.; Sumino, H.; Kado, T.; Kosugi, D.; Hayase, S., Ionic liquid type dye-sensitized solar cells:increases in photovoltaic performances by adding a small amount of water. Curr Appl Phys 2005,5 (2),152-158.
    [51].Menzies, D.; Dai, Q.; Cheng, Y. B.; Simon, G. P.; Spiccia, L., Improvement of the Zirconia shell in nanostructured titania core-shell working electrodes for dye-sensitized solar cells. Mater Lett 2005,59 (14-15),1893-1896.
    [52].Nazeeruddin, M. K.; Klein, C; Liska, P.; Gratzel, M., Synthesis of novel ruthenium sensitizers and their application in dye-sensitized solar cells. Coordin Chem Rev 2005,249 (13-14),1460-1467.
    [53].Scully, S. R.; Lloyd, M. T.; Herrera, R.; Giannelis, E. P.; Malliaras, G. G, Dye-sensitized solar cells employing a highly conductive and mechanically robust nanocomposite gel electrolyte. Synthetic Met 2004,144 (3),291-296.
    [54].Miyasaka, T.; Kijitori, Y; Murakami, T. N.; Kawashima, N., Fabrication of dye-sensitized plastic film electrodes for flexible solar cells based on electrophoretic deposition techniques. Organic Photovoltaics Iv 2004,5215,219-225 280.
    [55].Kubo, W.; Murakoshi, K.; Kitamura, T.; Wada, Y; Hanabusa, K.; Shirai, H.; Yanagida, S., Fabrication of quasi-solid-state dye-sensitized TiO2 solar cells using low molecular weight gelators. Chem Lett 1998, (12),1241-1242.
    [56].Gebeyehu, D.; Brabec, C. J.; Padinger, F.; Fromherz, T.; Spiekermann, S.; Vlachopoulos, N.; Kienberger, F.; Schindler, H.; Sariciftci, N. S., Solid state dye-sensitized TiO2 solar cells with poly(3-octylthiophene) as hole transport layer. Synthetic Met 2001,121 (1-3),1549-1550.
    [57].Chen, C. C; Chung, H. W.; Chen, C. H.; Lu, H. P.; Lan, C. M.; Chen, S. R; Luo, L.; Hung, C. S.; Diau, E. W. G, Fabrication and Characterization of Anodic Titanium Oxide Nanotube Arrays of Controlled Length for Highly Efficient Dye-Sensitized Solar Cells. J Phys Chem C 2008,112(48),19151-19157.
    [58].Wang, H. X.; Nicholson, P. G; Peter, L.; Zakeeruddin, S. M.; Gratzel, M., Transport and Interfacial Transfer of Electrons in Dye-Sensitized Solar Cells Utilizing a Co(dbbip)(2) Redox Shuttle. J Phys Chem C 2010,114 (33),14300-14306.
    [59].Thompson, S. J.; Duffy, N. W.; Bach, U.; Cheng, Y. B., On the Role of the Spacer Layer in Monolithic Dye-Sensitized Solar Cells. J Phys Chem C 2010,114 (5),2365-2369.
    [60].Ramasamy, E.; Lee, J., Ordered Mesoporous SnO2-Based Photoanodes for High-Performance Dye-Sensitized Solar Cells. J Phys Chem C 2010,114 (50),22032-22037.
    [61].Pringle, J. M.; Armel, V.; MacFarlane, D. R., Electrodeposited PEDOT-on-plastic cathodes for dye-sensitized solar cells. Chem Commun 2010,46 (29),5367-5369.
    [62].Sivakumar, R.; Akila, K.; Anandan, S., New type of inorganic-organic hybrid (heteropolytungsticacid-polyepichlorohydrin) polymer electrolyte with TiO2 nanofiller for solid state dye sensitized solar cells. Curr Appl Phys 2010,10 (5),1255-1260.
    [63].Tennakone, K.; Apsonsu, G. L. M. P.; Ariyasinghe, Y. P. Y. P.; Buchanan, R. C; Perera, V. P. S.; Tennakone, H.; Wijayarathna, T. R. C. K., Dye-Sensitized Solar Cells Based on Nanostructured Semiconductor Oxide Ceramics with Ultra-Thin Barrier Layers. Integr Ferroelectr2010,115,120-131.
    [64].Taura, H.; Daiguji, H., Effect of pyridine in electrolyte on the current voltage characteristics' in dye-sensitized solar cells. Electrochim Acta 2010,55 (10),3491-3496.
    [65].Sima, C; Grigoriu, C; Antohe, S., Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO. Thin Solid Films 2010,519 (2), 595-597.
    [66].Shin, K.; Jun, Y.; Moon, J. H.; Park, J. H., Observation of Positive Effects of Freestanding Scattering Film in Dye-Sensitized Solar Cells. Acs Appl Mater Inter 2010,2 (1),288-291.
    [67].Shan, G. B.; Demopoulos, G. P., Near-Infrared Sunlight Harvesting in Dye-Sensitized Solar Cells Via the Insertion of an Upconverter-TiO2 Nanocomposite Layer. Adv Mater 2010,22 (39), 4373.
    [68].Shanmugam, M.; Baroughi, M. F.; Galipeau, D., Effect of atomic layer deposited ultra thin HfO2 and A12O3 interfacial layers on the performance of dye sensitized solar cells. Thin Solid Films 2010,518 (10),2678-2682.
    [69].Li, X. G; Lu, H. J.; Wang, S. R.; Guo, J. J.; Li, J., Sensitizers of Dye-Sensitized Solar Cells. Prog Chem 2011,23 (2-3),569-588.
    [70].Lopez-Garcia, U.; Castellanos, O. A.; Godinez, L. A.; Manriquez, J., Electrophoretically-Assisted Deposition of Mesoporphyrin IX on Nanoparticulate TiO2 Films for Constructing Efficient Dye-Sensitized Solar Cells. J Electrochem Soc 2011,158 (6), F100-F105.
    [71].Lu, M.; Liang, M.; Han, H. Y; Sun, Z.; Xue, S., Organic Dyes Incorporating Bis-hexapropyltruxeneamino Moiety for Efficient Dye-Sensitized Solar Cells. J Phys Chem C 2011,115(1),274-281.
    [72].Maeda, T.; Nakao, H.; Kito, H.; Ichinose, H.; Yagi, S.; Nakazumi, H., Far-red absorbing squarylium dyes with terminally connected electron-accepting units for organic dye-sensitized solar cells. Dyes Pigments 2011,90 (3),275-283.
    [73].Manzhos, S.; Segawa, H.; Yamashita, K., A model for recombination in Type II dye-sensitized solar cells:Catechol-thiophene dyes. Chem Phys Lett 2011,504 (4-6),230-235.
    [74].Mikroyannidis, J. A.; Tsagkournos, D. V.; Balraju, P.; Sharma, G. D., Low band gap dyes based on 2-styryl-5-phenylazo-pyrrole:Synthesis and application for efficient dye-sensitized solar cells. J Power Sources 2011,196 (8),4152-4161.
    [75].Miyasaka, T, Toward Printable Sensitized Mesoscopic Solar Cells:Light-Harvesting Management with Thin TiO2 Films. J Phys Chem Lett 2011,2 (3),262-269.
    [76].Ning, Z. J.; Tian, H. N.; Yuan, C. Z.; Fu, Y.; Qin, H.Y.; Sun, L. C.; Agren, H., Solar cells sensitized with type-Ⅱ ZnSe-CdS core/shell colloidal quantum dots. Chem Commun 2011,47 (5), 1536-1538.
    [77].Pang, Q.; Leng, L. M.; Zhao, L. J.; Zhou, L. Y.; Liang, C. J.; Lan, Y. W., Dye sensitized solar cells using freestanding TiO2 nanotube arrays on FTO substrate as photoanode. Mater Chem Phys 2011,125 (3),612-616.
    [78].Pasunooti, K. K.; Song, J. L.; Chai, H.; Amaladass, P.; Deng, W. Q.; Liu, X. W., Synthesis, characterization and application of trans-D-B-A-porphyrin based dyes in dye-sensitized solar cells. J PhotochPhotobio A 2011,218 (2-3),219-225.
    [79].Piscitelli,S. C.; Song, I.; Borland, J.; Chen,S. G.; Lou, Y.; Peppercorn, A.; Wajima, T.; Min, S., Effect of atazanavir and atazanavir/ritonavir on the pharmacokinetics of the next-generation HIV integrase inhibitor, S/GSK1349572. Brit J Clin Pharmaco 2011,72 (1),103-108.
    [80].Prasittichai, C.; Hupp, J. T., Surface Modification of SnO2 Photoelectrodes in Dye-Sensitized Solar Cells:Significant Improvements in Photovoltage via A12O3 Atomic Layer Deposition (vol 1, pg 1611,2010). J Phys Chem Lett 2011,2 (7),824-824.
    [81].Villanueva-Cab, J.; Oskam, G.; Anta, J. A., A simple numerical model for the charge transport and recombination properties of dye-sensitized solar cells:A comparison of transport-limited and transfer-limited recombination. Sol Energ Mat Sol C 2010,94 (1),45-50.
    [82].Tiwana, P.; Parkinson, P.; Johnston, M. B.; Snaith, H. J.; Herz, L. M., Ultrafast Terahertz Conductivity Dynamics in Mesoporous TiO2:Influence of Dye Sensitization and Surface Treatment in Solid-State Dye-Sensitized Solar Cells. J Phys Chem C 2010,114 (2),1365-1371.
    [83].Sun, X. W.; Chen, J.; Song, J. L.; Zhao, D. W.; Deng, W. Q.; Lei, W., Ligand capping effect for dye solar cells with a CdSe quantum dot sensitized ZnO nanorod photoanode. Opt Express 2010,18(2),1296-1301.
    [84].Zhdanov, V. P., On the use of metal nanoparticles for enhancement of light absorption in dye-sensitized solar cells. Physica E 2010,43 (1),494-497.
    [85].Wessels, K.; Wark, M.; Oekermann, T., Efficiency improvement of dye-sensitized solar cells based on electrodeposited TiO2 films by low temperature post-treatment. Electrochim Acta 2010, 55 (22),6352-6357.
    [86].Bonaccorso, F., Debundling and Selective Enrichment of SWNTs for Applications in Dye-Sensitized Solar Cells. Int J Photoenergy 2010,-
    [87].Zhang, G.L.; Bai, Y; Li, R. Z.; Shi, D.; Wenger, S.; Zakeeruddin, S. M.; Gratzel, M.; Wang, P., Employ a bisthienothiophene linker to construct an organic chromophore for efficient and stable dye-sensitized solar cells. Energ Environ Sci 2009,2 (1),92-95.
    [88].Yoshida, Y., Pandey, S. S.; Uzaki, K.; Hayase, S.; Kono, M.; Yamaguchi, Y., Transparent conductive oxide layer-less dye-sensitized solar cells consisting of floating electrode with gradient TiOx blocking layer. Appl Phys Lett 2009,94 (9),-
    [89].Usagawa, J.; Pandey, S. S.; Hayase, S.; Kono, M.; Yamaguchi, Y., Tandem Dye-Sensitized Solar Cells Fabricated on Glass Rod without Transparent Conductive Layers. Appl Phys Express 2009,2 (6),-.
    [90].Syrrokostas, G; Giannouli, M.; Yianoulis, P., Effects of paste storage on the properties of nanostructured thin films for the development of dye-sensitized solar cells. Renew Energ 2009, 34(7),1759-1764.
    [91].McCormick, C, Tailored Anodization Leads to the Formation of Long, High-Aspect-Ratio TiO2 Nanotube Arrays for Dye-Sensitized Solar Cells. Mrs Bull 2008,33 (11),989-989.
    [92].Wang, H. X.; Bell, J.; Desilvestro, J.; Bertoz, M.; Evans, G., Effect of inorganic iodides on performance of dye-sensitized solar cells. J Phys Chem C 2007,111 (41),15125-15131.
    [93].Kroon, J. M.; Bakker, N. J.; Smit, H. J. P.; Liska, P.; Thampi, K. R.; Wang, P.; Zakeeruddin, S. M.; Gratzel, M.; Hinsch, A.; Hore, S.; Wurfel, U.; Sastrawan, R.; Durrant, J. R.; Palomares, E.; Pettersson, H.; Gruszecki, T.; Walter, J.; Skupien, K.; Tulloch, G. E., Nanocrystalline dye-sensitized solar cells having maximum performance. Prog Photovoltaics 2007,15 (1),1-18.
    [94].Standridge, S. D.; Schatz, G. C; Hupp, J. T., Plasmon amplified absorption in dye-sensitized solar cells. Abstr Pap Am Chem S 2007,233,951-951.
    [95].Yamaguchi, T.; Tobe, N.; Matsumoto, D.; Arakawa, H., Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes. Chem Commun 2007, (45),4767-4769.
    [96]Klein, CJiang S R,Yum J H,Klein C,Kim K J,Wagner P.Officer D,Graztel M,et al.High Molar Extinction Coefficient Ruthenium Sensitizers for Tin Film Dye-Sensitized Solar Cells.[J]J.Phys.Chem.C.2009,113(5),1998-2003.
    [97]Mohanmmad K, Nazeeruddin, Filippo De Angelis,Fantacci S,S Annabella, Viscardi G,Liska P,Ito S,Takero B,Gratzel, M. Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers.[J]J. Am.Chem. Soc.2005,127(48), 16835-16847.
    [98].Xu M F,Wenger S,Bala H, D Shi,R Z Li.Shaik M,Zakeeruddin,Gratzel M,P Wang-Turing the Energy Level of Organic Sensitizers for High-Performance Dye-Sensitized Solar Cells.[J]. J.Phys.Chem.C.2009,113(7),2966-2973
    [99].Piers R.F.Barnes,Assaf Y.Anderson,Sara E,Koops,James R.Durrant,Brian C.O'Regan.Electron Injection Efficiency and Diffusion Length in Dye-Sensitised Solar Cells Derived from Incident Photon Conversion Efficiency Measurements. [J]. J.Phys.Chem.C.2009,113(28):12615.
    [100].China-Yuan Chen,Pootrakulchote N,Tzu-Hao Hung,Chun-Jui Tan,Hui-Hsu Tsai,Shaik M.Zakeeruddin,Chun-Guey Wu,Gratzel M.Ruthenium Sensitizer with Thienothiophene-Linked Carbazole Antennas in Conjunction with Liquid Electroytes for Dye-Sensitized Solar Cells.[J]. J.Phys.Chem.C.2011,115(40):20043-20050.
    [101]. Hagberg D, Yum J, Lee H, et al. Molecular engineering of organic sensitizers for dye-sensitized solar cell applications[J]. J. Am. Chem. Soc,2008,130(19):6259-6266.
    [102]. Kim S, Lee J, KangS, et al. Molecular engineering of organic sensitizers for solar cell applications[J]. J. Am. Chem. Soc,2006.128(51):16701-16707.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700