氢气在高氧肺损伤修复中的作用及相关机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     氧疗是临床常用的一种治疗手段,但持续高浓度氧疗易引起机体氧中毒,在新生儿特别是早产儿易导致慢性肺疾病(CLD)或支气管肺发育不良(BPD)的发生,严重影响患儿健康,目前尚无确切有效的防治方法。肺泡上皮损伤的正常修复主要依赖肺泡Ⅱ型上皮细胞(AECⅡ)的增殖与分化,高氧导致AECⅡ氧化应激性损伤,并抑制AECⅡ增殖是BPD发生的主要机制之一。传统抗氧化剂在减轻高氧肺损伤的同时干扰了正常肺发育。氢气(H_2)的选择性抗氧化作用和相对安全性使H_2成为治疗多种疾病的研究热点,但其具体分子机制不清。叉头框蛋白O(FoxO)是一类与氧化应激、凋亡、增殖、发育等密切相关的转录因子,其活性受丝裂原活化蛋白激酶(MAPKs)和磷酸酰肌醇3激酶/蛋白激酶B(PI3K/Akt)等多种信号途径调控,而业已证实H_2对MAPKs信号通路中重要的关键酶细胞外调节蛋白激酶(ERK)、c-Jun氨基末端激酶(JNK)、P38等的活性和PI3K/Akt信号通路中Akt活性均具有调控作用。我们推测H_2可能通过调控FoxO信号途径对高氧肺损伤发挥保护作用。深入研究H_2在高氧肺损伤中的作用及其FoxO信号机制可能为临床防治BPD带来新突破,为H_2的机制研究带来新进展。
     目的
     1.分离培养高纯度、高活力的原代早产大鼠AECⅡ细胞;建立高氧致AECⅡ细胞损伤模型;建立高氧致新生鼠肺损伤动物模型。为后续H_2干预实验及机制研究奠定基础。
     2.观察H_2对高氧致AECⅡ细胞损伤的作用,探讨其作用是否与FoxO信号途径有关。
     3.观察H_2对高氧致新生鼠肺损伤的作用,探讨FoxO信号途径在其中的可能机制。
     方法
     1. SPF级孕19d Sprague-Dawley(SD)大鼠,水合氯醛麻醉后剖宫产取出胎鼠,分离肺脏,剪碎,胰蛋白酶联合胶原酶消化肺组织细胞,制成细胞悬液,差速离心和反复贴壁纯化AECⅡ,含10%胎牛血清(FCS)的DMEM/F12培养基培养细胞。台盼蓝染色法检测细胞活力,改良巴氏染色法检测细胞纯度,透射电镜鉴定细胞,倒置相差显微镜下观察细胞的生长情况。
     2.原代AECⅡ体外培养24h后,随机分为空气组和高氧组,高氧组细胞置于氧体积分数为95%(95%浓度氧)的细胞氧仓中,氧仓与空气组细胞一并放于细胞培养箱中。24h后观察细胞形态,MTT检测细胞增殖,流式细胞仪检测细胞的凋亡及存活情况。
     3. SD新生大鼠随机分为空气组和高氧组,高氧组大鼠置于氧体积分数为95%的动物氧仓中,与空气组大鼠置于同一室内。3d,7d,14d,21d后取出肺组织行病理学检查,辐射状肺泡计数(RAC),化学比色法测定肺组织羟脯氨酸(HYP)含量。
     4.原代分离培养的AECⅡ随机分为空气组、高氧组、空气+H_2组、高氧+H_2组。H_2组细胞用富氢培养基干预。24h后观察AECⅡ的形态变化;检测MTT、细胞周期和增殖细胞核抗原(PCNA)蛋白表达观察细胞增殖情况;检测细胞线粒体膜电位(△Ψ)和凋亡率观察细胞损伤情况;检测细胞内活性氧(ROS)和超氧化物阴离子(O-2)水平,细胞培养上清丙二醛(MDA)水平和超氧化物歧化酶(SOD)活性,观察细胞氧化损伤和抗氧化能力;Western Blot检测细胞总FoxO3a、β-catenin蛋白和p-FoxO3a、p-β-catenin蛋白的表达。
     5. SD新生大鼠随机分为空气组、空气+富氢生理盐水组、空气+H_2组、高氧组、高氧+富氢生理盐水组和高氧+H_2组。各高氧组大鼠均置于氧体积分数为95%的动物氧仓中。H_2干预:富氢生理盐水组大鼠予腹腔注射富氢生理盐水10mL/kg,每天2次;H_2组大鼠予腹腔注射H_2气体10mL/kg,每天2次。非H_2干预组大鼠则腹腔注射等量生理盐水。14d后,取肺组织做病理学检查;检测大鼠血清MDA水平和SOD活力;测定肺组织HYP含量;免疫组化法测定肺组织α-平滑肌激动蛋白(α-SMA)表达;Western blot检测肺组织总FoxO3a、β-catenin蛋白和p-FoxO3a、p-β-catenin蛋白的表达。
     结果
     1.原代培养的AECⅡ产量较高,每只早产大鼠肺组织可获得(8.5±1.8)×106AECⅡ,细胞活力为(95.0±2.1)%,细胞纯度为(94.3±2.5)%。电镜可见AECⅡ的特征性结构--细胞膜表面的微绒毛和胞浆内的板层小体。AECⅡ体外培养12h左右开始贴壁生长,至18h绝大部分细胞已贴壁伸展,24-48h细胞生长良好,增殖活跃,处于对数生长期,72h后细胞状态逐渐变差,丧失功能。
     2. AECⅡ予95%浓度氧刺激24h后,细胞出现皱缩变形,细胞间隙增大,增殖较空气组明显受抑,凋亡率明显增加,存活率明显降低。
     3. SD新生大鼠高氧暴露3d和7d后肺组织出现肺泡上皮细胞肿胀,间质充血水肿,炎性细胞浸润,肺结构紊乱,7d更明显。14d和21d可见纤维增生,肺泡间隔明显增宽,肺组织HYP含量较空气组显著增高,21d更为明显。高氧组RAC值于7d,14d,21d显著低于空气组。
     4.与空气组比较,空气+H_2组细胞总FoxO3a蛋白表达增加,p-FoxO3a蛋白表达降低,其余各指标均无显著差异。与空气组比较,高氧组细胞OD492值和PCNA蛋白表达明显降低,G1期细胞比例增多而S期细胞比例减少;细胞△Ψ降低,凋亡率增加;细胞内ROS和O-2水平增高;细胞上清MDA含量增高,SOD活性下降;细胞总FoxO3a蛋白表达增加,p-FoxO3a蛋白表达降低;总β-catenin蛋白表达降低,p-β-catenin蛋白表达增高。与高氧组比较,H_2干预可减轻高氧引起的上述改变。
     5.与空气组比较,空气+富氢生理盐水组和空气+H_2组大鼠肺组织均有FoxO3a与β-catenin的轻微激活,其余各指标均无显著差异;与空气组比较,高氧组肺发育受阻,RAC值降低;肺组织间隔增宽,纤维化明显,肺组织HYP含量增高,α-SMA表达增高;血清MDA水平升高,SOD活力降低;肺组织总FoxO3a蛋白表达增加,且较H_2干预空气组显著,p-FOXO3蛋白表达降低;总β-catenin蛋白表达增加,p-β-catenin蛋白表达亦增高。与高氧组比较,高氧+富氢生理盐水组和高氧+H_2组肺损伤均有所减轻,均一定程度恢复了高氧引起的上述改变。高氧+H_2组血清MDA水平和肺组织HYP含量较高氧+富氢生理盐水组低,差异有统计学意义,其余指标两组间无差异。
     结论
     1.采用胰酶联合胶原酶消化、差速离心和反复贴壁的方法获得的原代AECⅡ产量、纯度和活力均较高,可满足细胞学实验研究的需要。AECⅡ体外培养24-48h生长状态最佳,适合做体外研究。
     2.95%浓度氧可诱导AECⅡ的损伤、凋亡并抑制其增殖,也可导致新生鼠肺损伤和肺发育受阻,成功建立高氧致AECⅡ细胞损伤模型和高氧致新生鼠肺损伤动物模型。
     3.富氢培养基能一定程度减轻高氧导致的AECⅡ凋亡、氧化损伤,并促进其增殖,而对正常AECⅡ的增殖无明显作用。
     4.腹腔注射富氢生理盐水和H_2气体均可有效减轻高氧导致的肺损伤,减轻肺纤维化,腹腔注射H_2气体的效果略佳。H_2对正常肺组织无明显作用。
     5. H_2对高氧导致的细胞和肺损伤的保护作用可能与抑制高氧导致的FoxO3a蛋白过度活化并激活β-catenin蛋白有关。
Background
     Oxygen therapy is commonly used in clinical treatment, butcontinuous oxygen therapy with high concentration can cause oxygentoxicity and easily lead to chronic lung disease (CLD) orbronchopulmonary dysplasia (BPD) in newborns, especially prematurechildren, which seriously threaten to the children’s health. There are noeffective prevention or cure methods to CLD and BPD currently. Thenormal repair of alveolar epithelial injury is mainly dependent on theproliferation and differentiation of alveolar type Ⅱ epithelial cells (AECⅡ).Hyperoxia lead to the AECⅡ oxidative stress damage and inhibit theproliferation of AECⅡ is one of the main mechanism of BPD occurrence.Traditional antioxidants can reduce hyperoxia-induced lung injury, but alsointerfere the normal development of lung. Hydrogen (H_2) is the focus of avariety of diseases research for its selective antioxidation and the relativesafety, but the molecular mechanisms of its fuction is unclear. FoxO are aclass of transcription factors which are closely associated with oxidative stress, apoptosis, proliferation and development. MAPK and PI3K/Akt andother signaling pathways can regulate their activities. It has been proventhat H_2can regulate the activities of ERK, JNK, P38and Akt which are thekey enzymes of MAPKs and PI3K/Akt signaling pathway.We speculatethat the H_2may play a protective role in the hyperoxia-induced lung injuryby regulating the FoxO signaling pathways. Study of H_2inhyperoxia-induced lung injury and the FoxO signaling mechanisms maybring new breakthroughs in the prevention and treatment of BPD and newprogress in mechanism research of H_2.
     Objective
     1. Separate and cultivate primary premature rat AECⅡ withhigh-purity and high vitality; Establish stable hyperoxia-induced celldamage model; Establish an animal model of hyperoxia-induced lunginjury in neonatal rats. Lay the foundation for the subsequent H_2intervention experiments and the mechanism research.
     2. Observe the effect of H_2on the hyperoxia-induce AECⅡ injury andexplore if the effect is related with the FoxO signaling pathway.
     3. Observe the effect of H_2on the hyperoxia-induced lung injury innewborn rat and explore the possible mechanisms of FoxO signalingpathway in it.
     Methods
     1. SPF level Sprague-Dawley (SD) rats with19days gestational age, chloral hydrate anesthetize it. Take out the fetal rats. Isolate lungs and cutinto pieces. Digest the lung tissue and cells to cell suspension with trypsinand collagenase. Purify the AECⅡ with the methods of differentialcentrifugation and repeated attachment. Culture the cells with DMEM/F12medium containing10%fetal bovine serum. Assess the cell viability bytrypan blue staining and evaluate the cells purity by modified papanicolaoustaining. Identify the cell by transmission electron microscopy. Observe thecellular growth status under inverted phase contrast microscope.
     2. Randomly divide the primary AECⅡ cultured24h in vitro into airgroup and hyperoxia group. Place the hyperoxia group cells in oxygenchamber which filled with a concentration of95%oxygen. Then place thecell in the cell incubator together with the cells of air group.24h later,observe the cell morphology, detect cell proliferation by MTT and detectthe apoptosis and survival by flow cytometry.
     3. Randomly divide the SD neonatal rats into air group and hyperoxiagroup. Put the rats of hyperoxia group in the animal oxygen chamber inwhich the oxygen concentration kept greater than95%.Then put the rats oftwo groups in the same room.3d,7d,14d,21d later, remove the lungtissue for pathological examination, count RAC(Radial alveolar count)values and detect the content of hydroxyproline (HYP) in the lung tissue bychemical colorimetric method.
     4. Randomly divide AECⅡ into air group, hyperoxia group, air+H_2 group and hyperoxia+H_2group. Intervene the cells of H_2group withhydrogen-rich medium.24h later, observe the AECⅡ morphologicalchanges; Evaluate the cell proliferation by detecting MTT, cell cycle andproliferating cell nuclear antigen (PCNA) protein expression; Assess thedegree of cell damage by detecting mitochondrial membrane potential (△Ψ) and apoptosis rate; Evaluate the cellular oxidative damage andantioxidant capacity by detecting intracellular level of oxygen (ROS) andsuperoxide anion (O-2), and the malondialdehyde (MDA) level andsuperoxide dismutase (SOD) activity of cell culture supernatant; Detect theprotein expression of total FoxO3a and β-catenin protein, also thep-FoxO3a and p-β-catenin by Western blot.
     5. Randomly divide SD neonatal rats into air group, air+hydrogen-richsaline group, air+H_2group, hyperoxia group, hyperoxia+hydrogen-richsaline group and hyperoxia+H_2group. Put the rats of the hyperoxia groupsin the animal oxygen chamber in which the oxygen concentration kept at95%. H_2intervention: Intraperitoneal inject hydrogen-rich saline10mL/kg,2times per day in rats of hydrogen-rich saline groups; Intraperitoneal injectH_2gas10mL/kg,2times per day in rats of H_2groups; Intraperitonealinject saline10mL/kg,2times a day in rats of non-H_2intervention groupsas control.14d later, remove the lungs for pathological examination;Detect the MDA level and SOD activity of serum; Determine the HYPcontent of the lung tissue; Detect the α-SMA protein expression of lung tissue by immunohistochemical method; Detect the total andphosphorylated FoxO3a and β-catenin protein expression of lung tissue byWestern blot.
     Results
     1. The yield of primary cultured AECⅡ is good and each premature ratlung can obtain the number of AECⅡ about (8.5±1.8)×106. The cellviability is about (95.0±2.1)%and the purity is about (94.3±2.5)%. Themicrovillus on the cell membrane and the lamellar bodies in cytoplasmwhich are the characteristic structure of AECⅡ were observed underelectron microscope. AECⅡ start to attach the bottom after cultured12hand most of the cells closed to the bottom and stretched. After cultured24-48h, cells were in exponential growth phase. After cultured72h,AECⅡ became flat and decreased attachment.
     2. After cultured24h in vitro, then stimulated by95%oxygen, AECⅡshrunk and the cell gap increased. Compared to air group, the OD492valueand survival rate decreased and the apoptosis rate increased significantly.
     3. After hyperoxia-exposed3d and7d, pathological examinationshowed changes including alveolar epithelial cell swelling, interstitialhyperemia and edema, inflammatory cell infiltration, lung structuraldisorder, and the changes were more obvious in7d. Afterhyperoxia-exposed14d and21d, fibrosis was visible, alveolar septawidened significantly, and the HYP content of the lung tissue was significantly higher than that of the air group, and the changes were moreobvious in21d.The RAC values of hyperoxia groups were significantlylower than air groups at7d,14d,21d.
     4. Compared with air group, H_2intervention up-regulated the totalFoxO3a, down-regulated the p-FoxO3a of AECⅡ and had no obvious effecton the other indicators. Compared with air group, hyperoxia exposuredecreased the OD492values and PCNA protein expression; increased thecell proportion of G1phase and reduced the cell proportion of S phase;reduced the cell△Ψ and increased the apoptosis rate; improved theintracellular ROS and O-2levels; increased the MDA content and reducedthe SOD activity of cell supernatant; up-regulated the total FoxO3a andp-β-catenin protein expression; down-regulated the p-FoxO3a and totalβ-catenin protein expression. Compared with hyperoxia group, H_2intervention reduced the above-mentioned change induced by hyperoxia.
     5. Compared with air group, FoxO3a and β-catenin of lung tissueswere activiated in air+hydrogen-rich saline groups and air+H_2groups, andthere was no significant difference in other indicators. Compared with airgroup, hyperoxia exposure induced lung stunting; widened the lung tissueinterval; induced obvious fibrosis; increased the HYP content of the lungtissue; up-regulated the expression of α-SMA; elevated the serum MDAlevels and decreased the SOD activity; improved the total FoxO3a proteinexpression in lung tissue and suppressed the p-FoxO3a which were more obviously than that induced by hydrogen; increased total β-catenin andp-β-catenin protein expression in lung tissue. Compared to hyperoxia group,the lung damages of hyperoxia+hydrogen-rich saline group andhyperoxia+H_2group were extenuated. The above-mentioned changesinduced by hyperoxia were reduced by H_2intervention. The serum MDAlevel and the HYP content of lung tissue were little lower in hyperoxia+H_2group than that in hyperoxia+hydrogen-rich saline group, and otherindicators had no difference.
     Conclusions
     1. The yield, purity and vitality of primary AECⅡ which cultured bythe method of trypsin joint collagenase digestion, differential centrifugationand repeated adherent were high enough to meet the need of the cytologyexperimental research. AECⅡ were in best status cultured24-48h in vitroand were suitable for studies.
     2.95%oxygen concentration can significantly induce AECⅡ damage,apoptosis and inhibit their proliferation, also can cause the lung tissue ofnewborn rats damage and fibrosis. The hyperoxia-induced cells andanimals damage models were successfully established.
     3. Hydrogen-rich medium can alleviate the hyperoxia-induced AECⅡapoptosis, oxidative damage and inhibition of proliferation to some extent,and hydrogen-rich medium had no effect on the proliferation of normalAECⅡ.
     4. Intraperitoneal injection of hydrogen-rich saline or H_2gas caneffectively reduce the hyperoxia induced lung damage, reduce pulmonaryfibrosis. Intraperitoneal injection of H_2gas obtained better effects. Therewas no significant influence of H_2intervention on normal lung tissue.
     5. The protective effect of hydrogen on the cell and animal injury maythrough inhibiting the excessive activation of FoxO3a protein caused byhyperoxia and activiating the β-catenin protein.
引文
[1] W Tin and S Gupta. Optimum oxygen therapy in preterm babies[J]. Arch Dis ChildFetal Neonatal Ed.2007,92(2): F143–7.
    [2] Dieperink HI,Blackwell TS,Prince LS.Hyperoxia and apoptosis in developingmouse lung mesenchyme[J].Pediatr Res.2006,59(2):185-90.
    [3] Wang Y,Huang C,Reddy Chintagari N,et al.miR-375regulates rat alveolarepithelial cell trans-differentiation by inhibiting Wnt/β-catenin pathway[DB/OL].http://www.ncbi.nlm.nih.gov/pubmed/23396279,2013-02-08/2013-04-01.
    [4] Liu Y,Sadikot RT,Adami GR,et al.FoxM1mediates the progenitor function of typeIIepithelial cells in repairing alveolar injury induced by Pseudomonas aeruginosa[J].JExp Med.2011,208(7):1473-84.
    [5] Luo X,Sedlackova L,Belcastro R,et al.Effect of the21-Aminosteroid U74389G onoxygen-Induced free radical production, lipid peroxidation and inhibition of lunggrowth in neonatal rats[J]. Pediatr Res.1999,46(2):215-23.
    [6] Ohsawa I,Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidantby selectively reducing cytotoxic oxygen radicals[J]. Nat Med.2007,13(6):688-94.
    [7] Shi J,Yao F,Zhong C,et al.Hydrogen saline is protective for acute lung ischaemia/reperfusion injuries in rats[J]. Heart Lung and Circ.2012,21(9):556-63.
    [8] Nishimura N,Tanabe H,Sasaki Y,et al.Pectin and high-amylose maize starchincrease caecal hydrogen production and relieve hepatic ischaemia-reperfusioninjury in rats[J]. Br J Nutr.2012,107(4):485-92.
    [9] Abe T, Li XK, Yazawa K, et al. Hydrogen-rich university of wisconsin solutionattenuates renal cold ischemia-reperfusion injury[J]. Transplantation.2012,94(1):14-21.
    [10] Xie K,Fu W,Xing W,et al.Combination therapy with molecular hydrogen andhyperoxia in a murine model of polymicrobial sepsis[J].Shock.2012,38(6):656-63.
    [11] Fujita K,Seike T,Yutsudo N,et al.Hydrogen in drinking water reducesdopaminergic neuronal loss in the1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinemouse model of Parkinson’s disease[J]. PLoS one.2009,4(9): e7247.
    [12] Amitani H,Asakawa A,Cheng KC,et al.Hydrogen improves glycemic control intype1diabetic animal model by promoting glucose uptake into skeletalmuscle[J].PloS one.2013,8(1):e53913.
    [13] Sun Q,Cai JM,Liu SL,et al.Hydrogen-rich saline provides protection againsthyperoxic lung injury[J]. J Surg Res.2011,165(1):e43-9.
    [14] Huang CS,Kawamura T,Peng X,et al.Hydrogen inhalation reduced epithelialapoptosis in ventilator-induced lung injury via a mechanism involving nuclearfactor-kappa B activation[J].Biochem Biophys Res Commun.2011,408:253-8.
    [15] Yu P,Wang Z,Sun X,et al.Hydrogen-rich medium protects human skin fibroblastsfrom high glucose or mannitol induced oxidative damage[J]. Biochem Biophys ResCommun.2011,409(2):350-5.
    [16] Buchholz BM,Kaczorowski DJ,Sugimoto R,et al.Hydrogen inhalation amelioratesoxidative stress in transplantation induced intestinal graft injury[J].Am JTransplant.2008,8(10):2015-24.
    [17] Cai WW,Zhang MH,Yu YS,et al.Treatment with hydrogen molecule alleviatesTNFα-induced cell injury in osteoblast[J].Molecular and cellular biochemistry.2013,373(1-2):1-9.
    [18] Kawamura T,Huang CS,Tochigi N,et al.Inhaled hydrogen gas therapy forprevention of lung transplant-induced ischemia/reperfusion injury in rats[J].Transplantation.2010,90(12):1344-51.
    [19] Cai J,Kang Z,Liu WW,et al.Hydrogen therapy reduces apoptosis in neonatalhypoxia-ischemia rat model[J].Neurosci Lett.2008,441(2):167-72.
    [20] Itoh T,Fujita Y,Ito M,et al.Molecular hydrogen suppresses FcepsilonRI-mediatedsignal transduction and prevents degranulation of mast cells[J]. Biochem BiophysRes Commun.2009,389(4):651-6.
    [21] Cardinal JS,Zhan J,Wang Y,et al.Oral hydrogen water prevents chronic allograftnephropathy in rats[J].Kidney Int.2010,77(2):101-9.
    [22] Essers MA,Weijzen S,de Vries-Smits AM,et al.FOXO transcription factoractivation by oxidative stress mediated by the small GTPase Ral and JNK[J].EMBO J.2004,23(24):4802-12.
    [23] Wang X,Chen WR,Xing D.A pathway from JNK through decreased ERK and Aktactivities for FOXO3a nuclear translocation in response to UV irradiation[J].J CellPhysiol.2011,227(3):1168-8.
    [24] Yang W,Dolloff NG,EI-Deiry WS.ERK and MDM2prey on FOXO3a[J].Nat CellBiol.2008,10(2):125-6.
    [25] Ho KK,McGuire VA,Koo CY,et al.Phosphorylation of FOXO3a on Ser-7by p38promotes its nuclear localization in response to doxorubicin[J]. J Biol Chem.2012,287(2):1545-55.
    [26] Xie XW,Liu JX,Hu B,et al.Zebrafish foxo3b negatively regulates canonicalWnt signaling to affect early embryogenesis[J]. PLos One.2011,6(9): e24469.
    [27]王少华,许峰,党红星.降钙素基因相关肽对高氧暴露胎鼠原代肺泡II型细胞的保护作用及其Wnt信号机制[J].第三军医大学学报.2012,34(9):836-8.
    [1] Shivanna B,Zhang W,Jiang W,et al.Functional deficiency of aryl hydrocarbonreceptor augments oxygen toxicity-induced alveolar simplification in newbornmice[J].Toxicol Appl Pharmacol.2013,267(3):209-17.
    [2] Glen J, Kinsella JP. Pathogenesis and treatment of bronchopulmonary dysplasia [J].Curr Opin Pediatr.2011,23(3):305-13.
    [3] Makanya A,Anagnostopoulou A, Djonov V. Development and remodeling of thevertebrate blood-gas barrier[J].Biomed Res Int.2013,2013:101597.
    [4] Chuquimia OD, Petursdottir DH, Periolo N, et al. Alveolar epithelial cells arecritical in protection of the respiratory tract by secretion of factors able to modulatethe activity of pulmonary macrophages and directly control bacterialgrowth[J].Infect Immun.2013,81(1):381-9.
    [5] Chamoto K,Gibney BC,Ackermann M,et al.Alveolar epitelial dynamics inpostneumonectomy lung growth[J]. Anat Rec(Hoboken).2013,286(3):495-503.
    [6] Ye H,Zhan Q,Ren Y,et al.Cyclic deformation-induced injury and differentiationof rat alveolar epithelial type II cells[J].Respir Physiol Neurobiol.2012,180(2-3):237-46.
    [7]胡良冈,钱燕,龚永生,等.SPF级新生大鼠高氧肺损伤模型的建立[J].中国实验动物学报.2008,16(6):441-4.
    [8] Mosca F,Colnaghi M, Fumagalli M. BPD: old and new problems[J].J Matern FetalNeonatal Med.2011,24Suppl1:80-2.
    [9] Ahlfeld SK, Conway SJ. Aberrant signaling pathway of the lung mesenchyme andtheir contributions to the pathogenesis of bronchopulmonary dysplasia[J].BirthDefects Res A Clin Mol Teratol.2012,94(1):3-15.
    [10] Baguma-Nibasheka M,Gugic D,Saraga-Babic. Role of skeletal muscle in lungdevelopment[J].Histol Histopathol.2012,27(7):817-26.
    [11] Role of vasoactive intestinal peptide in hyperxoia-induced injury of primary typeII alveolar epithelial cells[J]. Indian J Pediatr.2011,78(5):535-9.
    [12] Sturrock A, Seedahmed E, Mir-Kasimov M, et al. GM-CSF provides autocrineprotection for murine alveolar epithelial cells from oxidant-induced mitochondrialinjury[J]. Am J Physiol Lung Cell Mol Physiol.2012,302(3):L343-51.
    [13]付红敏,许峰,黄波,等.胎鼠肺泡II型上皮细胞的分离及原代培养[J].重庆医科大学学报.2009,34(5):586-589.
    [14] Velten M, Heyob KM, Rogers LK,et al. Deficits in lung alveolarization andfunction after systemic maternal inflammation and neonatal hyperoxiaexposure[J]. J Appl Physiol.2010,108(5):1347-56.
    [15] Porzionato A,Zaramella P,Macchi V,et al. Fluoxetine may worsenhyperoxia-induced lung damage in neonatal rats[J]. Histol Histopathol.2012,27(12):1599-610.
    [16]徐洪涛.新生鼠高浓度氧肺损伤机制及临界值的研究.重庆:第三军医大学,2003.
    [1] Liu Y,Sadikot RT,Adami GR,et al.FoxM1mediates the progenitor function of type IIepithelial cells in repairing alveolar injury induced by Pseudomonas aeruginosa[J]. JExp Med.2011,208(7):1473-84.
    [2] Philip AG.Bronchopulmonary dysplasia: then and now[J].Neonatology.2012,102(1):1-8.
    [3] Shi J,Yao F,Zhong C,et al.Hydrogen saline is protective for acute lung ischaemia/reperfusion injuries in rats[J]. Heart Lung and Circ.2012,21(9):556-63.
    [4] Amitani H,Asakawa A,Cheng KC,et al.Hydrogen improves glycemic control intype1diabetic animal model by promoting glucose uptake into skeletalmuscle[J].PloS One.2013,8(1):e53913.
    [5] Xie K,Fu W,Xing W,et al.Combination therapy with molecular hydrogen andhyperoxia in a murine model of polymicrobial sepsis[J].Shock.2012,38(6):656-63.
    [6] Sun Q,Cai JM,Liu SL,et al.Hydrogen-rich saline provides protection againsthyperoxic lung injury[J].J Surg Res.2011,165(1):e43-9.
    [7] Ohta S.Recent Progress Toward Hydrogen Medicine: Potential of MolecularHydrogen for Preventive and Therapeutic Applications[J].Curr Pharm Des.2011,17(22):2241-52.
    [8] Xie XW, Liu JX, Hu B,et al.Zebrafish foxo3b negatively regulates canonical Wntsignaling to affect early embryogenesis[J].PLoS One.2011,6(9):e24469.
    [9]杨鸣.Wnt信号通路对高氧肺损伤致支气管肺发育不良的调控机制研究[D].重庆:重庆医科大学,2006.
    [10] Ho KK,McGuire VA,Koo CY,et al.Phosphorylation of FOXO3a on Ser-7by p38promotes its nuclear localization in response to doxorubicin[J]. J Biol Chem.2012,287(2):1545-55.
    [11] Ahn HM,Lee KS,Lee DS,et al.JNK/FOXO mediated PeroxiredoxinV expressionregulates redox homeostasis during Drosophila melanogaster gut infection[J].DevComp Immunol.2012,38(3):466-73.
    [12] Chen H,Sun YP,Li Y,et al. Hydrogen-rich saline ameliorates the severity ofL-arginine-induced acute pancreatitis in rats[J]. Biochem Biophys Res Commun.2010,393(2):308-13.
    [13]周海.急性高氧氧化应激过程中大鼠肺泡上皮细胞凋亡的损伤机制探讨[D].苏州:苏州大学,2002.
    [14] Bolisetty S,Jaimes EA.Mitochondria and reactive oxygen species:physiologyand pathophysiology[J].Int J Mol Sci.2013,14(3):6306-44.
    [15] Yu P,Wang Z,Sun X,et al.Hydrogen-rich medium protects human skin fibroblastsfrom high glucose or mannitol induced oxidative damage[J].Biochem Biophys ResCommun.2011,409(2):350-5.
    [16] Ohsawa I,Ishikawa M,Takahashi K,et al.Hydrogen acts as a therapeutic antioxidantby selectively reducing cytotoxic oxygen radicals[J].Nat Med.2007,13(6):688-94.
    [17] Ponugoti B,Dong G,Graves DT.Role of forkhead transcription factors indiabetes-induced oxidative stress[J].Exp Diabetes Res.2012,2012:939751.
    [18] Wang X, Chen WR, Xing D.A pathway from JNK through decreased ERK and Aktactivities for FOXO3a nuclear translocation in response to UV irradiation [J].J CellPhysiol.2012,227(3):1168-78.
    [19] Hwang JW, Rajendrasozhan S, Yao H,et al.FOXO3deficiency leads to increasedsusceptibility to cigarette smoke-induced inflammation, airspace enlargement,andchronic obstructive pulmonary disease[J].J Immunol.2011,187(2):987-98.
    [20]单瑞艳.硫氧还蛋白对高氧肺损伤保护作用的机制研究[D].武汉:华中科技大学,2011.
    [21] Itoh T, Fujita Y, Ito M, et al. Molecular hydrogen suppresses FcepsilonRI-mediatedsignal transduction and prevents degranulation of mast cells[J].Biochem BiophysRes Commun.2009,389(4):651-6.
    [1] Bhandari A,Bhandari V.Biomarkers in Bronchopulmonary Dysplasia[J].PaediatrRespir Rev.2013, S1526-0542(13)00019-5.
    [2]陈冲,封志纯.支气管肺发育不良分子遗传学研究进展[J].实用儿科临床杂志,2012,27(16):1282-84.
    [3] Merritt TA,Deming DD,Boynton BR.The 'new' bronchopulmonary dysplasia:challenges and commentary[J].Semin Fetal Neonatal Med.2009,14(6):345-57.
    [4] Saugstad OD.Oxygen and oxidative stress in bronchopulmonary dysplasia[J].JPerinat Med.2010,38(6):571-7.
    [5]张全乐.胚胎碎片及发育阻滞与活性氧相关性研究[D].郑州:郑州大学,2012.
    [6]张晓坤,梁琨.治疗支气管肺发育不良的药物研究进展[J].医学综述.2010,16(13):2018-22.
    [7]王永霞.支气管肺发育不良的研究进展[J].吉林医学.2010,31(13):1-4.
    [8] Luo X,Sedlackova L,Belcastro R,et al.Effect of the21-Aminosteroid U74389Gon oxygen-Induced free radical production, lipid peroxidation and inhibition oflung growth in neonatal rats[J]. Pediatr Res.1999,46(2):215-223.
    [9]潘佳容.依拉达奉对新生大鼠高氧急性肺损伤的保护作用[D].苏州:苏州大学,2006.
    [10] Sun Q,Cai JM,Liu SL,et al.Hydrogen-rich saline provides protection againsthyperoxic lung injury[J]. J Surg Res.2011,165(1):e43-9.
    [11] Zheng J,Liu K,Kang Z,et al.Saturated hydrogen saline protects the lung againstoxygen toxicity[J].Undersea Hyperb Med.2010,37(3):185-92.
    [12] Chen H,Sun YP,Li Y,et al. Hydrogen-rich saline ameliorates the severity ofL-arginine-induced acute pancreatitis in rats[J]. Biochem Biophys Res Commun.2010,393(2):308-13.
    [13] Ohta S.Recent progress toward hydrogen medicine: potential of molecularhydrogen for preventive and therapeutic applications[J].Curr Pharm Des.2011,17(22):2241-52.
    [14] Fujita K,Seike T,Yutsudo N,et al.Hydrogen in drinking water reduces dopaminergicneurinal loss in the1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model ofParkinson’s disease[J].PLoS One.2009,4(9):e7247.
    [15] Kamimura N, Nishimaki K, Ohsawa I, et al. Molecular Hydrogen ImprovesObesity and Diabetes by Inducing Hepatic FGF21and Stimulating EnergyMetabolism in db/db Mice[J]. Obesity (Silver Spring).2011,19(7):1396-403.
    [16] Ohsawa I,Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeuticantioxidant by selectively reducing cytotoxic oxygen radicals[J]. Nat Med.2007,13(6):688-94.
    [17]林涛,黄国庆,文明祥等.腹腔注射氢气与腹腔氢水对大鼠氢气代谢的影响[J].广西医学,2012,34(11):1488-91.
    [18]黄国庆,詹蔚,熊艳,等.不同给氢方式对兔代谢的影响[J].中国组织工程研究.2012,16(11):2023-7.
    [19] Ponugoti B,Dong G,Graves DT.Role of forkhead transcription factors indiabetes-induced oxidative stress.Exp Diabetes Res.2012,2012:939751.
    [20]尹杰,易玉吟,傅鑫,等.Forkhead转录因子调控干细胞的命运决定[J].中国细胞生物学学报.2012,34(12):1197-206.
    [21] Brunet A.Aging and the control of the insulin-FOXO signaling pathway[J].MedSci(Paris).2012,28(3):316-20.
    [22]王录美.I型糖尿病及高糖对低氧所致肺损伤和肺上皮癌细胞增殖的影响及机制研究[D].上海,第二军医大学,2012.
    [23] Dasgupta C,Sakurai R,Wang Y,et al.Hyperoxia-induced neonatal rat lung injuryinvolves activation of TGF-{beta} and Wnt signaling and is protected byrosiglitazone[J].Am J Physiol Lung Cell Mol Physiol.2009,296(6):L1031-41.
    [24]潘丽.β-catenin在高氧致新生鼠BPD中的作用及其机制的研究[D].北京,中国医科大学,2009.
    [25] N, Kacmarek RM,Slutsky AS.Activation of the Wnt/β-catenin signaling pathwayby mechanical ventilation is associated with ventilator-induced pulmonary fibrosisin healthy lungs[J].PLoS One.2011,6(9):e23914.
    [26] Villar J,Cabrera NE,Casula M,et al.WNT/β-catenin signaling is modulated bymechanical ventilation in an experimental model of acute lung injury[J].IntensiveCare Med.2011,37(7):1201-9.
    [27] Zemans RL,McClendon J,Aschner Y,et al.Role of β-catenin-regulated CCNmatricellular proteins in epithelial repair after inflammatory lung injury[J].Am JPhysiol Lung Cell Mol Physiol.2013,304(6):L415-27.
    [28] Flozak AS,Lam AP,Russell S,et al.Beta-catenin/T-cell factor signaling is activatedduring lung injury and promotes the survival and migration of alveolar epithelialcells[J].J Biol Chem.2010,285(5):3157-67.
    [1] Mann A,Early GL.Acute respiratory distress syndrome[J].Mo Med.2012,109(5):371-5.
    [2] Sha.feeq H,Lat I.Pharmacotherapy for acute respiratory distress syndrome[J].Pharmacotherapy.2012,32(10):943-57.
    [3] Furchgott RF, Zawadzki JV.The obligatory role of endothelial cell in the relaxationof arterial smooth muscle by acetylcholine[J].Nature.1980,288(4):373-6.
    [4] Verma A,Hirsch DJ,Glatt CE,et al. Carbon monoxide: a putative neuralmessenger[J]. Science.1993,259(5093):381-4.
    [5] Warenycia MW,Goodwin LR,Benishin CG,et al. Acute hydrogen sulfide poisoning.Demonstration of selective uptake of sulfide by the brainstem by measurement ofbrain sulfide levels[J].Biochem Pharmacol.1989,38(6):973-81.
    [6] Ohsawa I,Ishikawa M,Takahashi K,et al.Hydrogen acts as a therapeuticantioxidant by selectively reducing cytotoxic oxygen radicals[J].Nat Med.2007,13(6):688-94.
    [7] Speyer CL,Neff TA,Warner RL,et a1.Regulatory effects of iNOS on acute lunginflammatory responses in mice[J].Am J Pathol.2003,163(6):2319-28.
    [8] Boyle WA3rd,Parvathaneni LS,Bourlier V,et a1.iNOS gene expression modulatesmicrovascular responsiveness in endotoxin-challenged mice[J].Circ Res.2000,87(7):E18-E24.
    [9] Okamoto T, Tang X,Janocha A,et al.Nebulized nitrite protects rat lung grafts fromischemia reperfusion injury[J].J Thorac Cardovasc Surg.2013,145(4):1108-16.
    [10] Sugimoto R,Okamoto T,Nakao A,et al. Nitrite reduces acute lung injury andimproves survival in rat lung transplantation modal[J]. Am J Transplant.2012,12(11):2938-48
    [11] Pickerodt PA,Emery MJ,Zarndt R,et al.Sodium nitrite mitigates ventilator-inducedlung injury in rats[J].Anesthesiology.2012,117(3):592-601.
    [12] D'Alessio FR,Tsushima K, Aggarwal NR,et al.Resolution of experimental lunginjury by monocyte-derived inducible nitric oxide synthase[J].J Immunol.2012,189(5):2234-45.
    [13] Qi Y,Qian L,Sun B,et al.Inhaled NO contributes to lung repair in piglets with acuterespiratory distress syndrome via increasing circulating endothelial progenitorcells[J].PLoS One.2012,7(3):e33859
    [14] Bhandari V,Choo-Wing R,Harijith A,et al.Increased hyperoxia-induced lunginjury in nitric oxide synthase2null mice is mediated via angiopoietin2[J].Am JRespir Cell Mol Biol.2012,46(5):668-76.
    [15] Fioretto JR, Campos FJ, Ronchi CF, et al.Effects of inhaled nitric oxide onoxidative stress and histopathological and inflammatory lung injury in a saline-lavaged rabbit model of acute lung injury[J].Respir Care.2012,57(2):273-81.
    [16] Malaviya R,Venosa A,Hall L,et al.Attenuation of acute nitrogen mustard-inducedlung injury,inflammation and fibrogenesis by a nitric oxide synthase inhibitor[J].Toxicol Appl Pharmacol.2012,265(3):279-91.
    [17] Suborov EV,Smetkin AA,Kondratiev TV,et al.Inhibitor of neuronal nitric oxidesynthase improves gas exchange in ventilator-induced lung injury afterpneumonectomy[J]. BMC Anesthesiol.2012,12:10.
    [18] Sunil VR, Shen J, Patel-Vayas K, et al.Role of reactive nitrogen species generatedvia inducible nitric oxide synthase in vesicant-induced lung injury,inflammationand altered lung functioning[J].Toxicol Appl Pharmacol.2012,261(1):22-30.
    [19] Wang L,Taneja R,Razavi HM,et al.Specific role of neutrophil inducible nitric oxidesynthase in murine sepsis-induced lung injury in vivo[J].Shock.2012,37(5):539-47.
    [20] Li WL, Hai CX, Pauluhn J.Inhaled nitric oxide aggravates phosgene model of acutelung injury[J].Inhal Toxicol.2011,23(13):842-52.
    [21] Wang le F,Patel M,Razavi HM,et a1.Role of inducible nitric oxide synthase inpulmonary microvaseular protein leak in murine sepsis[J].Am J Respir Crit CareMed.2002,165(12):1634-9.
    [22] Baron RM,Carvajal IM,Fredenburgh LE,et a1.Nitric oxide synthase-2down-regulates surfactant protein-B expression and on enhances endotoxin-induced lung injury in mice[J].FASEB J.2004,18(11):1276-8.
    [23] Mikawa K,Nishina K,Takao Y.et a1.ONO-1714,a nitric oxide synthase inhibitor,attenuates endotoxin-induced acute lung injury in rabbits[J].Anesth Analg.2003,97(6):175l-15.
    [24] Adhikari NK,Bums KE,Friedrich JO,et a1.Effect of nitric oxide on oxygenationand mortality in acute lung injury:systematic review and meta—analysis[J]. BMJ.2007,334(7597):779.
    [25] Siobal MS,Hess DR.Are inhaled vasodilators useful in acute lung injury andacute respiratory distress syndrome[J].Respir Care.2010,55(2):144-61.
    [26] Askie LM, Ballard RA, Cutter GR,et al.Inhaled nitric oxide in preterm infants: anindividual-patient data meta-analysis of randomized trials[J]. Pediatrics.2011,28(4):729-39.
    [27] Tavare AN, Tsakok T.Does prophylactic inhaled nitric oxide reduce morbidity andmortality after lung transplantation[J]?Interact Cardiovasc Thorac Surg.2011,13(5):516-20.
    [28] Constantin M, Choi AJ, Cloonan SM,et al.Therapeutic potential of hemeoxygenase-/carbon monoxide in lung disease[J].Int J Hypertens.2012;2012:859235.
    [29] Otterbein LE,Mantell LL,Choi AM.Carbon monoxide provides protection againsthyperoxic lung injury[J].Am J Physio1.1999,276(4Pt1):L688-94.
    [30] Otterbein LE,Otterbein SL,Ifedigbo E,et al.MKK3mitogen-activated proteinkinase pathway mediates carbon monoxide-induced protection against oxidant-induced lung injury[J]. Am J Pathol.2003163(3):2555-63.
    [31] Ghosh S,Wilson MR,Choudhury S,et al.Effects of inhaled carbon monoxide onacute lung injury in mice[J].Am J Physiol Lung Cell Mol Physiol.2005,288(6):L1003-9.
    [32] Fernandez-Gonzalez A,Alex Mitsialis S,Liu X,et al.Vasculoprotective effects ofheme oxygenase-1in a murine model of hyperoxia-induced bronchopulmonarydysplasia[J].Am J Physiol Lung Cell Mol Physiol.2012,302(8):L775-84.
    [33] Kawanishi S,Takahashi T,Morimatsu H,et al.Inhalation of carbon monoxidefollowing resuscitation ameliorates hemorrhagic shock-induced lung injury[DB/OL]. http://www.ncbi.nlm.nih.gov/pubmed/23138173,2012-10-08/2013-04-01.
    [34] Faller S,Foeckler M,Strosing KM,et al.Kinetic effects of carbon monoxideinhalation on tissue protection in ventilator-induced lung injury[J].Lab Invest.2012,92(7):999-1012.
    [35] Fei D,Meng X,Kang K,et al.Heme oxygenase-1modulates thrombomodulin andactivated protein C levels to attenuate lung injury in cecal ligation and puncture-induced acute lung injury mice[J].Exp Lung Res.2012,38(4):173-82.
    [36] Faller S,Hoetzel A.Carbon monoxide in acute lung injury[J].Curr PharmBiotechnol.2012,13(6):777-86.
    [37] Esechie A,Enkhbaatar P,Traber DL,et al.Beneficial effect of a hydrogen sulphidedonor (sodium sulphide) in an ovine model of burn-and smoke-induced acute lunginjury[J].Br J Pharmacol.2009,158(6):1442-53.
    [38] Zhang J,Sio SW,Moochhala S,et al.Role of hydrogen sulfide in severe burn injury-induced inflammation in mice[J].Mol Med.2010,16(9-10):417-24.
    [39] Faller S,Zimmermann KK,Strosing KM,et al.Inhaled hydrogen sulfide protectsagainst lipopolysaccharide-induced acute lung injury in mice[J].Med Gas Res.2012,2(1):26.
    [40] Ang SF,Sio SW,Moochhala SM,et al.Hydrogen sulfide upregulates cyclooxygenase-2and prostaglandin E metabolite in sepsis-evoked acute lung injury via transientreceptor potential vanilloid type1channel activation[J].J Immunol.2011,187(9):4778-87.
    [41] Faller S,Spassov SG,Zimmermann KK,et al.Hydrogen sulfide preventshyperoxia-induced lung injury by downregulating reactive oxygen speciesformation and angiopoietin-2release[DB/OL]. http://www.ncbi.nlm.nih.gov/pubmed/23092319.2012-10-18/2013-04-01.
    [42] Li HD,Zhang ZR,Zhang QX,et al.Treatment with exogenous hydrogen sulfideattenuates hyperoxia-induced acute lung injury in mice[DB/OL].http://www.ncbi.nlm.nih.gov/pubmed/23307012.2013-01-11/2013-04-01.
    [43] Francis RC,Vaporidi K,Bloch KD,et al.Protective and Detrimental Effects ofSodium Sulfide and Hydrogen Sulfide in Murine Ventilator-induced Lung Injury[J].Anesthesiology.2011,115(5):1012-21.
    [44] Wu J,Wei J,You X.Inhibition of hydrogen sulfide generation contributes to lunginjury after experimental orthotopic lung transplantation[DB/OL].http://www.ncbi.nlm.nih.gov/pubmed/23122581.2012-10-04/2013-04-01.
    [45] Mao YF,Zheng XF,Cai JM,et al.Hydrogen-rich saline reduces lung injury inducedby intestinal ischemia/reperfusion in rats[J].Biochem Biophys Res Commun.2009,381(4):602-5.
    [46] Xie K,Yu Y,Huang Y,et al.Molecular hydrogen ameliorates lipopolysaccharide-induced acute lung injury in mice through reducing inflammation and apoptosis[J].Shock.2012,37(5):548-55.
    [47] Huang CS,Kawamura T,Peng X,et al.Hydrogen inhalation reduced epithelialapoptosis in ventilator-induced lung injury via a mechanism involving nuclearfactor-kappa B activation[J].Biochem Biophys Res Commun.2011,408(2):253-8.
    [48] Kawamura T,Huang CS,Tochiqi IV,et al.Inhaled hydrogen gas therapy forprevention of lung transplant-induced ischemia/reperfusion injury in rats[J].Transplantation.2010,90(12):1344-51.
    [49] Kawamura T,Wakabayashi N,Shigemura N,et al.Hydrogen gas reduceshyperoxic lung injury via the Nrf2pathway in vivo[DB/OL].http://www.ncbi.nlm.nih.gov/pubmed/23475767.2013-03-08/2013-04-01.
    [50]陈红光,谢克亮,韩焕芝,等.氢气对肺损伤的保护效应及其机制研究进展[J].中国危重病急救医学[J].2011,23(11):696-8.
    [51]Yoritaka A, Takanashi M, Hirayama M,et al.Pilot study of H(2) therapy inParkinson's disease: A randomized double-blind placebo-controlled trial[DB/OL].http://www.ncbi.nlm.nih.gov/pubmed/23400965.2013-02-11/2013-04-01.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700