改进特征基函数法及其在电磁散射中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目标的电磁散射是雷达探测、地质勘测、遥感观测等的信息来源,电磁散射特性的定量分析是这些应用系统设计、运行的主要依据,特别在军事目标的特性分析、识别及设计中尤为重要。而军事目标往往是一些电大尺寸或结构复杂的目标,因此如何获得一种精确、高效分析电大复杂目标电磁散射问题的方法一直是计算电磁学的一个研究热点。本文在此背景下对矩量法的一个分支——特征基函数法进行了研究。本文紧紧围绕提高计算效率和节省内存这两个关键技术,研究特征基函数法的加速技术以及特征基函数法在目标宽带特性分析中的应用。本文对特征基函数法的研究主要分为两个部分,第一部分是对特征基函数法的改进以及加速技术进行研究;第二部分是特征基函数法应用的拓展,主要介绍了将特征基函数法应用到目标宽带电磁散射特性分析中。
     在第一部分中,首先提出了一种加快特征基函数构造以及缩减矩阵构造的方法——快速偶极子法。快速偶极子法通过转换,将远组矩阵向量积转换成聚集—转移—发散的模式,大大减少了计算量,降低了内存消耗。其次,针对传统快速偶极子法存在的不足,提出了一种改进的快速偶极子法,并将改进的快速偶极子法与特征基函数法结合,进一步提高了计算精度和计算效率。最后,针对基于奇异值分解的特征基函数法在构造特征基函数时,需要设置足够多的入射波激励,生成的特征基函数个数较多,特征基函数构造时间长的缺点,提出一种改进的特征基函数法,该方法减少入射波激励个数,对于每个平面波激励,求出每个子域的主要特征基函数后,充分考虑子域间的耦合效应,求出每个子域的次要特征基函数,最后将该子域的特征基函数经过奇异值分解,得到一组与激励无关的最小完备特征基函数。由于改进后的特征基函数法考虑到子域间的耦合作用,可以大大减少入射平面波激励的个数,从而减少特征基函数的个数,减少特征基函数构造时间;另外,应用自适应交叉近似算法加快求解次要特征基函数以及缩减矩阵的矩阵向量积运算,提高了计算效率
     在第二部分中,主要研究特征基函数法在目标宽带电磁散射特性分析中的应用。针对超宽带特征基函数法在计算目标宽带RCS时,在低频率点计算精度差的缺点,对传统超宽带特征基函数进行改进,提出一种通用特征基函数构造方案,该方法通过考虑子域间的耦合效应,求出次要特征基函数,改进后的超宽带特征基函数包含更多的电流信息特征,解决了传统方法在低频点计算精度差的缺点。最后,提出一种模型参数估计技术结合通用特征基函数法的方法,避免了对每个频率点RCS的计算,通过少量采样点的计算结果来拟合整个宽带RCS曲线,提高了计算了效率
The electromagnetic scattering of target is the information source of radar detection, geological surveying, and remote sensing. Analysis of electromagnetic scattering characteristics of these applications is the main basis for the design, operation, especially important in the characteristics analysis, identification of military objectives. The military objectives are usually some of the electrically large or complex targets. So how to obtain an accurate and efficient method for analyzing electromagnetic scattering problems is becoming a hot topic in computional electromagnetics. In this dissertation, we focused on the characteristic basis function method, which is one branch of method of moments, to reduce the memory requirements, enhance the computational efficiency in accelerating the characteristic basis function method and analyzing the wideband electromagnetic characteristics. The research of the characteristic basis function method in this dissertation divided into two parts, the first part is the improvement of the characteristic basis function method and acceleration technology. The second part is to expand the application of the characteristic basis function method to analysis of the wideband characteristics of targets.
     In the first part, the fast dipole method was presented to accelerate the matrix-vector products in the construction of characteristic basis functions and the calculation of the reduced matrix. The fast dipole method transforms the matrix-vector products of the far groups into aggregation-translation-disaggregation form naturally, so it can cut down the computational complexity and memory requirement. And then, an improved fast dipole method combined with the characteristic basis function method was presented to improve the computation accuracy and the efficiency of the conventional method. At last, we focus on the singular value decomposition-characteristic basis function method (SVD-CBFM), which should be set adequate plane waves in each sub-block to construct characteristic basis functions, thus increasing the number of characteristic basis functions and causing higher time consumption in singular value decomposition. An improved SVD-CBFM is presented. This approach reduces the number of plane waves and fully considers the mutual coupling effects among sub-blocks to obtain the secondary level characteristic basis function. Therefore, the total number of characteristic basis functions and the time required by singular value decomposition are significantly reduced. And also, the adaptive cross approximation algorithm is also used to accelerate the matrix-vector products in the construction of secondary level characteristic basis functions and vector-matrix-vector products in the calculation of the reduced matrix.
     In the second part, the characteristic basis function method applied into the analysis of the wideband electromagnetic scattering of the target was studied. Because the traditional ultra-wideband characteristic basis function method has the poor accuracy at the lower frequency points, so an improved ultra-wideband characteristic basis functions named general characteristic basis functions was presented. The general characteristic basis functions fully considers the mutual coupling effects among sub-blocks to obtain the secondary level characteristic basis functions, so it can improve the accuracy at the lower frequency points because the general characteristic basis functions contain more information of the current. Finally, a combination of general characteristic basis function method and model based parameter estimation technology was presented to reduce the frequency points, which only needs a small number of sampling points to fit the entire broadband RCS curve, so it can improve the computational efficiency.
引文
[1]R Mittra. A look at some challenging problems in computational electro magnetics [J]. IEEE Antennas and Propagation Magazine,2004,46(5): 18-32.
    [2]A F Peterson, S L Ray, R Mittra. Computational Methods for electromagnetics[M]. New York:IEEE Press,1998.
    [3]Born M, Wolf E. Principle of Optics[M]. Oxford:Pergamon,6th Edition,1980.
    [4]Cornbleet S. Geometrical optics reviewed:A new light on an old subject[J]. Proceedings of the IEEE,1983,71(4):471-502.
    [5]Adachi S. The nose-on echo area of axially symmetric thin bodies having sharp apices[J]. Proceedings of the IEEE,1965,53(8):1067-1068.
    [6]Mentzer J W. Scattering and Diffraction of Radio Wave[M]. New York:Pergamon, 1955.
    [7]Keller J B. Geometrical theory of diffraction [J]. J. Opt. Soc. Amer.,1962,52: 116-130.
    [8]Luebbers R J, Foose W A, Reyner G. Comparison of GTD propagation model wide-band path loss simulation with measurements [J]. IEEE Transactions on Antennas and Propagation,1989,37(4):499-505.
    [9]Bouche D P, Bouquet J J, Manenc H, Mittra R. Asymptotic computation of the RCS of low observable axisymmetric objects at high frequency [J]. IEEE Transactions on Antennas and Propagation,1992,40(10):1165-1174.
    [10]Luk K M, Cullen A L. Three-dimensional Gaussian beam reflection from short-circuited isotropic ferrite slab[J]. IEEE Transactions on Antennas and Propagation,1993,41(7):962-966.
    [11]Marzougui A M, Franke S J. Scattering from rough surfaces using the shooting and bouncing rays'(SBR) technique and comparison with the method of moments solutions[C]. Antennas and Propagation Society International Symposium,1990: 1540-1543.
    [12]Gu Changqing, Shu Yongze, Xu Jinping. A subdomains splicing technique for IPO approach[C].5th International Symposium on Services Systems and Services Management,2000:75-78.
    [13]Yee S K. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation,1996,14(5):302-307.
    [14]Fumeaux C, Baumann D, Vahldieck R. Finite-volume time-domain analysis of a cavity-backed Archimedean spiral antenna[J]. IEEE Transactions on Antennas and Propagation,2006,54 (3):844-851.
    [15]Pisharody G, Weile D S. Electromagnetic scattering from homogeneous dielectric bodies using time-domain integral equations[J]. IEEE Transactions on Antennas and Propagation,2006,54(2):687-697.
    [16]Jiao D, Jian-Ming Jin. A general approach for the stability analysis of the time-domain finite-element method for electromagnetic simulations[J]. IEEE Transactions on Antennas and Propagation,2002,50(11):1624-1632.
    [17]Jin J M. The Finite Element Method in Electromagnetic[M]. New York:Wiley, 1993.
    [18]Dong Xingqi, An Tongyi. A new FEM approach for open boundary Laplace's problem[J]. IEEE Transactions on Microwave Theory and Techniques,1996, 44(1):157-160.
    [19]Gyimesi M, Tsukerman I, Lavers D, Pawlak T, Ostergaard D. Hybrid finite element-Trefftz method for open boundary analysis[J]. IEEE Transactions on Magnetics,1996,32(3):671-674.
    [20]Harrington R F. Field Computation by Moment Methods[M]. New York: Macmillan,1968.
    [21]Rao S M, Wilton D R, Glisson A W. Electromagnetic scattering by surfaces of arbitrary shape[J]. IEEE Transactions on Antennas and Propagation,1982,30(5): 409-418.
    [22]T. K. Sarkar. The application of the conjugate gradient method for the solution of operator equations arising in electromagnetic scattering from wire antennas [J]. Radio Science,1984,19(5):1156-1172.
    [23]Saad Y. Iterative methods for sparse linear systems [M]. Boston:PWS Pub Co, 1996.
    [24]徐士良.数值分析与算法[M].机械工业出版社,2001.
    [25]马东升,雷勇军.数值计算方法[M].机械工业出版社,2006.
    [26]彭朕,盛新庆.一种多层不完全LU分解预处理方法在合元极技术中的应用[J].电子学报,2008,36(2):230-234.
    [27]K F Sabet, J C Cheng, L P B Katehi. Efficient wavelet-based modeling of printed circuit antenna arrays[J]. IEE Microwave Antennas Propagation,1999,146: 289-304.
    [28]R L Wagner, W C Chew. A study of wavelet for the solution of electromagnetic integral equations[J]. IEEE Transactions on Antennas and Propagation,1995: 802-810.
    [29]F X Canning. Improved impedance matrix localization method[J]. IEEE Transactions on Antennas and Propagation,1993:659-667.
    [30]Qin Li, Leung Tsang, Pak, K S, Chi hou Chan. Bistatic scattering and emissivities of random rough dielectric lossy surfaces with the physics-based two-grid method in conjunction with the sparse-matrix canonical grid method[J]. IEEE Transactions on Antennas and Propagation,2000,48(1):1-11.
    [31]Mori A, De Vita F, Freni A. A modification of the canonical grid series expansion in order to increase the efficiency of the SMCG method[J]. IEEE Geosciences and Remote Sensing Letters,2005,2(1):87-89.
    [32]Chen, X. L., Z. Y. Niu, Z. Li, and C. Q. Gu. A hybrid fast dipole method and adaptive modified characteristic basis function method for electromagnetic scattering from perfect electric conducting targets[J], Journal of Electromagnetic Waves and Applications,2011,25(14):1940-1952.
    [33]R. Coifman, V. Rokhlin, and S. Wandzura. The fast multipole method for the wave equation:A pedestrian prescription[J]. IEEE Transactions on Antennas and Propagation,1993,53(3):7-12.
    [34]J. M. Song, C. C. Lu, and W. C. Chew. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects[J]. IEEE Transactions on Antennas and Propagation,1997,45(10):1488-1493.
    [35]潘小敏,盛新庆.电特大目标散射的多层快速多极子高性能计算[J].系统工程与电子技术,2011,33(8):1690-1693.
    [36]E.Blesznski, M.Bleszynski, etc. AIM:Adaptive integral method for solving large scale electromagnetic scattering and radiation problems[J]. Radio Science,1996, 31(9):1225-1251.
    [37]X. C. Nie, N. Yuan, L. W. Li, Y. B. Gan. Fast analysis of RCS over a frequency band using Pre-Corrected FFT/AIM and asymptotic waveform evaluation technique[J]. IEEE Transactions on Antennas and Propagation,2008,56(11): 3526-3553.
    [38]X. Chen, C. Gu, Z. Niu, and Z. Li. Fast dipole method for electromagnetic scattering from perfect electric conducting targets [J]. IEEE Transactions on Antennas and Propagation,2012,60(2):1186-1191.
    [39]陈新蕾,邓小乔,李茁,等.金属介质混合目标散射分析的快速偶极子法[J]. 电子与信息学报,2011,33(11):2790-2794.
    [40]Chen X, Gu C, Niu Z. Multilevel fast dipole method for electromagnetic scattering from perfect electric conducting targets[J]. IET Microwaves Antennas & Propagation,2012,6(3):263-268.
    [41]E. Michielsen, A. Boag. A multilevel matrix decomposition algorithm for analyzing scattering from large structures[J]. IEEE Transactions on Antennas and Propagation,1996,44(8):1086-1093.
    [42]K. Zhao, M.N. Vouvakis and J.F. Lee. The adaptive cross approximation algorithm for accelerated MoM computations of EMC problems [J]. IEEE Transactions on Electromagnetic Compatibility.2005,47(4):763-773.
    [43]J. M. Tamayo, A. Heldring, and J. M. Rius. Multilevel adaptive cross approximation (MLACA)[J]. IEEE Transactions on Antennas and Propagation, 2011,59(12):4600-4608.
    [44]A. Heldring, J. Rius, T. Tamayo, J. Parron, E. Ubeda. Fast direct solution of method of moments linear system [J]. IEEE Transactions Antennas and Propagation,2007,55(11):3220-3228.
    [45]J. Shadffer. Direct solve of electrically large integral equations for problem sizes of 1 M unknowns[J]. IEEE Transactions on Antennas and Propagation,2008, 56(8):2306-2313.
    [46]A. Heldring, J. M. Rius, T. Tamayo, J. Parron, E. Ubeda. Multiscale compressed block decomposition for fast direct solution of method of moments linear system[J]. IEEE Transactions on Antennas and Propagation,2011,59(2): 526-536.
    [47]A. Heldring, J. M. Rius. Accelerated direct solution of the MoM linear system using block compression and nested factorization [C]. International Conference on Electromagnetics in Advanced Applications(ICEAA), Torino,2011:636-639.
    [48]S. Ooms, D. D. Zutter. A New iterative diakoptics-based Multilevel Moments Method for planar circuits[J]. IEEE Trans. Microwave Theory and Technology, 1998,45:280-291.
    [49]E.Suter, J.Mosig. A Subdomain Multilevel Approach for the efficient MOM analysis of large antennas[J]. Microwave and Optical Technology Letters, 2000,26:270-277.
    [50]L. Matekovits, G. Vecchi. Synthetic function analysis of large printed structures:the solution space sampling approach[C]. IEEE Antennas Propag. Soc Int Symp.,2001:568-571.
    [51]V. V. S. Prakash, and R. Mittra. Characteristic basis function method:A new technique for efficient solution of method of moments matrix equations[J]. Microwave and Optical Technology Letters,2003,36(2):95-100.
    [52]S J Kwon, K Du, R Mittra. Characteristic basis function method a numerically efficient technique for analyzing microwave and RF circuits [J]. Microwave and Optical Technology Letters,2003,38(6):444-448.
    [53]J F Ma, R Mittra. Analysis of scattering characteristics of electrically large objects using a CBFM-based procedure[C]. Antennas and Propagation Society International Symposium IEEE,2005(3):105-108.
    [54]魏建功.特征基函数法在有限尺寸频率选择表面分析中的应用[D].成都:电子科技大学,2009.
    [55]S. G. Hay, J. D. O Sullivan, R. Mittra. Connected patch array analysis using characteristic basis function method[J]. IEEE Transactions on Antennas and Propagation,2011,59(6):1828-1837.
    [56]Y. F. Sun, C. H. Chan, R. Mittra, and L. Tsang. Characteristic basis function method for solving large problems arising in dense medium scatterin[C]. IEEE Antennas Propag. Soc Int Symp.,2003:1068-1071.
    [57]E.Lucente, A.Monorchio, and R.Mittra. An iteration-free MOM approach based on excitation independent characteristic basis function for solving large multiscale electromagnetic scattering problems[J]. IEEE Transactions on Antennas and Propagation,2008,56(4):999-1007.
    [58]R Mittra, V V S Prakash, J Yeo. Some novel techniques for efficient analysis of large arrays and frequency selective radomes[C]. The Institute of Electrical Engineers,2003:462-465.
    [59]E Lucente, A Monorchio, R Mittra. Generation of Characteristic Basis Functions by using Sparse MoM Impedance Matrix to Construct the Solution of Large Scattering and Radiation Problems[C]. Antennas and Propagation Society International Symposium, IEEE,2006:4091-4094.
    [60]Raj Mittral, Ji-Fu MaL, Eugenio Lucente, Agostino Monorhio. CBMOM-An Iteration Free MoM Approach For Solving Large Multiscale EM Radiation and Scattering Problems[J]. Antennas and Propagation Society International Symposium, IEEE,2005,4:2-5.
    [61]Han, G. D., C. Q. Gu. A hybrid QR factorization with dual-MGS and adaptively modified characteristic basis function method for electromagnetic scattering analysis[J]. Microwave and Optical Technology Letters,2007,49(11): 2879-2883.
    [62]R. Maaskant, R. Mittra, A. Tijhuis. Multilevel characteristic basis function method (MLCBFM) for the analysis of large antenna arrays[J]. Radio Sci. Bull., 2011,33(6):23-34.
    [63]孙玉发,卢克,王国华.介质目标电磁散射特性的多层特征基函数法分析[J].电波科学学报,2013,28(1):92-96.
    [64]C. Delgado, R. Mittra, and F. Catedre. Accurate representation of the edge behavior of current when using PO-derived characteristic basis functions[J]. IEEE Antennas and Wireless propagation letters,2008,7:43-45.
    [65]M. DeGiorgi, G. Tiberi, A. Monorchio, G. Manara, R. Mitrra. An SVD-based method for analyzing electromagnetic scattering from plates and faceted bodies using physical optics bases[C]. IEEE Antennas and Propagation Society Int. Symp., Washington, DC,2005:3-8.
    [66]X. L. Chen, C. Q. Gu, Z. Y. Niu, Z. Li. Direct solution of electromagnetic scattering using CBFM with AC A algorithm[C]. IEEE international Symposium on Antennas, Propagation& EM Theory,2012:1021-1025.
    [67]王全全,王唯,刘志伟,等.改进的特征基函数法分析电磁散射问题[J]. 系统工程与电子技术,2010,32(10):2103-2106.
    [68]J. J. Gu, C. Q. Gu. A fast efficient technique for solving monotonic RCS using the SVD method[C]. IEEE MAPE,2009:896-899.
    [69]E. Garcia, C. Delgado, I. G. Diego, and M. F. Catedra. An iterative solution for electrically large problems combining the characteristic basis function method and the multilevel fast multipole algorithm[J]. IEEE Transactions on Antennas and Propagation,2008,56(8):2363-2371.
    [70]L. Hu, L. W. Li, and R. Mittra. Electromagnetic scattering by finite periodic arrays using the characteristic basis function and adaptive methods[J]. IEEE Transactions on Antennas and Propagation,2010,58(9):3086-3090.
    [71]R. Maaskant, A. Tijhuis, R. Mittra. Fast analysis of large antenna arrays using the characteristic basis function method and the Adaptive Cross Approximation algorithm[J]. IEEE Transactions on Antennas and Propagation, 2008,56(11):3440-3451.
    [72]王国华,孙玉发,于君之.特征基函数法快速分析导体目标电磁散射特性[J].电波科学学报,2013,28(3):438-442.
    [73]X. L. Chen, Z. Y. Niu, Z. Li, C. Q. Gu. A hybrid fast dipole method and adaptive modified characteristic basis function method for electromagnetic scattering from perfect electric conducting targets [J]. Journal of Electromagnetic Waves and Applications,2011,25(14):1940-1952.
    [74]K. Xiao, F. Zhao, S. L. Chai, J. J. Mao. Scattering analysis of periodic arrays using combined CBF/P-FFT method[J]. Progress In Electromagnetics Research, 2011,115:131-146.
    [75]J. Hu, W. Lu, H. Shao, Z. Nie. Electromagnetic analysis of large scale periodic array using a two-level CBFs method accelerated with FMM-FFT[J]. IEEE Transactions On Antennas and Propagation,2012,60(12):5709-5716.
    [76]E. H. NEWMAN. Generation of wide-band data from the method of moments by interpolating the impedance matrix [J]. IEEE Transactions on Antennas and Propagation,1998,36(12):1820-1824.
    [77]G. J. Burke, E. K. Miller, S. Chakrabarthi, K. Demarest. Using model based parameter estimation to increase the efficiency of computing electromagnetic transfer functions[J]. IEEE Trans on Magn.,1988,25:2807-2809.
    [78]Z. H. Fan, Z. W. Liu, D. Z. Ding, and R. S. Chen. Preconditioning matrix interpolation technique for fast analysis of scattering over broad frequency band[J]. IEEE Transactions on Antennas and Propagation,2010,58(7): 2484-2487.
    [79]X. D. Wang, D. H. Werner. Improved model-based parameter estimation approach for accelerated periodic method of moments solutions with application to the analysis of convoluted frequency selected surfaces and metamaterials[J]. IEEE Transactions on Antennas and Propagation,2010,58(1): 122-131.
    [80]万继响,张玉,项铁铭等.FMM结合改进自适应MBPE技术快速求解单站RCS[J]电波科学学报,2004,19(1):72-76.
    [81]R Lehmensiek. An efficient adaptive frequency sampling algorithm for model-based parameter estimation as applied to aggressive space mapping[J]. Microwave and Opt. Technol. Lett.,2000,48(3):383-392.
    [82]C. J. Reddy, M. D. Deshpande, C. R Cockrell, F. B. Beck. Fast RCS computation over a frequency band using method of moments in conjunction with asymptotic evaluation technique[J]. IEEE Transactions on Antennas and Propagation,1998, 46(8):1229-1233.
    [83]X. C. Nie, N. Yuan, L. W. Li, Y. B. Gan. Fast analysis of RCS over a frequency band using method of moments in conjunction with asymptotic evaluation technique[J]. IEEE Transactions on Antennas and Propagation,2008,56(11): 3526-3533.
    [84]X. Wang, S. X. Gong, J. L. Guo, Y. Liu, P. F. Zhang. Fast and accurate wide-band analysis of antennas mounted on conducting platform using AIM and asymptotic waveform evaluation technique[J]. IEEE Transactions on Antennas and Propagation,2011,59(12):4624-4633.
    [85]T. Sheng, Y. F. Sun, L. Y. Kong. Fast calculation of RCS over a broad frequency band using FDM and AWE technique[C]. International Symposium on Antennas, Propagation and EM Theory,2012:943-946.
    [86]Y. F. Sun, Y. Du, and Y. Sao. Fast computation of wideband RCS using characteristic basis function method and asymptotic waveform evaluation technique[J]. Journal of Electronics(China),2010,27(4):463-467.
    [87]Degiorgi M, Tiberi G, Monorchio A, and R. Mittra. Wide band scattering through the use of the universal characteristic basis functions(UCBFs)[C]. IEEE Int. Symp. on Antennas and Propagation and Radio Science Meeting,2010:11-17.
    [88]Degiorgi M, Tiberi G, Monorchio A, and R. Mittra. Solution of wide band scattering problems using the characteristic basis function method[J]. IET Microwaves Antennas & Propagation,2012,6(1):60-66.
    [1]R. F. Harrington. Field Computation by Moment Methods[M]. McMillan, New York,1968.
    [2]Rao S M, Wilton D R, Glisson A W. Electromagnetic scattering by surfaces of arbitrary shape[J]. IEEE Transactions on Antennas and Propagation,1982,30(5): 409-418.
    [3]Bocheng Chen, Ip Wh. The study on the two characters in a kind of Markov chain's CRM model[C]. International Conference on Services Systems and Services Management,2005,1:230-232.
    [4]T. K. Sarkar. The application of the conjugate gradient method for the solution of operator equations arising in electromagnetic scattering from wire antennas [J]. Radio Science,1984,19(5):1156-1172.
    [5]W. C. Gibson. The method of moments in electromagnetics[M]. New York: Chapman & Hall/CRC,2007:43-47.
    [6]吴崇试.数学物理方法(第二版)[M].北京:北京大学出版社,2003:129-133.
    [7]X. F. Que, Z. P. Nie, J. Hu. Efficient analysis of dielectric radomes using multilevel fast multipole algorithm with CRWG basis[J]. Journal of Systems Engineering and Electronics,2008,19(1):81-87.
    [8]D. H. Schaubert, D. R. Wilton, and A. W. Glisson. A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies[J]. IEEE Transactions on Antennas and Propagation,1984,32(1):77-85.
    [9]S. Wandzura. Electric current basis functions for curved surfaces[J]. Electromagnetics,1992,12:77-91.
    [10]P. Y. Oijala, M. Taskinen. Calculation of CFIE impedance matrix elements with RWG and nXRWG functions [J]. IEEE Transactions on Antennas and Propagation, 2003,51(8):1837-1846.
    [1]S. J. Kwon, K. Du, R Mittra. Characteristic basis function method a numerically efficient technique for analyzing microwave and RF circuits [J]. Microwave and Optical Technology Letters,2003,38(6):444-448.
    [2]Junho Yeo, R Mittra. Numerically efficient analysis of microstrip antennas using the Characteristic Basis Function method(CBFM)[C]. Antennas and Propagation Society International Symposium,2003(4):85-88.
    [3]Xiaofeng Que, Zaiping Nie. Analysis of electromagnetic radiation and scattering using characteristic basis function method with higher order method[C]. Microwave Conference Proceedings,2005,4.
    [4]G. Tiberi, S Rosace, A Monorchio, etal. Electromagnetic scattering from large faceted conducting bodies by using analytically derived characteristic basis functions[J]. Antennas and Wireless Propagation Letters, IEEE,2003,2(1): 290-293.
    [5]J. X. Wan, J. Lei, C. Liang. An Efficient Analysis of Large-Scale Periodic Microstrip Antenna Arrays Using the Characteristic Basis Function Method[J]. Progress in Electromagnetics Research 2005,50:61-81.
    [6]关闯,尹成友,覃开云.基于CBFM的微带天线阵列电磁特性分析[J].微波学报,2010,26(2):1-6.
    [7]孙玉发,岳玫君.二维电大尺寸目标电磁散射特性的特征基函数法分析[J].安徽大学学报,2008,34(6):62-65.
    [8]孙玉发,张奕,徐善驾,陈学俭.二维导体柱电磁散射特性的特征基函数法分析[J].电报科学学报,2006,21(2):229-232.
    [9]韩国栋,顾长青.电磁特性研究中的自适应修正特征基函数法[J].电子与信息学报,2008,30(10):2364-2368.
    [10]顾晶晶,顾长青.利用奇异值分解快速计算单站RCS的计算[J].微波学报,2010,26(2):7-10.
    [11]顾晶晶.基于奇异值分解的特征基函数法及其在电磁散射中的应用[D].南京:南京航空航天大学,2010.
    [12]肖科,赵菲,柴舜连,等.结合P-FFT算法和特征基函数分析大型阵列散射[J].微波学报,2011,27(1):6-10.
    [13]L. Tsang, C. E. Mandt, D. H. Ding. Monte Carlo simulations of the extinction rate of dense media with randomly distributed dielectric spheres based on solution of Maxwell's equations [J]. Optics Letters,1992,17(5):314-316.
    [14]徐仲,张凯院,陆全,冷国伟.矩阵论简明教程第二版[M].北京:科学出版社,2001.
    [15]李庆扬,关治,白峰杉.数值计算原理第一版[M].北京:清华大学出版社,2000.
    [16]Bucci O M, Franceschetti G. On the degrees of scattered fields[J]. IEEE Transactions on Antennas and Propagation,1989,37(7):918-926.
    [17]Bucci O M, Franceschetti G. On the spatial bandwidth of scattered fields[J]. IEEE Transactions on Antennas and Propagation,1997,45(10):1445-1455.
    [1]E.Blesznski, M.Bleszynski. AIM:Adaptive integral method for solving large scale electromagnetic scattering and radiation problems[J]. Radio Science,1996, 31(9):1225-1251.
    [2]Yuan, J. D., C. Q. Gu, and G. D. Han. A hybrid equivalent dipole moment and adaptive modified characteristic basis function method for electromagnetic scattering by multilayered dielectric bodies [J]. International Journal of RF and Microwave Computer-aided Engineering.2009,19(6):685-691.
    [3]A. Heldring, J. Rius, T. Tamayo, J. Parron, and E. Ubeda. Fast direct solution of method of moments linear system[J]. IEEE Transactions on Antennas and Propagation,2007,55(11):3220-3228.
    [4]Zhao K, Vouvakis M N, and Lee J F. The adaptive cross approximation algorithm for accelerated MoM computations of EMC problems[J]. IEEE Trans. on Electromagnetic Compatibility,2005,47(4):763-773.
    [5]J. M. Tamayo, A. Heldring, and J. M. Rius. Multilevel adaptive cross approximation (MLACA)[J]. IEEE Transactions on Antennas and Propagation,2011,59(12):4600-4608.
    [6]J. Shadffer. Direct solve of electrically large integral equations for problem sizes of 1M unknowns[J]. IEEE Transactions on Antennas and Propagation,2008, 56(8):2306-2313.
    [7]A. Heldring, J. M. Rius, T. Tamayo, J. Parron, E. Ubeda. Multiscale compressed block decomposition for fast direct solution of method of moments linear system[J]. IEEE Transactions on Antennas and Propagation,2011,59(2): 526-536.
    [8]Yuan, J. D., C. Q. Gu, and G D. Han. A hybrid equivalent dipole moment and adaptive modified characteristic basis function method for electromagnetic scattering by multilayered dielectric bodies [J]. International Journal of RF and Microwave Computer-aided Engineering.2009,19(6):685-691.
    [9]X. Chen, C. Gu, Z. Niu, and Z. Li. Fast dipole method for electromagnetic scattering from perfect electric conducting targets[J]. IEEE Transactions on Antennas and Propagation,2012,60(2):1186-1191.
    [10]Chen X, Gu C, Niu Z. Multilevel fast dipole method for electromagnetic scattering from perfect electric conducting targets[J]. IET Microwaves Antennas & Propagation,2012,6(3):263-268.
    [11]Chen X, Gu C, Niu Z. Reply to "comments on'fast dipole method for electromagnetic scattering from perfect electric conducting targets'"[J]. IEEE Transactions on Antennas and Propagation,2012,60(12):6063-6064.
    [1]Burke G J. Using model-based parameter estimation to increase the efficiency of computing electrotrmgnetic transfer functions[J]. IEEE Transactions on Magnetics,1989,25(7):2807-2809.
    [2]蒋鸿林,张小苗,梁昌洪.基于有理逼近和MBPE结合恢复天线方向图[J].电波科学学报,2005,20(6):754-757.
    [3]万继响,宗卫华,梁昌洪MBPE技术快速分析导体散射的频空二维特性[J].2003,30(6):762-765.
    [4]C. J. Reddy. Application of model based parameter estimation for rcs frequency response calculations using method of moments[R]. USA:NASA Contractor Report 206951,1998.
    [5]韩国栋,潘宇虎,何丙发,顾长青AMCBFM-MBPE快速分析三维目标的宽 带带宽角散射特性[J].2009,26(5):32-37.
    [6]E.Lucente, A.Monorchio, and R.Mittra. An iteration-free MOM approach based on excitation independent characteristic basis function for solving large multiscale electromagnetic scattering problems[J]. IEEE Transactions on Antennas and Propagation,2008,56(4):999-1007.
    [7]C. Delgado, R. Mittra, and F. Catedre. Accurate representation of the edge behavior of current when using PO-derived characteristic basis functions[J]. IEEE Antennas and Wireless propagation letters, No.7, pp.43-45.
    [8]M. DeGiorgi, G. Tiberi, A. Monorchio, G. Manara, R. Mitrra. An SVD-based method for analyzing electromagnetic scattering from plates and faceted bodies using physical optics bases[C]. IEEE Antennas and Propagation Society Int. Symp., Washington, DC,2005:3-8.
    [9]M. D. Gregorio, G. Tiberi, A. Monorchio, R. Mittra. Solution of wide band scattering problems using the characteristic basis function method[J]. IET Microw. Antennas Propag.,2012,6(1):60-66.
    [10]王全全,王唯,刘志伟,陈华,樊振宏,陈如山.改进的特征基函数法分析电磁散射问题[J].系统工程与电子技术,2010,32(10):2103-2106.
    [11]R. Maaskant, A. Tijhuis, R. Mittra. Fast analysis of large antenna arrays using the characteristic basis function method and the Adaptive Cross Approximation algorithm [J]. IEEE Transactions on Antennas and Propagation, 2008,56(11):3440-3451.
    [12]J. J. Gu, C. Q. Gu. A fast efficient technique for solving monotonic RCS using the SVD method[C]. IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications,2009: 896-899.
    [13]L. Hu, L. W. Li, and R. Mittra. Electromagnetic scattering by finite periodic arrays using the characteristic basis function and adaptive methods[J]. IEEE Transactions on Antennas and Propagation,2010,58(9):3086-3090.
    [14]X. Chen, C. Gu. Direct solution of electromagnetic scattering using CBFM with ACA algorithm[C]. IEEE International Symposium on Antennas, Propagation & EM Theory, Xian,2012:1021-1025.
    [15]C. Delgado, M. F. Catedra, R. Mittra. Efficient multilevel approach for generation of characteristic basis functions for scatters[J]. IEEE Transactions on Antennas and Propagation,2008,56(9):2134-2137.
    [16]C. Delgado, E. Garcia, M. F. Catedra, R. Mittra. Generation of characteristic basis functions defined over large surfaces by using a multilevel [J]. IEEE Transactions on Antennas and Propagation,2009,57(4):1299-1301.
    [17]Bucci O M, Franceschetti G. On the degrees of scattered fields[J]. IEEE Transactions on Antennas and Propagation,1989,37(7):918-926.
    [18]Bucci O M, Franceschetti G. On the spatial bandwidth of scattered fields [J]. IEEE Transactions on Antennas and Propagation,1997,45(10):1445-1455.
    [19]L. Tsang, C. E. Mandt, D. H. Ding. Monte Carlo simulations of the extinction rate of dense media with randomly distributed dielectric spheres based on solution of Maxwell's equations[J]. Optics Letters,1992,17(5):314-316.
    [20]E. Garcia, C. Delgado, I. G. Diego, and M. F. Catedra. An iterative solution for electrically large problems combining the characteristic basis function method and the multilevel fast multipole algorithm[J]. IEEE Transactions on Antennas and Propagation,2008,56(8):2363-2371.
    [21]L. Hu, L. W. Li, and R. Mittra. Electromagnetic scattering by finite periodic arrays using the characteristic basis function and adaptive methods[J]. IEEE Transactions on Antennas and Propagation,2010,58(9):3086-3090.
    [22]K. Zhao, M.N. Vouvakis and J.F. Lee. The adaptive cross approximation algorithm for accelerated MoM computations of EMC problems [J]. IEEE Transactions on Electromagnetic Compatibility,2005,47(4):763-773.
    [1]韩国栋,潘宇虎,何丙发,等AMCBFM-MBPE快速分析三维目标的宽带宽角散射特性[J].微波学报,2009,25(6):32-37.
    [2]魏建功.特征基函数法在有限尺寸频率选择表面分析中的应用[D].成都:电子科技大学,2009.
    [3]Degiorgi M, Tiberi G, Monorchio A, and R. Mittra. Wide band scattering through the use of the universal characteristic basis functions(UCBFs)[C]. IEEE Int. Symp. on Antennas and Propagation and Radio Science Meeting,2010:11-17.
    [4]Degiorgi M, Tiberi G, Monorchio A, and R. Mittra. Solution of wide band scattering problems using the characteristic basis function method[J]. IET Microwaves Antennas & Propagation,2012,6(1):60-66.
    [5]L. Tsang, C. E. Mandt, D. H. Ding. Monte Carlo simulations of the extinction rate of dense media with randomly distributed dielectric spheres based on solution of Maxwell's equations[J]. Optics Letters,1992,17(5):314-316.
    [6]G. J. Burke, E. K. Miller, S. Chakrabarthi, K. Demarest. Using model based parameter estimation to increase the efficiency of computing electromagnetic transfer functions[J]. IEEE Trans on Magn.,1988,25:2807-2809.
    [7]Bucci O M, Franceschetti G. On the degrees of scattered fields[J], IEEE Transactions on Antennas and Propagation,1989,37(7):918-926.
    [8]Bucci O M, Franceschetti G. On the spatial bandwidth of scattered fields[J]. IEEE Transactions on Antennas and Propagation,1997,45(10):1445-1455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700