可见和近红外激光玻璃基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光技术是二十世纪最伟大的发明,深刻影响了当代科学技术和社会经济的发展。激光玻璃作为激光的最重要工作物质,由于其自身一系列的优势,使得它在激光技术中的应用越来越广泛。随着激光技术的发展,对增益介质的要求越来越高、越来越多样化,以实现不同性质的激光输出。
     本论文就应用于可见和近红外激光玻璃的基础及应用展开了系统的研究。全文共分成六章,包括绪论、实验及基础理论、可见波段激光玻璃基础研究、铋掺杂玻璃发光特性研究、掺杂磷酸盐玻璃光纤研制、飞秒激光诱导掺杂磷酸盐玻璃及光纤折射率的基础研究,飞秒激光在掺杂磷酸盐玻璃中直写光波导的基础研究、以及结论等部分。
     第一章首先介绍了激光玻璃的发展历史、可见光光纤激光器的研究进展和铋掺杂光纤激光器研究进展以及铋掺杂玻璃发光机理的研究历史。由于目前应用于可见波段光纤激光器的增益介质主要为以掺杂氟化物光纤,这种以氟化物作为光纤基质的材料化学稳定性及抗热冲击性能比较差,很难以满足高功率可见光激光器对工作物质的要求。如果利用化学稳定性和机械性能较优氧化物玻璃来替代氟化物玻璃,将可以大幅度的提高光纤激光器性能。
     第二章主要介绍了实验及测试方法,广泛应用于激光玻璃性能参数计算的J-O理论和McCumber理论,以及与本论文相关的稀土离子无辐射跃迁理论。
     第三章我们从玻璃组成出发,选择四种典型的氧化物玻璃,系统研究了Sm3+、Pr3+、Tb3+掺杂四种氧化物玻璃的光谱特性。详细解释了基质对Pr3+发光性能的影响。提出对于Pr3+掺杂激光玻璃的设计所需考虑的因素。低声子能量的玻璃基质适合于作为Pr3+来自于3P0能级的发光。通过计算Sm3+掺杂四种氧化物玻璃的激光参数,得出磷酸盐玻璃基质的吸收和受激发射截面都大于锗酸盐、硅酸盐和碲酸盐玻璃,且与Sm3+掺杂的石英玻璃大一个数量级,更适合于作为光纤激光器的增益介质材料。在Tb3+掺杂磷酸盐玻璃浓度达到15mol%而没有出现浓度淬灭现象,而在硅酸盐、锗酸盐玻璃中掺杂浓度达到3mol%即出现浓度淬灭现象,10mol%Tb3+掺杂磷酸盐玻璃的实际测量量子效率高达78%。
     第四章我们系统的研究了铋掺杂石英玻璃随激发波长的改变发射波长无规律性变化的现象,通过总结已有的现象及结合实验结果,提出铋掺杂石英玻璃中存在两个发光中心,为Bi+和Bi0,分别对应于铋掺杂石英玻璃中的短波长和长波长发光。根据Moore能级图构建Bi+和Bi0的能级模型,利用构建的模型很好的解释了铋掺杂石英玻璃中发射波长随着激发光波长的改变及玻璃预制棒和光纤发光相异的现象。且利用该模型很好的解释了铋掺杂石英玻璃光纤预制棒的在拉制成光纤之后产生变化的原因。
     第五章就光纤的研制展开了研究。首先利用管棒法制备了Tb3+掺杂磷酸盐玻璃光纤,制备出来的光纤在1310nm的传输损耗为3.18dB/m。与目前应用于超窄线宽光纤激光器用的掺杂磷酸盐玻璃光纤损耗相当。采用堆积法制备出Tb3+、Nd3+掺杂的磷酸盐玻璃光纤,采用截断法测试光纤的损耗分别为10.6dB/m和6.453dB/m。堆积法制备光纤相比于管棒法制备掺杂光纤,从原理上来讲,由于其去除了玻璃打孔及孔抛光的过程,光纤的纤芯和包层的界面是通过热处理的过程接触在一起,理应损耗要更低,但是由于光纤组分的设计及拉丝温度的不适当造成组成包层的细棒没有完全融合成一体,且由于表面张力的作用,纤芯在软化之后被吸入到包层细棒的间隙中间,纤芯的形状变为正六边形,导致光纤损耗剧增。
     在前面激光玻璃及光纤研制的基础上,我们采用飞秒激光在制备的掺杂磷酸盐激光玻璃中刻写光波导,通过改进参数制备出双线波导。利用632nm的He-Ne激光器进行光波导传输实验,发现制备出来的光波导可以很好的传输单模激光,经过光波导后传输光的模式仍为高斯分布的基模模式。利用飞秒激光在拉制出来的Yb3+掺杂磷酸盐玻璃光纤中进行折射率的调制,通过调节加工参数,得到规整的周期性折射率调制,为下一步的光纤光栅的刻写提供了重要的工艺参数。
Laser technology is the greatest invention of the twentieth century, has taken a profoundimpact on the development of modern science, technology and social economy. Due to itsown set of advantages, laser glasses have been widely used in the laser technology. However,with developing of laser technology, more diverse and higher quality laser glasses should tobe developed to achieve high power, new wavelength laser output.
     This dissertation is focused on the basic study of laser glasses. The dissertation iscomposed of introduction, measurement methods and relative theory, visible fiber laserglasses, bismuth doped glass, rare-earth doped phosphate glass fiber, femtosecond directwriting waveguide and fiber gratings in rare-earth doped phosphate glass and fiber.
     Chapter1introduces the definition of laser glass and research progress of visible fiberlaser, bismuth doped material and bismuth doped fiber laser.
     Chapter2introduces the sample preparation and experiment measure methods, J-O andMcCumber theorys, non-radiative mechanisms of non-raditive transitions of rare earth ions.
     In chapter3, we systematically study the spectroscopic properties of Sm3+, Pr3+andTb3+-doepd oxide glasses. We comparatively study the spectroscopic properties of Pr3+-dopedphosphate, silicate and tellurite glasses. The emissions from Pr3+-doped boro-phosphate,boro-germo-silicate and tellurite glasses show different decay behaviors and can be wellexplained by multiphonon relaxation theory. We demonstrated that Sm3+-doped phosphateglass is more suitable as gain medium for visible fiber laser, since its absorption andstimulated emission cross sections lager than Sm3+-doped other three oxide glsses, and alarger magnitude than Sm3+-doped silica glass fiber. For green fiber laser, Tb3+-dopedphosphate is the most suitable gain medium, since no concentration quenching were observedin Tb3+-doped phosphate glass when Tb3+concentration is up to15mol%. And thefluorescence quantum efficiency of10mol%Tb3+-doped glass is up to78%.
     In chapter4, we study the dependence of NIR luminescence of a Bi-doped silica glasson the excitation wavelengths in the range of280-980nm. The emission peak of the Bi-dopedsilica glass shows a complex change between1120nm and1270nm when the excitationwavelength change from280nm to980nm. We assign NIR emissions at1120nm and1270 nm to3P1→3P0transition of Bi+and2D3/2→4S3/2transition of Bi0, respectively. Tentativeenergy level diagrams for Bi+and Bi0are proposed according to the absorption spectra andexcitation spectra of the glass sample. The proposed model can well explain the observedluminescent phenomena.
     Chapter5describes designing and fabrication methods of rare earth dopedmulti-component glass fibers. We fabricated Tb3+-doped phosphate glass fiber by usingrod-in-tube method. The optical loss at1310nm of obtained fiber is measured to be3.18dB/m. And we also designed and fabricated Tb3+, Nd3+-doped phosphate glass fibers by usingstack-and-draw method. The optical losses at1310nm are10.6dB/m and6.453dB/m,respectively. We fabricated fiber grating structures in rare earth doped phosphate glass fiberby femtosecond direct writing method. We also fabricated waveguide in rare earth dopedphosphate laser glass, and we successfully couple the single and multi mode laser into thewaveguide.
引文
[1]赵凯华,钟锡华.光学[M].北京:北京大学出版社,1984:291-302
    [2] Michel J. F. D. Rare earth doped fiber lasers and amplifiers [M]. New York: MarcelDekker,1993:17-112.
    [3] Maiman T. H. Stimulated optical radiation in ruby masers [J]. Nature.,1960,187:493-494
    [4] Ikesue A, Kinshita T, Kamata K. Fabrication and optical properties of high performancepolycrystalline Nd: YAG ceramic for solid-state lasers [J]. J. Am. Ceram. Soc.,1995,78:1033-1040
    [5] Griebner U, Koch R, Schonnagel H, et al. Laser performance of a new ytterbium dopedphosphate laser glass. OSA Proc on Advanced Solid State Lasers (San Francisco, USA),1996
    [6] Honninger C, Morier-Genoud F, Moser M, et al. Efficient and Tunable Diode-pumpedfemtosecond laser Yb: glass lasers [J]. Opt. Lett.,1998,14:189-193
    [7] Peterson O. G, Tuccio S. A, Snavely B. B. Cw operation of an organic dye solution laser[J]. Appl. Phys. Lett.,1970,17:245-247
    [8] Hide F, Dyaz-Garcia M. A, Schwartz B. J, et al. Semiconducting polymers: A new classof silid-state-laser materials [J]. Science,1996,273:1833-1836
    [9] Xu Shanghui, Li Can, Zhang Weinan, et al. Low noise single-frequencysingle-polarization ytterbium doped phosphate fiber laser at1083nm [J]. Optics Letters.,2013,38:501-503
    [10] Xu Shanghui, Yang Zhongmin, Zhang Weinan, et al.400mW ultrashort cavitylow-noise single-frequency Yb3+-doped phosphate fiber laser [J]. Optics Letters.,2011,36:3708-3710
    [11]Snizer E. Optical master action of Nd3+in a barium crown glass [J]. Phys. Rev. Lett.,1961,7:441
    [12]Weber M, J. CRC Handbook of Laser Science and Technology (Part3Laser Glass).2000,359:344-348
    [13]Campbell J. H, Suratwala T. I. Nd3+-doped phosphate glasses forhigh-energy/high-peak-power lasers [J]. J. Non-Cryst. Solids.,2000,263&264:318-341
    [14]Mehta V, Aka G, Dawar A. L, et al. Optical properties and spectroscopic parameters ofNd3+-doped phosphate and borate glasses [J]. Optical Materials,1999,12:53-63
    [15]Kumar G. A, Biju P. R, Venugopal C, et al. Spectroscopic parameters of Nd3+ions inphosphate glass [J]. J. Non-Cryst. Solids.,1997,221:47-58
    [16]Weber M. J. Oxide and Halide Laser Glasses, Wissenschaftliche Zeitschrift, DerFriedrich-Schiller-Unversitat.2ndInternational OTTO-Schott-Kolloguium,1983:246-250
    [17]郭玉玲,霍佳雨.光纤激光器及其应用[M].北京:科学出版社,2008:1-17
    [18]习聪玲,乔学光,贾振安.光纤激光器的研究及发展前景[J].光器件,2006,1:52-54
    [19]Gao Kun, Hockham G. A. Dielectric-fibre surface waveguides for optical frequencies [J].Proc. IEEE.,1966,7:1151-1158
    [20]Lange M. R, Brynt E, Myers M. J. High gain ultra-short length phosphate glassErbium-doped fiber amplifier material. OSA Optical Fiber Communications,2001,1-8
    [21]Hwang B. C, Jiang S. B, Luo T. Performance of High-Concentration Er3+-dopedPhosphate Fiber Amplifiers. IEEE Photonics Technology Letters,2001,13:197-199
    [22]Myers M. J, Meyers J. D, Wu R. K, High Gain Short Length Phosphate GlassErbium-Doped Fiber Amplifier Material. OFC2001Proceedings, WDD22-1
    [23]陈昊,李剑锋,欧中华等.中红外光纤激光器的研究进展[J].激光与光电子学进展,2011,48:60-69
    [24]叶志生,珠宝忠,高惠敏等.激光在皮肤病学应用中的最新进展[J].光电子.激光,2000,6:677-680
    [25]王介明,梁建华.急性卒中的机械溶栓[J].国外医学脑血管疾病分册,2003,5:398-400
    [26]关振中,王大珩,冯思健等.激光加工手册[M].109-132
    [27]谢兴华,刘春泰.激光加工技术在汽车工业中的应用[J].激光集锦,1997,7:1-5
    [28]Jia Shui. Na laser guid estar technology in adaptive optical image [J].Laser&Optoelectronics Progress,2002,39:10-13
    [29]李斌,崔海霞,姚建铨等.高峰值266nm紫外激光器[J].强激光与粒子束,2010,22:1991-1994
    [30]Bloembergen N. Solid State Infrared Quantum Counters [J]. Phys. Rev. Lett.1959,2:84-85
    [31]Chivian J. S, Case W. E, Eden D. D. The photon avalanche: A new phenomenon inPr3+-based infrared quantum counters [J]. Appl. Phys. Lett.,1979,35:124-126
    [32]Chryssou E, Pasquale F, Pitt C. Improved Gain Performance In Yb3+-SensitizedEr3+-Doped Alumina (Al2O3) Channel Optical Waveguide Amplifiers [J]. J. Light. Tech.2000,19:345
    [33]Soderlund M, Tammela S, Poyhonen P, et al. Amplified spontaneous emission incladding-pumped L-band erbium-doped fiber amplifiers [J]. IEEE. Photo. Tech. Lett.2001,13:22-24
    [34]Allain J. Y, Monerie M, Poignant H. Blue upconversion fluorozirconate fibre laser [J].Electron. Lett.,1990,26:166-168
    [35]Allain J. Y, Monerie M, Poignant H. Room temperature CW tunable green upconversionholmium fiber laser [J]. Electron. Lett.,1990,26:261-263
    [36]Whitle T. J, Millar C. A, Wyatt R, et al. Upconversion pumped green lasing in erbiumdoped fluorozirconate fiber [J]. Electron. Lett.,1991,27:1785-1786
    [37]Xie Ping, Gosnell T. R. Room-temperature upconversion fiber laser tunable in the red,orange, green, and blue spetral regions [J]. Opt. Lett.,1995,20:1014-1016
    [38]Sandrock T, Scheifa H, Heumann E, et al. High-power continous-wave upconversionfiber laser at temperature [J]. Opt. Lett.,1997,22:808-810
    [39]Laperle P, Vallee R, Chandonnet A. Stability aspects in the operating of a2500-ppmthulium doped ZBLAN fiber laser at481nm [J]. Opt. Comm.,2000,175:221-226
    [40]Farries M. C, Morkel P. R, Townsend J. E. Samarium-doped glass laser operating at651mn [J]. Electronic Letters,1988,24:709-710
    [41]Farries M. C, Morkel P. R, Townsend J. E. Spectroscopic and lasing characteristics ofsamarium doped glass fiber [J]. IEEE Proceedings,1990,137:318-322
    [42]Saissy A, Azami N, Jones J, et al. Properties of Sm3+ions in fluorozirconaate fiber [J].Applied Optics,1997,36:5931-5933
    [43]Allain Y, Monerie M, Poignant H. Tunable green up-conversion erbium fiber laser [J].Electron. Lett.,1992,28:111-11
    [44]Qin G, Yamash ita T, Ohishi Y. Optical amplification at0.54μm by Er3+-doped fluoridefibre [J]. Electron. Lett.,2007,43:377-379
    [45]Tatsuya Y, Ohishi Y. Amplification and lasing characteristics of Tb3+-doped fluoride fiberin the0.54μm band [J]. Jpn. J. Appl. Phys.,2007,46: L991-L993
    [46]Yamashita T, Qin Guanshi, Suzuki T, et al. A new green fiber laser using terbium dopedfluoride fiber [J]. OFC/NFOEC,2008
    [47]Mccoy S. E. Copper bromide laser treatment of facial telangiectasia: results of patientstreated over five years [J]. Lasers Surg. Med.,1997,21:329-340
    [48]Wang, D.Y., Guo, Y.Y, Sun, et al. Blue, green, yellow and red upconversion fluorescencein Tm3+/Ho3+: Cs2NaGdCl6crystals under785nm laser excitation [J]. J. Alloys andCompounds,2008,451:122–124
    [49]Dianov E. M, Shubin A.V, Melkumov M. A, et al. High-power cw bismuth-fibre lasers [J].J. Opt. Soc. Am. B,2007,24:1749–1755
    [50]Omatsu T, Lee A, Pask H.M, et al. Passively Q-switched yellow laser formed by aself-Raman composite Nd:YVO4/YVO4crystal [J]. Appl. Phys. B.,2009,97:799–804
    [51]Ota J, Shirakawa A, Ueda K. High-power Yb-doped doubleclad fibre laser directlyoperating at1178nm [J]. Jpn. J. Appl. Phys.,2006,45: L117–L119
    [52]Fallahi M, Fan L, Kaneda Y, et al.5-W yellow laser by intracavity frequency doubling ofhigh-power vertical-external-cavity surface-emitting laser [J]. IEEE Photonics Technol.Lett.,2008,20:1700–1702
    [53]Limpert J, Zellmer H, Riedel P, et al. Laser oscillation in yellow and blue spectral rangein Dy3+: ZBLAN [J]. Electron. Lett.,2000,36:1386–1387
    [54]Fujimoto Y, Ishii O, Yamazaki M. Yellow laser oscillation in Dy3+-doped waterprooffluoro-aluminate glass fibre pumped by398.8nm GaN laser diodes [J]. ElectronicLetters,2010,46:586-587
    [55]Fujimoto Y, Ishii O, Yamazaki M. Multi-colour laser oscillator in Pr3+-dopedfluoro-aluminate glass fiber pumped by442.6nm GaN-semiconductor laser [J].Electronic Letters,2009,45:1301-1302
    [56]Nakanishi J, Yamada T, Fujimoto Y, et al. High power red laser oscillation of311.4mWin Pr3+-doped water-proof fluoro-aluminate glass fiber excited by GaN laser diode [J].Electronic Letters,2010,46:1285-1286
    [57]Nakanishi J, Horiuchi Y, Yamada T, et al. High power direct green laser oscillation of598mW in Pr3+-doped waterproof fluoro-aluminate glass fiber excited bytwo-polarization-combined GaN laser diode [J]. Opt. Lett.,2011,36:1836-1838
    [58]Okamoto H, Kasuga K, Hara I, et al. Visible-NIR tunable Pr3+-doped fiber laser pumpedby a GaN laser diode [J]. Opt. Express.,2009,17:20227-20232
    [59]Fujimoto Y, Nakanishi J, Yamada T, et al. Visible fiber laser by GaN laser diodes [J].Progress in Quantum Electronics,2013,37:185-214
    [60]Snizer E, Woodcock R. Yb3+-Er3+glass laser [J]. Appl. Phys. Lett.,1965,6(3):45-46
    [61]Mears R. J, Reekie L, Poole. S. B, et al. Low-threshold, tunable cw and Q-switched fiberlaser operating at1.55μm [J]. Electron. Lett.,1986,22:159-160
    [62]Poole S. B., Payne D. N., Mears R. J., et al. Fabrication and characterization of low-lossoptical fibers containing rare-earth ions [J]. J. Lightwave. Technol.,1986,4:870-876
    [63]Mori A, Ohishi Y, Sudo S. Erbium doped tellurite glass fiber laser and amplifier [J].Electron. Lett.,1997,33:863-864
    [64]Yamjada M, Ono H, Ohishi Y. Low noise, broadband Er3+-doped silica fiber amplifiers [J].Electron. Lett.,1998,34:1490-1491
    [65]Jenog H, Oh K, Han S. R., et al. Characterization of broadband amplified spontaneousemission from an Er3+-Yb3+doped silica fiber [J]. Chem. Phys. Lett.,2003,367(3-4):507-511
    [66]Huang L. H., Jha A, Shen S, et al. Broadband emission in Er3+-Yb3+codoped telluriteglass fiber [J]. Opt. Express,2004,12:2429-2434
    [67]Seo S. Y., Shin J. H., Bae B. S., et al. Er3+-Yb3+interaction in broadband infraredluminescene silicon-rich silicon oxide [J]. Appl. Phys. Lett.,2003,82:3445-3447
    [68]Murata K., Fujimoto Y., Kanabe T., et al. Bi-doped SiO2as a new laser material for anintense laser[J]. Fusion Eng. Des.1999,44(1-4):437-439
    [69]Fujimoto Y. and Nakatsuka M. Optical amplification in bismuth-doped silica glass[J].Appl. Phys. Lett.,2003,82(19):3325-3326
    [70]Peng Mingying, Qiu Jianrong, Chen Danping, et al. Bismuth and aluminium codopedgermanium oxide glasses for super-broadband optical amplification [J]. Opt. Lett.,2004,29:1998-2000
    [71]Peng Mingying, Meng Xiangen, Qiu Jianrong, et al. GeO2: Bi, M(M=Ga, B) glass withsuper-wide infrared luminescence [J]. Chem. Phys. Lett.,2005,403:410-414
    [72]Meng Xiangen, Qiu Jianrong, Peng Mingying, et al. Infrared broadband emission ofbismuth doped barium-alluminium-borate glasses [J]. Opt. Express.,2005,13;1635-1642
    [73]Meng Xiangen, Qiu Jianrong, Peng Mingying, et al. Near infrared broadband emission ofbismuth doped aluminophosphate glass [J]. Opt. Express.,2005,13:1628-1634
    [74]Peng Mingying, Wang C, Qiu Jianrong. Bismuth activated luminescence materials forbroadband optical amplifier in WDM system, International Symposium on glass inConnection with the Annual meeting of the International Commission on Glass [C].Shanghai, China,2005, HC2-6
    [75]Dianov E. M., Dvoyrin V. V., Mashinsky V. M., et al. CW bismuth fibre laser [J].Quantum Electron.,2005,35(12):1083-1084
    [76]Razdobreev I., Bigot L., Pureur V., et al. Efficient all-fiber bismuth-doped laser [J]. Appl.Phy. Lett.,2007,90(3):031103-031103
    [77]Bufetov I. A. and Dianov E. M.. Bi-doped fiber lasers [J]. Laser Phys. Lett.,2009,6(7):487-504
    [78]Firstov S. V., Shubin A. V., Khopin V. F., et al. Bismuth-doped germanosilicate fibre laserwith20-W output power at1460nm [J]. Quantum Electron.,2011,41(7):581-583
    [79]Kivist S., Puustinen J., Guina M., et al. Pulse dynamics of a passively mode-lockedBi-doped fiber laser [J]. Opt. Express,2010,18(2):1041-1048
    [80]Aria Y., Suzuki T., Ohishi, Y. et al. Ultrabroadband near-infrared emission from acolorless bismuth-doped glass [J]. Appl. Phys. Lett.,2007,90(26):261110-261112
    [81]Truong V. G., Bigot L., Lerouge A., et al. Study of thermal stability and luminescencequenching properties of bismuth-doped silicate glasses for fiber laser applications [J].Appl. Phys. Lett.,2008,92(4):041908-041911
    [82]Fujimoto Y. Local structure of the infrared bismuth luminescent center in bismuth-dopedsilica glass [J]. J. Am. Ceram. Soc.,2010,93(2):581-589
    [83]Judd B. R.. Optical absorption intensities of rare-earth ions [J]. Phys. Rev.,1962,127(3):750-761
    [84]Ofelt G.. S.. Intensities of crystal spectra of rare-earth ions [J]. J. Chem. Phys.,1962,37(3):511-520
    [85]Weber M. J.. Radiative and multiphonon relaxation of rare earth ions in Y2O3[J]. Phys.Rev.,1968,171:261-283
    [86]Carnall W. T., Fields P. R., Wybourne B. G.. Spectral intensities of the trivalentlanthanides and actinides in solution.Ⅰ. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+[J]. J. Chem.Phys.,1965,42:3797-3906
    [87]Carnall W. T., Fields P. R., Rajnak K. Spectral intensities of the trivalent lanthanides andactinides in solution.Ⅱ. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+[J]. J. Chem.Phys.,1968,49:4412-4423
    [88]Carnall W. T., Fields P. R., Rajnak K. Electronic energy levels in the trivalent lanthanideaquo ions.Ⅰ. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+[J]. J. Chem. Phys.,1968,49:4424-4442
    [89]McCumber D. E.. Theory of Phonon-Terminated Optical Masers [J]. Phys. Rev.,1964,134(2A): A299-A306
    [90]Miniscalco W. J., Quimby R. S.. General procedure for the analysis of Er3+cross sections[J]. Opt. Lett.,1991,16:258-260
    [91]陈大钦.纳米复合结构透明玻璃陶瓷的结构调控与发光特性研究[D].福州:中国科学院福建物质结构研究所,2007
    [92] Dijk J., Schuurmans M.. On the nonradiative and radiative decay rates and a modifiedexponential energy gap law for4f–4f transitions in rare-earth ions [J]. J. Chem. Phys.,1983,78(9):5317-5323
    [93]Dexter D. L., Schulman J. H.. Theory of concentration quenching in inorganic phosphors[J]. J. Chem. Phys.,1954,22(12):1063-1070
    [94]Jiang S. B., Myers M, Peyghambarian N. Er3+-doped phosphate glasses and lasers [J].Journal of Non-Crystalline Silids,1998,239:143-148
    [95]Obaton A. F., Parent C, Flem G. L., et al. Yb3+-Er3+codoped LaCaP4O11glass: a new eyesafe laser at1535nm [J]. J. Alloy. Comp.,2000,300-301:123-130
    [96]Wang Q, Geng J. H., Luo T, et al. Mode-locked2μm laser highly thulium doped silicatefiber [J]. Opt. Lett.,2009,34:3616-3618
    [97]Geng J. H., Wang Q, Smith J, et al. All-fiber Q-switched single frequency Tm3+-dopedlaser near2μm [J]. Opt. Lett.,2009,34:3713-3715
    [98]Wang J. S., Vogel E. M., Snitzer E. Tellurite glass: a new candidate for fiber devices [J].Opt. Mater.,1994,3:187-189
    [99]Tanabe S, Feng X, Hanada T. Improved emission of Tm3+-doped glass for a1.4μmamplifier by radiative energy transfer between Tm3+and Nd3+[J]. Opt. Lett.,2000,25:817-819
    [100]Chen H. T., Lian R., Yin M., et al. Luminescence concentration quenching of1D2statein YPO4:Pr3+[J]. Journal of Physics: Condensed Mater,2001,13:1151-1158
    [101]Balda R., Fernandez J., Saez de Ocariz I., et al. Spectroscopic properties of Pr3+ions influorophosphates glass [J]. Opt. Mater.,1999,13:159-165
    [102]Balda R., Fernandez J., Saez de Ocariz I., et al. Laser spectroscopy of Pr3+ions inLiKY1-xPrxF5single crystals [J]. Phys. Rev. B.,1999,59:9972-9980
    [103]Naftaly M., Batchelor C., Jha A. Pr3+-doped fluoride glass foe a589nm fiber laser [J]. J.Luminescence.,2000,133-138
    [104]Sharma Y. K., Tandon S. P., Surana S. L. Laser action in paraseodymium doped zincchloride borophosphate glasses [J]. Materials Science and Engineering,2000, B77:167-171
    [105]干福熹.光学玻璃(中册)[M].北京:科学技术出版社.1982:405-432
    [106]Mazurak Z., Pisarski W. A., Gabrys-Pisarska J., et al. Optical properties andconcentration dependence of the luminescence of Pr3+ion in fluoroindate glass [J]. Phys.Stat. Sol.(b).,2003,237:581-591
    [107]Hegarty J., Huber D. L., Yen W. M. Fluorescence quenching by cross relaxation in LaF3:Pr3+[J]. Phys. Rev. B.,1982,25:5638-5645
    [108]Lin H., Yang D. L., Liu G. H., et al. Optical absorption and photoluminescence in Sm3+and Eu3+-doped rare-earth borate glasses [J]. Journal of Luminescence,2005,113:121-128
    [109]Bodyl S., Czaja M., Mazurak Z. Optical properties of Pr3+, Sm3+, and Er3+ions in apatite,fluorite and phosphate glasses [J]. Physics Procedia,2009,2:515-525
    [110]Huang L. H., Jha A., Shen S. X. Spectroscopic properties of Sm3+-doped oxide andfluoride glasses for efficient visible lasers(560-660nm)[J]. Optical Communication,2008,281:4370-4373
    [111]Muthupari S., Rao K. J. Thermal and infrared spectroscopic studies of binary MO3-P2O5and ternary Na2O-MO3-P2O5(M=Mo or W) glasses [J]. J. Phys. Chem. Soids.,1996,57:553-561
    [112]Righini G., Ferrari M. Photoluminescence of rare-earth-doped glasses [J]. La Rivista delNuovo Cimento.,2005,28:1-18
    [113]de Mello J., Wittmann H., Friend R. An Improved Experimental Determination ofExternal Photoluminescence Quantum Efficiency [J]. Adv. Mater.,1997,9:230-231
    [114]Liu W., Chiu Y., Tung C., Jang S., Chen T. A Study on the Luminescence Properties ofCaAlBO4:RE3+(RE=Ce, Tb, and Eu) Phosphors [J]. J. Electrochem. Soc.,2008, J252:155-157
    [115]Sontakke A. D., Biswas K., Annapurna K. Concentration-dependent luminescence ofTb3+ions in high calcium aluminosilicate glasses [J]. Journal of Luminescence,2009,129:1347-1355
    [116]Petkov V., Billing S. J. L., Shastri D. S., Himmel B. Phys. Rev. Lett.,2000,85:3436
    [117]Huang W. C., Jain H., Meitzner G. The structure of potassium germinate glasses byEXAFS [J]. Journal of Non-Crystalline Solids,1996,196:155-161
    [118]Ebendorff-Heidepriem H., Ehrt D. Spectroscopic properties of Eu3+and Tb3+ions forlocal structure investigations of fluoride phosphate and phosphate glasses [J]. Journal ofNon-Crystalline Solids,1996,208:203-216
    [119]Joseph K., Premila M., Amarendra G., et al. Structure of cesium loaded iron phosphateglasses: An infrared and Raman spectroscopy study [J]. Journal of Nuclear Materials,2012,420:49-53
    [120]Fang X., Ray C. S., Mogus-Milankovic A., Day D. E. Iron redox equilibrium, structureand properties of iron phosphate glasses [J]. Journal of Non-Crystalline Solids,2001,283:162-172
    [121]Peng M. Y., Qiu J. R., Chen D. P., et al, Bismuth-and aluminum-codoped germaniumoxide glasses for super-broadband optical amplification. Opt. Lett.,2004,29(17):1998-2000
    [122]Fujimoto Y. and Nakatsuka M.. Optical amplification in bismuth-doped silica glass[J].Appl. Phys. Lett.,2003,82(19):3325-3326
    [123]Fujimoto Y., Matsubara H., Nakatsuka M.. Infrared luminescence from bismuth-dopedsilica glass [J]. Jpn. J. App. Phys.2001,40(3B):279-281
    [124]Fujimoto Y.. Local structure of the infrared bismuth luminescent center inbismuth-doped silica glass [J]. J. Am. Ceram. Soc.,2010,93(2):581-589
    [125]Peng M. Y., Zollfrank C. and Wondraczek L. Origin of broad NIR photoluminescence inbismuthate glass and Bi-doped glasses at room temperature [J]. J. Phys.: Condens.Matter.,2009,21(28):285106
    [126]Peng M. Y., Qiu J. R., Chen D. P., et al. Superbroadband1310nm emission frombismuth and tantalum codoped germanium oxide glasses [J]. Opt. Lett.,2005,30(18):2433-2435
    [127]Ren J. J., Yang L. Y., Qiu J. R., et al. Effect of various alkaline-earth metal oxides on thebroadband infrared luminescence from bismuth-doped silicate glasses [J]. Solid StateCommun.,2006,140(1):38-41
    [128]Khonthon S., Morimoto S., Arai Y., et al. Luminescence Characteristics of Te-andBi-Doped Glasses and Glass-Ceramics [J]. J. Ceram. Soc. Jpn.,2007,115(1340):259-263
    [129]Sokolov V. O., Plotnichenko V. G., and Dianov E. M.. Origin of broadband near-infraredluminescence in bismuth-doped glasses [J]. Opt. Lett.,2008,33(13):1488-1490
    [130]Fujimoto Y. and Matsubara H..27Al NMR structural study on aluminum coordinationstate in bismuth doped silica glass [J]. J. Non-Cryst Solid.2006,352(21-22):2254-2258
    [131]Ren J. J., Qiu J. R., Chen D. P., et al. Luminescence properties of bismuth-doped limesilicate glasses [J]. J. Alloy. Compd.,2008,463(1-2):5-8
    [132]Peng M. Y., Wu B. T., Da N., et al. Bismuth-activated luminescent materials forbroadband optical amplifier in WDM system [J]. J. Alloy. Compd.,2008,354(12-13):1221-1225
    [133]Ren J. J., Qiu J. R., Chen D. P., et al. Infrared luminescence properties of bismuth-dopedbarium silicate glasses[J]. J. Mater. Res.,2007,22(7):1954-1958
    [134]Zhou S. F., Feng G. F., Bao J. X., et al. Broadband near-infrared emission from Bi-dopedaluminosilicate glasses [J]. J. Mater. Res.,2007,22(6):1435-1435
    [135]Peng M. Y., Sprenger B.,Schmidt M. A., et al. Broadband NIR photoluminescence fromBi-doped Ba2P2O7crystals: Insights into the nature of NIR-emitting Bismuth centers[J].Opt. Express,2010,18(12):12852-12863
    [136]Peng M. Y., Zhao Q., Qiu J. R., et al. Generation of emission centers for broadband NIRluminescence in bismuthate glass by femtosecond laser irradiation [J]. J. Am. Ceram.Soc.,2009,92(2):542-544
    [137]Razdobreev I., Hamzaoui H. E., Ivanov V. Yu., et al. Optical spectroscopy ofbismuth-doped pure silica fiber preform [J]. Opt. Lett.,2010,35(9):1341-1343
    [138]Moore C. E., Atomic energy levels as derived from the analyses of optical spectra [M].Washington: U.S. National Bureau of Standards,1971:219-226
    [139]干福熹.现代玻璃科学技术(下册)[M].上海:上海科学技术出版社.1990:190-223
    [140]辛文.美国已制成点火装置(NIF)所需的特制大型激光玻璃[J].国外核技术.2000,4:32
    [141]姜中宏,刘粤惠,戴世勋.新型光功能玻璃[M].北京:化学工业出版社,2008:117-129
    [142]张光,李科峰,胡丽丽等.磷酸盐双芯光纤的制作和自锁相激光输出[J].中国激光,2012,39:0102002-1-4
    [143]张光,周秦岭,胡丽丽等.堆积法制作大芯径磷酸盐光子晶体光纤[J].中国激光,2011,38:0106003-1-4
    [144]Sudo. S.. Optical fiber amplifiers: materials, devices, and applications. Artch House Inc.,1997
    [145]张军杰.掺稀土氟锆酸盐玻璃光谱和磷酸盐激光光纤的研究[D].上海:中国科学院上海光学精密机械研究所,2000
    [146]张伟刚.光纤光学原理及应用[M].北京:清华大学出版社.2012:10
    [147]杨旅云.微结构光纤及飞秒激光诱导玻璃纤维微结构的基础研究[D].上海:中国科学院上海光学精密机械研究所,2006:65
    [148]Yamashita T., Ohishi Y.. Concentration and temperature effects on the spectroscopicproperties of Tb3+doped borosilicate glasses [J]. J. Appl. Phys.,2007,102(12):123107
    [149]Hill K. O., Fujii Y., Johnson D. C., et al. Appl. Phys. Lett.,1978,32:647-
    [150]Osterberg O., Margulis W. Opt. Lett.,1986,11:516-
    [151]Rischel C., Rousse A., Vschmann I., et al. Nature.,1997,390:490-
    [152]Qiu J. R. External electronmagnetic field induced electronic structures and novel opticalfunctions of rare-earth-ion-doped glasses [J]. Journal of the Ceramic Society of Japan,2001,109: S25-S31
    [153]Schaffer C. B., et al. Micromachining bulk glass by use of femtosecond laser pulses withnanojoule energy [J]. Opt. Lett.,2001,26:93-95
    [154]Bloemberg N. Journal of Nonlinear Optical Physics and Materials [M].1997,6:377-400
    [155]Kurkov A. S., Karpov V. I., Laptev A. Y., et al. Highly efficient cladding-pumped fiberlaser based on an ytterbium doped optical fiber and a fiber bragg grating [J]. QuantumElectronics,1999,29:516-517
    [156]Kurkov A. S., Grukh. D. A., Medurdkovol, et al. Multimode fiber lasers based on Bragggratings and double clad Yb-doped fibers [J]. Laser. Phys. Lett.,2004,1:473-475
    [157]Shu X. W., Zhang L., Bennion I. Fabrication and Characteristion of ultra-long-periodfiber gratings [J]. Optics Communications,2002,203:277-281
    [158]Zhu T., Rao Y., Wang J. L. Charavteristics of Novel Ultra-long-period Fiber GratingsFabricated by High-frequency CO2Laser Pulses [J]. Optics Communications,2007,277:84-88
    [159]Kondo Y., Nouchi K., Mitsuyu T. Fabrication of Long-period Fiber gratings by FocusIrradiation of Infrared Fentosecond Laser Pulses [J]. Opt. Lett.,1999,24:646-648
    [160]Martinez A., Dubov M., Khrushchev I., et al. Direct writing of fiber bragg gratings byfemtosecond laser [J]. Electron. Lett.,2004,40:1170-1171
    [161]Martinez A., Khrushchev I., Bennion I.. Thermal properties of fiber bragg gratingsinscribed point-by-point by infrared femtosecond laser [J]. Electron. Lett.,2005,41:176-177
    [162]潘玉寨,张军,胡贵军等.利用光纤光栅的高功率掺镱光纤激光器[J].光纤学报,2004,25:55-55
    [163]Geernarert T., Kalli K., et al. Point-by-Point fiber grating inscription in free-standingstep-index and photonic crystal fibers using near-infrared femtosecond laser [J]. Opt.Lett.,2010,35:1647-1649
    [164]Grobnic D, Stephen J, Mihailov J, et al.1.5cm long single mode fiber laser made byfemtosecond exposure of heavily doped erbium-ytterbium fiber [J]. Prc. Of SPIE.,2007,6796:679614-1-6
    [165]Martinez A, Khrushchev I, Bennion I. Direct inscription of bragg gratings in coatedfibers by an infrared femtosecond laser [J]. Opt. Lett.,2003,31:1603-1605
    [166]Kanehira S, Si J, Qiu J. R., et al. Period nanovoid structures vis femtosecond laserirradiation [J]. Nano. Lett.,2005,5:1591
    [167]Qiu J. R., Miura K, Hirao K. Femtosecond laser induced microstructures in glasses andtheir applications [J]. J. Non-Crystal. Solids.,2008,354:1100-1111
    [168]Miura K, Qiu J. R., Inouye H., et al. Photowritten optical waveguides in various glasseswith ultrashort pulse laser [J]. App. Phys. Lett.,1997,71:3329-3331
    [169]Homoelle D, Wielandy S, Gaeta A. L. Infrared photosensitivityin silica glasses exposedto femtosecond laser pulses [J]. Opt. Lett.,1999,24:1311-1313
    [170]Yamada K, Watanabe W, Toma T, et al. In situ observation of photoinducedrefractive-index changes in filaments formed in glasses by femtosecond laser pulses [J].Opt. Lett.,2001,26:19-21
    [171]Schaffer C. B., Brodeur A, Garcia J. F., et al. Micromachining bulk glass by use offemtosecond laser pulses with nanojoule energy [J]. Opt. Lett.,2001,26:93-95
    [172]Strelstov A. M., Borrelli N. F. Fabrication and analysis of a directional coupler written inglass by nanojoule femtosecond laser pulses [J]. Opt. Lett.,2001,26:41-42
    [173]Marshall G D, Jesacher A, Thayil A, et al. Three-dimensional imaging of direct-writtenphotonic structures [J]. Opt.Lett.2011,36:695-697
    [174]Valles J A, Rebolledo M A, Berdejo V, et al. Study of an optimized bidirectional pumpscheme for fs-laser written Yb/Er-codoped integrated waveguides[J]. Opt. Mater.,2010,33:231-235
    [175]Allsop T, Dubov M, Mezentsev V, et al. Inscription and characterization of waveguideswritten into borosilicate glass by a high-repetition-rate femtosecond laser at800nm [J].Appl. Opt.,2010,49:1938-1950
    [176]Della Valle G, Osellame R, Chiodo N, et al. C-band waveguide amplifier produced byfemtosecond laser writing [J]. Optics Express.,2005,13(16):5976-5982
    [177]Della Valle G, Tacheo S, Osellame R, et al.1.5μm single longitudinal mode waveguidelaser fabricated by femtoscond laser writing [J]. Optics Express.,2006,15:3190-3194
    [178]Psaila N. D., Thomson R. R. Bookey H. T, et al. Er: Yb-Doped Oxyfluoride SilicateGlass Waveguide Laser Fabricated Using Ultrafast Laser Inscription [J]. IEEE PhotonicTech. Lett.,2008,20:126-127
    [179]Ams M, Dekker P, Marshall G. D., et al. Monolithic100mW Yb waveguide laserfabricated using the femtosecond-laser direct-write technique [J]. Opt. Lett.,2009,34:247-249
    [180]Yao Y. C, Tan Y, Dong N. N., et al. Continuous wave Nd:YAG channel waveguide laserproduced by focused proton beam writing [J]. Opt. Express.,2010,18:24516-245201
    [181]Lancaster D. G., Gross S., Ebendorff-Heidepriem H.,et al. Fifty percent internal slopeefficiency femtosecond direct-written Tm3:ZBLAN waveguide laser [J]. Opt. Lett.,2011,36:1587-1589

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700