一个新的Arf6特异性GTP酶激活蛋白ACAP4的发现与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Identification and Functional Characterization of a Novel Arf6-specific GTPase Activating Protein-ACAP4
  • 作者:方志友
  • 论文级别:博士
  • 学科专业名称:细胞生物学
  • 学位年度:2006
  • 导师:姚雪彪
  • 学科代码:071009
  • 学位授予单位:中国科学技术大学
  • 论文提交日期:2006-04-01
摘要
ADP核糖基化因子(Arfs)是真核细胞中广泛表达的且是高度保守的GTP结合蛋白家族,是Ras超家族成员之一。从生化特性和序列的相似性上,Arfs蛋白分为Arf蛋白和Arf相似蛋白。Arf蛋白可再被划分为三类,第一类包括Arf1,Arf2和Arf3;第二类包括Arf4和Arf5;第三类只有Arf6。与其它的GTP结合蛋白一样,Arfs蛋白在功能上是一个分子开关,在GTP结合状态和GDP结合状态之间循环,它与许多不同的靶蛋白结合影响一系列细胞事件。Arf6是唯一在细胞质膜上发挥功能的Arf蛋白,GTP结合的Arf6调节内吞膜的运输,同时调节在细胞外周的细胞骨架变化。对Arf6的功能来说,关键性因素是GTP结合状态的时期,细胞内Arf6与GTP结合或与GDP结合是分别由鸟苷交换因子和GTP酶激活蛋白(GAPs)协调来实现的。GAPs是Arf功能关键性调节子,控制Arf回到失活的GDP结合状态。据报道Atf6的周期性变化是调节乳腺癌细胞侵袭的必需条件,然而,Arf6介导的细胞迁移的分子机制了解依然很少。
     为了系统地分析在细胞迁移过程中,参与调节Arf6活性的蛋白,利用功能蛋白质组学的方法,通过质谱鉴定筛选特异地与激活态的Arf6结合的蛋白。我们鉴定了一个Arf蛋白新的GTP酶激活蛋白,根据它包含的保守的结构特征,命名为ACAP4。和以前描述的Arf激活蛋白ASAP1,PAP/PAG3及ACAP1/2一样,ACAP4被划入AZAP蛋白家族,它们拥有许多共同的结构基序,包括两个coiled-coil结构,一个PH结构,一个GAP结构以及两个ANK重复结构。
     我们生化结果证明ACAP4有磷酸肌醇依赖的GAP活性,ACAP4是一个Arf6特异的GTP酶激活蛋白。体外活性检测结果显示Arf6是ACAP4的偏好底物,而不是Arf1和Arf5蛋白。在HeLa细胞中,过表达ACAP4能抑制AlF_4诱导的Arf6依赖的膜突起的形成。另外,ACAP4被募集到细胞外周,管状的膜结构上,Arf6的激活引起内吞膜重新回到细胞质膜。在非EGF的刺激下,ACAP4的过表达抑制Arf6被募集到膜皱褶处,但是在EGF的刺激下,ACAP4与Arf6共定位于actin丰富的膜皱褶上。ACAP4和
The ADP-ribosylation factors (Arfs) belong to the Ras superfamily members and are a family of ubiquitous and highly conserved GTP-binding proteins in eukaryotes. Based on biochemical activities and sequence similarity, proteins within the Arf family can be divided into Arf and Arf-like proteins. The Arf proteins have been further subdivided into class I (Arf1, Arf2, and Arf3), class II (Arf4 and Arf5), and class III (Arf6) Arfs. Similar to other GTP binding proteins, Arfs function as molecular switches, cycling between GTP-bound state and GDP-bound state, with multiple targets affecting a variety of cellular events. Arf6 is the sole Arf protein function on plasma membrane, the GTP-binding protein Arf6 regulates endosomal membrane trafficking and the actin cytoskeleton in the cell periphery. A key determinant of Arf6 function is the lifetime of the GTP-bound active state, which is orchestrated by GTP-GDP exchanging factors and GTPase-activating proteins. GTPase-activating proteins(GAPs) are critical regulators of Arf function, controlling the return of Arf to the inactive GDP-bound state. It has reported that Arf6 is essential to regulate breast cancer cell invasion dependent on Arf6 GTPase cycle. However, very little is known about the molecular mechanisms underlying Arf6-mediated cell migration.
    To systematically analyze proteins that regulate Arf6 activity during cell migration, we perform a proteomic analysis of proteins selectively interacted with active Arf6 using mass Spectrometry. Here, we report the identification and characterization of a novel Arf GAPs. We named it as ACAP4 according to its conservedly structual characterization. Together with previously described Arf GAPs, ASAP1, PAP/PAG3 and ACAP1/2, ACAP4 can be grouped into AZAP protein family defined by several common structural motifs including two coiled coils, one PH domain, one GAP motif, and two ankyrin repeats.
    Our biochemical characterization demonstrates that ACAP4 has a phosphoinositide dependent GAP activity, ACAP4 functioned as Arf6 GAPs. In vitro, ACAP4 preferred Arf6 as a substrate, rather than Arf1 and Arf5. In HeLa cells, overexpression of ACAP4
引文
Al-Awar O,et al. Separation of Membrane Trafficking and Actin Remodeling Functions of ARF6 with an Effector Domain Mutant. Mol.Cell.Biol. 2000,20:5998-6007.
    Albertinazzi C, Lorena Z, Paris S, and Ivan de Curtis. ADP-Ribosylation Factor 6 and a Functional PIX/p95-APP1 Complex Are Required for Rac1 B-mediated Neurite Outgrowth. Mol. Biol. Cel., 2003, 14: 1295.
    Altschuler Y, et al. ADP-ribosylation Factor 6 and Endocytosis at the Apical Surface of Madin-Darby Canine Kidney Cells. J. Cell Biol. 1999,147:7.
    Andreev J, et al. Identification of a New Pyk2 Target Protein with Arf-GAP Activity. Mol.Cell.Biol, 1999, 19: 2338-2350.
    Anne-Sophie C, et al. Regulated Exocytosis in Chromaffin Cells. Translocation of Arf6 stimulates a plasma memebrane-associated phopholipase D. J. Biol. Chem. 1998, 273: 1373.
    Aoe T, et al. The KDEL receptor, ERD2, regulates intracellular traffic by recruiting a GTPase-activating protein for ARF1. EMBO J. 1997, 16(24): 7305-16.
    Aoe T, et al. The KDEL Receptor Regulates a GTPase-activating Protein for ADP-ribosylation Factor Ⅰ by Interacting with Its Non-catalytic Domain. J. Biol. Chem. 1999, 274: 20545.
    Amaoutova I, et al. Recycling of Raft-associated Prohormone Sorting Receptor Carboxypeptidase E Requires Interaction with ARF6. Mol. Biol. Cel., 2003, 14: 4448
    Austin C, Boehm M, and Tooze SA. Site-specific cross-linking reveals a differential direct interaction of class 1, 2, and 3 ADP-ribosylation factors with adaptor protein complexes 1 and 3. Biochemistry, 2002, 41(14): 4669-77.
    Bagrodia S, et al. A Tyrosine-phosphorylated Protein That Binds to an Important Regulatory Region on the Cool Family of p21-activated Kinase-binding Proteins. J. Biol.Chem. 1999, 274:22393.
    Bean AJ. et al. Hrs-2 regulates receptor-mediated endocytosis via interactions with Eps15. J. Biol. Chem. 2000,275,15271-15278.
    Benmerah A, Bayrou M, Cerf-Bensussan N, & Dautry-Varsat A. Inhibition of clathrin-coated pit assembly by an Eps15 mutant. J. Cell Sci. 1999,112, 1303-1311.
    Bishop AL, and Hall A. Rho GTPases and their effector proteins. Biochem J, 2000, 348,2:241-55.
    Blagoveshchenskaya AD, et al. HIV-1 Nef downregulates MHC-I by a PACS-1-and PI3K-regulated ARF6 endocytic pathway. Cell, 2002, 111(6): 853-66.
    Bogerd HP, Fridell RA, Madore S, and Cullen BR. Identification of a novel cellular cofactor for the Rev/Rex class ofretroviral regulatory proteins. Cell, 1995, 82(3): 485-94.
    Bose A, et al. Gall Signaling through ARF6 Regulates F-Actin Mobilization and GLUT4 Glucose Transporter Translocation to the Plasma Membrane. Mol. Cell. Biol.,2001, 21: 5262-5275.
    Boshans RL, et al. ADP-Ribosylation Factor 6 Regulates Actin Cytoskeleton Remodeling in Coordination with Racl and RhoA. Mol. Cell. Biol, 2000,20: 3685-3694.
    Brown FD, et al. Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic. J. Cell Biol., 2001,154: 1007.
    Brown MC, West KA, and Turner CE. Paxillin-dependent Paxillin Kinase Linker and p21-Activated Kinase Localization to Focal Adhesions Involves a Multistep Activation Pathway. Mol. Biol. Cell, 2002, 13: 1550.
    Brown MT, et al. ASAPl, a Phospholipid-Dependent Arf GTPase-Activating Protein That Associates with and Is Phosphorylated by Src. Mol. Cell. Biol., 1998, 18: 7038-7051
    Caplan S, et al. A tubular EHD1-containing compartment involved in the recycling of major histocompatibility complex class I molecules to the plasma membrane. EMBO J., 2002, 21(11): 2557-67.
    Carbone R. et al. epsl5 and epsl5R are essential components of the endocytic pathway. Cancer Res. 1997,57,5498-5504.
    Cardelli J. Phagocytosis and macropinocytosis in Dictyostelium: phosphoinositidebased processes, biochemically distinct. Traffic 2001,2:311-20
    Carthew RW. and Xu C. Endocytosis: why not wait to deubiquitinate? Curr. Biol.2000, 10, R532-4.
    Cavenagh MM, et al. Additions and Corrections to Intracellular distribution of Arf proteins in mammalian cells. Arf6 is uniquely localized to the plasma membrane. J.Biol.Chem., 1996,271: 31008.
    Chen H. et al. Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 1998,394,793-797.
    Chen YT,Stewart DB.,and Nelson WJ. Coupling assembly of the E-cadherin/catenin complex to efficient endoplasmic reticulum exit and basal-lateral membrane targeting of E-cadherin in polarized MDCK cells. J.Cell Biol. 1999,144,687-699
    Christopher ET, et al. Paxillin LD4 Motif Binds PAK and PIX through a Novel 95-kD Ankyrin Repeat, ARF-GAP Protein: A Role in Cytoskeletal Remodeling. J. Cell Biol., 1999, 145: 851.
    Claing A, et al. β-Arrestin-mediated ADP-ribosylation Factor 6 Activation and β2-Adrenergic Receptor Endocytosis. J. Biol. Chem., 2001,276: 42509 - 42513.
    Cohen CJ, Bacon R, Clarke M, Joiner K, Mellman I. Dictyostelium discoideum mutants with conditional defects in phagocytosis. J. Cell Biol. 1994,126:955-66
    Cukierman E, Huber I, Rotman M, and Cassel D. The ARF1 GTPase-Activating Protein: Zinc Finger Motif and Golgi Complex Localization . Science, 1995,270: 1999.
    Czech MP. Dynamics of phosphoinositides in membrane retrieval and insertion. Annu Rev Physio.l, 2003, 65: 791-815
    Dana RR, et al. A Regulatory Role for ADP-ribosylation Factor 6 (ARF6) in Activation of the Phagocyte NADPH Oxidase. J. Biol. Chem., 2000, 275: 32566
    De Heuvel E. et al. Identification of the major synaptojaninbinding proteins in brain. J. Biol. Chem. 1997,272, 8710-8716.
    Delaney KA, Murph MM, Brown LM, and Radhakrishna Harish. Transfer of M2 Muscarinic Acetylcholine Receptors to Clathrin-derived Early Endosomes following Clathrin-independent Endocytosis. J. Biol. Chem., 2002, 277: 33439-33446.
    Desjardins M, Huber LA, Parton RG, Griffiths G. Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J. Cell Biol. 1994,124:677-88
    Dharmawardhane S, Schurmann A, Sells MA, Chernoff J, Schmid SL, Bokoch GM. Regulation of macropinocytosis by p21-activated kinase-1. Mol. Biol. Cell,2000,11:3341-52
    Di Cesare A, et al. p95-APP1 links membrane transport to Rac-mediated reorganization of actin. Nat Cell Biol, 2000, 2(8): 521-30.
    Donaldson JG and Jackson CL. Regulators and effectors of the ARF GTPases. Curr Opin Cell Biol. 2000, 12(4): 475-82.
    Donaldson JG, Cassel D, Kahn RA, and Klausner RD. ADP-Ribosylation Factor, a Small GTP-Binding Protein, is Required for Binding of the Coatomer Protein? COP to Golgi Membranes. PNAS, 1992, 89: 6408.
    Drake MT, Downs MA, and Traub LM. Epsin binds to clathrin by associating directly with the clathrinterminal domain. Evidence for cooperative binding through two discrete sites. J. Biol. Chem. 2000,275,6479-6489.
    D'Souza-Schorey C, et al. A role for POR1, a Racl-interacting protein, in ARF6-mediated cytoskeletal rearrangements. EMBO J., 1997, 16(17): 5445-54.
    D'Souza-Schorey C, et al. ARF6 Targets Recycling Vesicles to the Plasma Membrane: Insights from an Ultrastructural Investigation. J. Cell Biol., 1998, 140: 603.
    Etienne-Manneville S and Hall A. Rho GTPases in cell biology. Nature, 2002, 420(6916): 629-35
    Eugster A, Frigerio G, Dale M, and Duden R. COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP. EMBO J., 2000, 19(15): 3905-17.
    Ford MG, et al. Simultaneous binding of Ptdlns(4,5)P 2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science,2001,291,1051-1055
    Frame MC, Fincham VJ, Carragher NO, and Wyke JA. v-Src's hold over actin and cell adhesions. Nat Rev Mol Cell Biol., 2002, 3(4): 233-45.
    Franco M, et al. EFA6, a sec7 domain-containing exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization. EMBO J., 1999, 18(6): 1480-91.
    Fritz CC, Zapp ML, and Green MR. A human nucleoporin-like protein that specifically interacts with HIV Rev. Nature, 1995, 376(6540): 530-3.
    Furman C, et al. DEF-1/ASAP1 Is a GTPase-activating Protein (GAP) for ARF1 That Enhances Cell Motility through a GAP-dependent Mechanism. J. Biol. Chem., 2002, 277: 7962-7969.
    Gad H. et al. Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin. Neuron,2000, 27, 301-312.
    Garrett WS, Chen LM, Kroschewski R, Ebersold M, Turley S, et al. Developmental control of endocytosis in dendritic cells by Cdc42. Cell, 2000,102:325-34
    Gaschet Joelle and Victor W. Hsu. Distribution of ARF6 between Membrane and Cytosol Is Regulated by Its GTPase Cycle. J. Biol. Chem., 1999,274: 20040.
    Ge MT, et al. ADP Ribosylation Factor 6 Binding to Phosphatidylinositol 4,5-Bisphosphate- Containing Vesicles Creates Defects in the Bilayer Structure: An Electron Spin Resonance Study. Biophys. J., 2001, 81: 994.
    Gilles RX, et al. Arfophilins Are Dual Arf/Rab 11 Binding Proteins That Regulate Recycling Endosome Distribution and Are Related to Drosophila Nuclear Fallout. Mol. Biol. Cell, 2003, 14: 2908.
    Greenberg S, Burridge K, Silverstein SC. Co-localization of F-actin and talin during Fc receptor-mediated phagocytosis in mouse macrophages. J. Exp. Med, 1990,172:1853-56
    Greenberg S, Chang P, Silverstein SC. Tyrosine phosphorylation is required for Fc receptor- mediated phagocytosis in mouse macrophages. J. Exp. Med, 1993,177:529-34
    Greenberg S, Chang P, Silverstein SC. Tyrosine phosphorylation of the gamma subunit of Fc gamma receptors, p72syk, and paxillin during Fc receptor-mediated phagocytosis in macrophages. J. Biol. Chem., 1994,269:3897-902
    Greenberg S, Chang P, Wang DC, Xavier R,Seed B. Clustered syk tyrosine kinase domains trigger phagocytosis. Proc. Natl. Acad. Sci. USA 1996,93:1103-7
    Greenberg S. 1995. Signal transduction of phagocytosis. Trends Cell Biol. 5:93-99
    Guo S, Stolz LE, Lemrow SM. & York JD. SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases.J. Biol. Chem. 1999,274, 12990-12995.
    Haffner C. et al. Synaptojanin 1: localization on coated endocytic intermediates in nerve terminals and interaction of its 170 kDa isoform with Eps15. FEBS Lett. 1997,419,175-180 .
    Hammonds-Odie LP,et al. Theibert. Identification and Cloning of Centaurin-a. A NOVEL PHOSPHATIDYLINOSITOL 3,4,5-TRISPHOSPHATE-BINDING PROTEIN FROM RAT BRAIN. J. Biol. Chem., 1996, 271: 18859,
    Hao W, Luo Z, Zheng L, Prasad K. and Lafer EM. API80 and AP-2 interact directly in a complex that cooperatively assembles clathrin. J. Biol. Chem. 1999,274,22785-22794
    Hernandez-Deviez DJ, Casanova JE, and Wilson JM. Regulation of dendritic development by the ARF exchange factor ARNO. Nat Neurosci, 2002, 5(7): 623-4.
    Heuser JE. and Keen J. Deep-etch visualization of proteins involved in clathrin assembly. J. Cell Biol. 1988,107, 877-886
    Honda A, et al. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell, 1999, 99(5): 521-32.
    Huang CF, et al. Role for Arf3p in Development of Polarity, but Not Endocytosis, in Saccharomyces cerevisiae. Mol. Biol. Cell, 2003, 14: 3834.
    Huber I, et al. Requirement for both the Amino-terminal Catalytic Domain and a Noncatalytic Domain for in Vivo Activity of ADP-ribosylation Factor GTPase-activating Protein. J. Biol. Chem., 1998, 273: 24786.
    Hunter S, Kamoun M, Schreiber AD. Transfection of an Fe gamma receptor eDNA induces T cells to become phagocytic. Proc. Natl. Acad. Sci. USA 1994,91: 10232-36
    Hunzicker-Dunn M, Gurevich VV, Casanova JE, and Mukherjee S. ARF6: a newly appreciated player in G protein-coupled receptor desensitization. FEBS Lett, 2002, 521(1-3): 3-8.
    Hussain NK. et al. Splice variants of intersectin are components of the endocytic machinery in neurons and nonneuronal cells. J. Biol. Chem. 1999, 274, 15671-15677.
    Insall R, et al. Dynamics of the Dictyostelium Arp2/3 complex in endocytosis,cytokinesis, and chemotaxis. Cell Motil. Cytoskelet. 2001, 50: 115-28
    Isberg RR, Tran Van Nhien G. Binding and internalization of microorganisms by integrin receptors. Trends Microbiol. 1994,2: 10-14
    Jackson CL and Casanova JE. Turning on ARF: the See7 family of guanine-nucleotide-exchange factors. Trends Cell Biol, 2000, 10(2): 60-7.
    Jackson TR, et al. ACAPs Are Arf6 GTPase-activating Proteins That Function in the Cell Periphery. J. Cell Biol., 2000, 151: 627.
    Jackson TR, Kearns BG, and Theibert AB. Cytohesins and centaurins: mediators of PI 3-kinase-regulated Arf signaling. Trends Biochem Sci, 2000, 25(10): 489-95.
    Joiner KA, Fuhrman SA, Miettinen H, Kaspar LL, Mellman I. Toxoplasma gondii: fusion competence of parasitophorous vacuoles in Fc receptor-transfected fibroblasts. Science 1990,249:641-46
    Kaksonen M, Peng HB, Rauvala H. Association of cortactin with dynamic actin in lamellipodia and on endosomal vesicles. J. Cell Sci. 2000,113:4421-26
    Kaverina I, Krylyshkina O, and Small JV. Regulation of substrate adhesion dynamics during cell motility. Int J Biochem Cell Biol, 2002, 34(7): 746-61.
    Kerry MJ, et al. Arf1 Dissociates from the Clathrin Adaptor GGA Prior to Being Inactivated by Arf GTPase-activating Proteins. J. Biol. Chem., 2002, 277: 47235-241.
    Kielian MC, Conn ZA. Phagosomelysosome fusion: characterization of intracellular membrane fusion in mouse macrophages. J. Cell. Biol. 1980,85:754-65
    King FJ, et al. DEF-1, a Novel Src SH3 Binding Protein That Promotes Adipogenesis in Fibroblastic Cell Lines. Mol. Cell. Biol, 1999, 19: 2330 - 2337.
    Kip AW, et al. The LD4 motif of paxillin regulates cell spreading and motility through an interaction with paxillin kinase linker (PKL). J. Cell Biol, 2001, 154: 161.
    Koenig JH. and Ikeda K. Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J. Neurosci. 1989,9, 3844-3860.
    Kondo A, et al. A New Paxillin-binding Protein, PAG3/Papα/KIAA0400, Bearing an ADP- Ribosylation Factor GTPase-activating Protein Activity, Is Involved in Paxillin Recruitment to Focal Adhesions and Cell Migration. Mol. Biol. Cell, 2000, 11: 1315.
    Krauss M, et al. ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Iγ. J. Cell Biol, 2003, 162: 113.
    Krugmann S, et al. Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol Cell, 2002, 9(1): 95-108.
    Le TL, Yap AS, and Stow JL. Recycling of E-cadherin: a potential mechanism for regulating cadherin dynamics. J. Cell Biol. 1999,146, 219-232
    Lee E, De Camilli P. Dynamin at actin tails. Proc. Natl. Acad. Sci. USA,2002, 99:161-66
    Liu X, Zhang C, Xing G, Chen Q, and He F. Functional characterization of novel human ARFGAP3. FEBS Lett, 2001,490(1-2): 79-83.
    Liu YH, et al. The Association of ASAP1, an ADP Ribosylation Factor-GTPase Activating Protein, with Focal Adhesion Kinase Contributes to the Process of Focal Adhesion Assembly. Mol. Biol. Cell, 2002, 13: 2147.
    Majoul I, Straub M, Hell SW, Duden R, and Soling HD. KDEL-cargo regulates interactions between proteins involved in COPI vesicle traffic: measurements in living cells using FRET. Dev Cell, 2001, 1(1): 139-53.
    Makler V, et al. ADP-ribosylation Factor-directed GTPase-activating Protein. J. Biol. Chem., 1995, 270: 5232.
    Manabe Ri-ichiroh,et al. GIT1 functions in a motile, multi-molecular signaling complex that regulates protrusive activity and cell migration. J Cell Sci., 2002, 115: 1497.
    Mandiyan V, Andreev J, Schlessinger J, and Hubbard SR. Crystal structure of the ARF-GAP domain and ankyrin repeats of PYK2-associated protein beta. EMBO J, 1999, 18(24): 6890-8.
    Maniak M. Conserved features of endocytosis in Dictyostelium. Int. Rev. Cytol. 2002,221:257-87.
    Mao Y. et al. Crystal structure of the VHS and FYVE tandem domains of Hrs, a protein involved in membrane trafficking and signal transduction. Cell,2000,100, 447-456.
    Maranda B, et al. Intra-endosomal pH-sensitive Recruitment of the Arf-nucleotide Exchange Factor ARNO and Arf6 from Cytoplasm to Proximal Tubule Endosomes. J. Biol.Chem.,2001,276;18540- 18550.
    Marie-Christine G,et al. Regulated Exocytosis in Chromaffin Cells. A POTENTIAL ROLE FOR A SECRETORY GRANULE-ASSOCIATED ARF6 PROTEIN. J.Biol.Chem., 1997, 272: 2788.
    Matafora V, Paris S, Dariozzi S, and Ivan de Curtis. Molecular mechanisms regulating the subcellular localization of p95-APPl between the endosomal recycling compartment and sites of actin organization at the cell surface. J. Cell Sci., 2001, 114: 4509.
    Mazaki Y, et al. An ADP-Ribosylation Factor GTPase-activating Protein Git2-short/KIAA0148 Is Involved in Subcellular Localization of Paxillin and Actin Cytoskeletal Organization. Mol. Biol. Cell, 2001, 12: 645.
    McNiven, M. A., Cao, H., Pitts, K. R. & Yoon, Y. The dynamin family of mechanoenzymes: pinching in new places. Trends Biochem. Sci. 25, 115-120 (2000).
    Melendez AJ, Harnett MM, and Allen JM. Crosstalk between ARF6 and protein kinase Calpha in Fc(gamma)RI-mediated activation of phospholipase D1. Curr Biol, 2001, 11(11): 869-74.
    Mellman IS, Plutner H, Steinman RM, Unkeless JC, Cohn ZA. Intemalization and degradation of macrophage Fc receptors during receptor-mediated phagocytosis. J. Cell Biol. 1983,96:887-95
    Menetrey J, Macia E, Pasqualato S, Franco M, and Cherfils J. Structure of Arf6-GDP suggests a basis for guanine nucleotide exchange factors specificity. Nat Struct Biol, 2000, 7(6): 466-9.
    Merrifield, C. J. et al. Endocytic vesicles move at the tips of actin tails in cultured must cells. Nature Cell Biol. 1999,1,72-74.
    Mishra SK, Keyel PA, Hawryluk MJ, Agostinelli NR, Watkins SC, and Traub LM. Disabled-2 exhibits the properties of a cargo-selective endocytic clathrin adaptor. EMBO J. 2002,21,4915—4926
    Miura K, et al. ARAP1: a point of convergence for Arf and Rho signaling. Mol Cell, 2002, 9(1): 109-19.
    Mukherjee S, et al. Aspartic Acid 564 in the Third Cytoplasmic Loop of the Luteinizing Hormone/Choriogonadotropin Receptor Is Crucial for Phosphorylation-independent Interaction with Arrestin2. J. Biol. Chem., 2002, 277: 17916 - 17927.
    Mukherjee S,et al.The ADP ribosylation factor nucleotide exchange factor ARNO promotes p-arrestin release necessary for luteinizing hormone/choriogonadotropin receptor desensitization. PNAS, 2000, 97: 5901.
    Naslavsky Naava, Roberto Weigert, and Julie G. Donaldson. Convergence of Non-clathrin- and Clathrin-derived Endosomes Involves Arf6 Inactivation and Changes in Phosphoinositides. Mol. Biol. Cell, 2003, 14:417.
    Nichols BJ and Lippincott-Schwartz J. Endocytosis without clathrin coats. Trends Cell Biol, 2001, 11(10): 406-12.
    Nie Z, et al. AGAP1, an Endosome-associated, Phosphoinositide-dependent ADP-ribosylation Factor GTPase-activating Protein That Affects Actin Cytoskeleton. J. Biol. Chem., 2002, 277: 48965 - 48975.
    Nie Z, et al. Specific regulation of the adaptor protein complex AP-3 by the Arf GAP AGAP1. Dev Cell, 2003, 5(3): 513-21.
    Niedergang F, et al. ADP ribosylation factor 6 is activated and controls membrane delivery during phagocytosis in macrophages. J. Cell Biol., 2003, 161: 1143.
    Nobes C. and Marsh M. Dendritic cells: new roles for Cdc42 and Rac in antigen uptake? Curr. Biol. 2000,10:R739-41
    Nobes CD. and Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 1995, 81(1): 53-62.
    Oda A, et al. CrkL Directs ASAP1 to Peripheral Focal Adhesions.J. Biol.Chem.,2003, 278: 6456- 60.
    Oleinikov AV, Zhao J. and Makker SP. Cytosolic adaptor protein Dab2 is an intracellular ligand of endocytic receptor gp600/megalin. Biochem. J. 2000,347, 613-621
    O'Luanaigh N, et al. Continual Production of Phosphatidic Acid by Phospholipase D Is Essential for Antigen-stimulated Membrane Ruffling in Cultured Mast Cells. Mol. Biol. Cell, 2002, 13: 3730-46
    Orth JD, Krueger EW, Cao H, McNiven MA.2002. The large GTPase dynamin regulates actin comet formation and movement in living cells. Proc. Natl. Acad. Sci. USA 99:167-72
    Oshiro T, et al. Interaction of POB1, a Downstream Molecule of Small G Protein Ral, with PAG2, a Paxillin-binding Protein, Is Involved in Cell Migration. J.Biol.Chem.,2002,277:38618-26.
    Owen DJ, Vallis Y, Pearse BM, McMahon HT. and Evans PR. The structure and function of the beta 2-adaptin appendage domain. EMBO J. 2000,19,4216-4227.
    Palacios F, Price L, Schweitzer J, Collard JG, and C D'Souza-Schorey. An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. EMBO J, 2001, 20(17): 4973-86.
    Palacios Felipe and Crislyn D'Souza-Schorey. Modulation of Rac1 and ARF6 Activation during Epithelial Cell Scattering. J. Biol. Chem., 2003, 278: 17395 - 17400.
    Parsons JT, Martin KH, Slack JK, Taylor JM, and Weed SA. Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement. Oncogene, 2000,19(49): 5606-13.
    Pasqualato S, Menetrey J, Franco M, and Cherfils J. The structural GDP/GTP cycle of human Arf6. EMBO Rep 2001, 2(3): 234-8.
    Paterson AD, et al. Characterization of E-cadherin Endocytosis in Isolated MCF-7 and Chinese Hamster Ovary Cells: THE INITIAL FATE OF UNBOUND E-CADHERIN. J. Biol. Chem., 2003, 278: 21050-21057.
    Pearse BM, Smith CJ. and Owen DJ. Clathrin coat construction in endocytosis. Curr. Opin. Struct. Biol. 2000,10,220-228
    Peters PJ, et al. Overexpression of wild-type and mutant ARF1 and ARF6: distinct perturbations of nonoverlapping membrane compartments. J. Cell Biol., 1995, 128: 1003.
    Pollard TD. and Borisy GG. lular motility driven by assembly and disassembly of actin filaments. Cell, 2003, 112(4): 453-65.
    Powner DJ, et al. Antigen-stimulated Activation of Phospholipase D1b by Rac1, ARF6, and PKCα in RBL-2H3 Cells. Mol. Biol. Cell, 2002, 13: 1252
    Premont RT, et al. The GIT Family of ADP-ribosylation Factor GTPase-activating Proteins. FUNCTIONAL DIVERSITY OF GIT2 THROUGH ALTERNATIVE SPLICING . J. Biol. Chem., 2000, 275:22373.
    Premont RT, et al. β2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. PNAS, 1998,95: 14082.
    Qualmann B, Roos J, DiGregorio PJ. & Kelly RB. Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. Mol. Biol. Cell 1999,10, 501-513.
    Rabinowitz S, Horstmann H, Gordon S.Griffiths G. Immunocytochemical characterization of the endocytic and phagolysosomal compartments in peritoneal macrophages. J. Cell Biol. 1992,116:95-112
    Radhakrishna H and Donaldson JG. ADP-Ribosylation Factor 6 Regulates a Novel Plasma Membrane Recycling Pathway . J. Cell Biol., 1997, 139: 49.
    Radhakrishna H, Al-Awar O, Khachikian Z, and Donaldson JG. ARF6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J. Cell Sci., 1999,112: 855.
    Radhakrishna H, Klausner RD, and Donaldson JG. Aluminum fluoride stimulates surface protrusions in cells overexpressing the ARF6 GTPase. J. Cell Biol., 1996, 134: 935.
    Radhakrishna H, O Al-Awar, Z Khachikian, and JG Donaldson. ARF6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J. Cell Sci., 1999, 112: 855.
    Ramjaun AR, Philie J, de Heuvel E. & McPherson PS. The N terminus of amphiphysin II mediates dimerization and plasma membrane targeting. J. Biol. Chem. 1999,274,19785-19791.
    Randazzo PA, et al. From the Cover: The Arf GTPase-activating protein ASAP1 regulates the actin cytoskeleton. PNAS, 2000, 97: 4011.
    Rapoport I, Chen YC, Cupers P, Shoelson SE. and Kirchhausen T. Dileucine-based sorting signals bind to the beta chain of AP-1 at a site distinct and regulated differently from the tyrosine-based motif- binding site. EMBO J. 1998,17,2148-2155
    Rein U, et al. ARF-GAP-mediated interaction between the ER-Golgi v-SNAREs and the COPI coat. J. Cell Biol., 2002, 157:395.
    Ridley AJ, Paterson HF, Johnston CL, Diekmann D, and Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell, 1992, 70(3): 401-10.
    Ringstad N, Nemoto Y. and De Camilli P. The SH3p4/Sh3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc. Natl Acad. Sci. USA, 1997,94, 8569-8574.
    Ritter B, Modregger J, Paulsson M. & Plomann M. PACSIN 2, a novel member of the PACSIN family of cytoplasmic adapter proteins. FEBS Lett. 1999,454, 356-362.
    Robinson MS and Bonifacino JS. Adaptor-related proteins. Curr Opin Cell Biol,2001, 13(4): 444-53.
    Rohatgi R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 1999,97, 221-231.
    Romina C. et al. Alterations in the Arf6-regulated plasma membrane endosomal recycling pathway in cells overexpressing the tetraspan protein Gas3/PMP22. J. Cell Sci., 2003, 116: 987.
    Roos J. & Kelly RB. Dapl60, a neural-specific Eps15 homology and multiple SH3 domain- containing protein that interacts with Drosophila dynamin. J. Biol. Chem. 1998,273,19108-19119.
    Rosenthal JA. et al. The epsins define a family of proteins that interact with components of the clathrin coat and contain a new protein module. J. Biol. Chem. 1999,274,33959-33965.
    Rozelle AL, et al. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft- enriched vesicles through WASP-Arp2/3. Curr. Biol. 2000,10:311-20
    Salcini AE, Chen H, Iannolo G, De Camilli P. & Di Fiore PP. Epidermal growth factor pathway substrate 15, Eps15. Int. J. Biochem. Cell Biol. 1999,31, 805-809.
    Salvador LM, et al. Activation of the Luteinizing Hormone/Choriogonadotropin Hormone Receptor Promotes ADP Ribosylation Factor 6 Activation in Porcine Ovarian Follicular Membranes. J. Biol. Chem., 2001,276:33773-33781.
    Salvador LM, et al. Activation of the Luteinizing Hormone/Choriogonadotropin Hormone Receptor Promotes ADP Ribosylation Factor 6 Activation in Porcine Ovarian Follicular Membranes. J. Biol. Chem., 2001,276:33773-33781.
    Santolini E. et al. The EH network. Exp. Cell Res. 1999,253,186-209.
    Santy LC. and Casanova JE. Activation of ARF6 by ARNO stimulates epithelial cell migration through downstream activation of both Rac1 and phospholipase D. J. Cell Biol., 2001, 154: 599.
    Santy LC. Characterization of a Fast Cycling ADP-ribosylation Factor 6 Mutant. J. Biol. Chem., 2002, 277: 40185-40188.
    Sastry SK and Burridge K. Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp Cell Res, 2000, 261(1): 25-36.
    Sato Y, Hong HN, Yanai N, and Obinata M. Involvement of Stromal Membrane-Associated Protein (SMAP-1) in Erythropoietic Microenvironment. J. Biochem. (Tokyo), 1998, 124: 209 - 216.
    Schafer DA, D'Souza-Schorey C, Cooper JA. 2000. Actin assembly at membranes controlled by ARF6. Traffic 1:896-907
    Schaller MD. Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim Biophys Acta, 2001, 1540(1): 1 - 21.
    Schmid SL, McNiven MA. & De Camilli P. Dynamin and its partners: a progress report. Curr. Opin. Cell Biol. 1998,10,504-512.
    Schmidt A. et al. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 1999,401,133-141.
    Seastone DJ. et al. The WASp like protein scar regulates macropinocytosis, phagocytosis and endosomal membrane flow in Dictyostelium. J. Cell Sci. 2001.114:2673-83
    Sengar AS, Wang W, Bishay J, Cohen S. & Egan SE. The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15. EMBO J. 1999,18,1159-1171.
    Sever SD, & Schmid SL. Garrotes, springs, ratchets,and whips: putting dynamin models to the test. Traffic 2000,1,385-392.
    Shin OH, Couvillon AD, and Exton JH. Arfophilin is a common target of both class II and class III ADP-ribosylation factors. Biochemistry, 2001,40(36): 10846-52.
    Shupliakov O. et al. Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science 1997,276, 259-263.
    Silverstein SC, Steinman RM, Cohn ZA. 1977. Endocytosis. Annu. Rev. Biochem. 46:669-722
    Simpson, F. et al. SH3-domain-containing proteins function at distinct steps in clathrin- coated vesicle formation. Nature Cell Biol. 1, 119-124 (1999).
    Slepnev, V. I., Ochoa, G. C, Butler, M. H., Grabs, D. &De Camilli, P. Role of phosphorylation in regulation of the assembly of endocytic coat complexes. Science, 281,821-824 (1998).
    Someya A, et al. ARF-GEP100, a guanine nucleotide-exchange protein for ADP-ribosylation factor 6. PNAS, 2001, 98: 2413.
    Song J, Khachikian Z, Radhakrishna H, and Donaldson JG. Localization of endogenous ARF6 to sites of cortical actin rearrangement and involvement of ARF6 in cell spreading. J. Cell Sci., 1998, 111: 2257.
    Steinman RM, Mellman IS, Muller WA, Cohn ZA. 1983. Endocytosis and the recycling of plasma membrane. J. Cell Biol. 96: 1-27
    Strausberg RL, et al. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 2002,99:16899-903.
    Szafer E, et al. Role of Coatomer and Phospholipids in GTPase-activating Protein-dependent Hydrolysis of GTP by ADP-ribosylation Factor-1. J. Biol. Chem., 2000, 275: 23615.
    Szafer E, Rotman M, and Cassel D. Regulation of GTP Hydrolysis on ADP-ribosylation Factor-1 at the Golgi Membrane. J. Biol. Chem., 2001, 276: 47834-47839
    Takatsu H, Yoshino K, Toda K, and Nakayama K. GGA proteins associate with Golgi membranes through interaction between their GGAH domains and ADP-ribosylation factors. Biochem J, 2002, 365: 369-78.
    Takei K, Slepnev Ⅳ, Haucke Ⅴ. & De Camilli P. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat. Cell Biol. 1999,1, 33-39.
    Tanaka K, et al. A target of phosphatidylinositol 3,4,5-trisphosphate with a zinc finger motif similar to that of the ADP-ribosylation-factor GTPase-activating protein and two pleckstrin homology domains. Eur. J. Biochem., 1997, 245: 512.
    Ter Haar E, Harrison SC. and Kirchhausen T. Peptide-in-groove interactions link target proteins to the beta-propeller of clathrin. Proe. Natl. Acad. Sci. U.S.A. 2000,97,1096-1100
    Todd J, Lawrence R. and Birnbaum MJ. ADP-Ribosylation Factor 6 Delineates Separate Pathways Used by Endothelin 1 and Insulin for Stimulating Glucose Uptake in 3T3-L1 Adipocytes. Mol. Cell. Biol., 2001, 21: 5276-5285.
    Uchida H, et al. PAG3/Papα/KIAA0400, a GTPase-activating Protein for ADP-Ribosylation Factor (ARF), Regulates ARF6 in Fcγ, Receptor-mediated Phagocytosis of Macrophages. J. Exp. Med., 2001, 193: 955.
    Umeda A, Meyerholz A. & Ungewickell E. Identification of the universal cofactor (auxilin 2) in clathrin coat dissociation. Eur. J. Cell Biol. 2000, 79, 336-342.
    Vitale N. et al. Calcium-regulated exocytosis of dense-core vesicles requires the activation of ADP-ribosylation factor (ARF)6 by ARF nucleotide binding site opener at the plasma membrane. J. Cell Biol., 2002, 159: 79.
    Weber KS, et al. Cytohesin-1 is a dynamic regulator of distinct LFA-1 functions in leukocyte arrest and transmigration triggered by chemokines. Curr Biol, 2001, 11(24): 1969-74.
    Wendland B, Cope MJ. & Watson HA. Evidence linking the yeast epsin homologue Entlp to Ark protein kinases. Mol. Biol. Cell 1999, 10, 119a.
    Wendland B, Steece KE. & Emr SD. Yeast epsins contain an essential N-terminal ENTH domain, bind clathrin and are required for endocytosis. EMBOJ. 1999, 18, 4383-4393.
    Whitley P, et al. Identification of centaurin-alpha2: a phosphatidylinositide-binding protein present in fat, heart and skeletal muscle. Eur J Cell Biol, 2002, 81(4): 222-30.
    Witke W. et al. In mouse brain profilin Ⅰ and profilin Ⅱ associate with regulators of the endocytic pathway and actin assembly. EMBO J. 1998, 17, 967-976.
    Wright SD, Silverstein SC. Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J. Exp. Med. 1983,158:2016-23
    Xia CZ, et al. GGAPs, a New Family of Bifunctional GTP-Binding and GTPase-Activating Proteins. Mol. Cell. Biol., 2003, 23: 2476-2488.
    Yamabhai M. et al. Intersectin, a novel adaptor protein with two Eps15 homology and five Src homology 3 domains. J. Biol. Chem. 1998,273, 31401-31407.
    Ybe JA, Greene B, Liu SH, Pley U, Parham P. and Brodsky FM. Clathrin self-assembly is regulated by three light-chain residues controlling the formation of critical salt bridges. EMBO J. 1998,17,1297-130
    Yin HL. and Janmey PA. Phosphoinositide regulation of the actin cytoskeleton. Annu Rev Physiol, 2003, 65: 761-89.
    Zeng G. & Cai M. Regulation of the actin cytoskeleton organization in yeast by a novel serine/threonine kinase Prklp. J. Cell Biol. 1999,144, 71-82.
    Zhang HY, Webb DJ, Asmussen H, and Horwitz AF. Synapse formation is regulated by the signaling adaptor GIT1. J. Cell Biol., 2003, 161: 131.
    Zhang Q. et al. A Requirement for ARF6 in Fcγ Receptor-mediated Phagocytosis in Macrophages. J. Biol. Chem., 1998, 273: 19977.
    Zhao LY. et al. Direct and GTP-dependent interaction of ADP ribosylation factor 1 with coatomer subunit 13. PNAS, 1997, 94: 4418.
    Zhao LY, Helms JB, Brunner J, and Wieland FT. GTP-dependent Binding of ADP-ribosylation Factor to Coatomer in Close Proximity to the Binding Site for Dilysine Retrieval Motifs and p23. J. Biol. Chem., 1999, 274: 14198.
    Zhao ZS, Manser E, Loo TH, and Lim L. Coupling of PAK-Interacting Exchange Factor PIX to GIT1 Promotes Focal Complex Disassembly. Mol. Cell. Biol., 2000, 20: 6354-6363.
    Boshans RL, Szanto S, van Aelst L, D'Souza-Schorey C. ADP-ribosylation factor 6 regulates actin cytoskeleton remodeling in coordination with Rac 1 and RhoA. Mol Cell Biol. 2000,20: 3685-3694.
    Caumont AS, Galas MC, Vitale N, Aunis D, Bader MF. Regulated exocytosis in chromaffin cells. Translocation of ARF6 stimulates a plasma membrane-associated phospholipaseD. J Biol Chem. 1998,273:1373-t379.
    Chavrier P, Goud B. The role of ARF and Rab GTPases in membrane transport. Curr Opin Cell Biol. 1999, 11: 466-475.
    D'Souza-Schorey C, Boshans RL, McDonough M, Stahl PD, Van Aelst L. A role for POR1, a rac1-interacting protein in ARF6-mediated cytoskeletal rearrangements. EMBO J. 1997,16: 5445-5454.
    D'Souza-Schorey C, Li G, Colombo MI, Stahl PD. A regulatory role for ARF6 in receptor-mediated endocytosis. Science. 1995,267: 1175-1178.
    D'Souza-Schorey C, et al. ARF6 targets recycling vesicles to the plasma membrane:insights from an ultrastructural investigati on. J Cell Biol. 1998,140:603-616.
    Dai J, et al. ACAP1 promotes endocytic recycling by recognizing recycling sorting signals. Dev Cell, 2004; 7(5): 771-776
    Franco M, et al. EFA6, a sect domain-containing exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization. EMBO J. 1999, 18: 1480-1491.
    Frank SR, Hatfield JC, Casanova JE. Remodeling of the actin cytoskeleton is coordinately regulated by protein kinase C and the ADP-ribosylation factor nucleotide exchange factor ARNO. Mol Biol Cell. 1998,9: 3133-3146.
    Furman C, et al. DEF-1/ASAP1 is a GTPase-activating protein for ARF1 that enhances cell motility through a GAP-dependent mechanism, J Biol Chem. 2002,8,277(10):7962-7969.
    Hall A. Rho GTPases and the actin cytoskeleton. Science 1998,279: 509-514.
    Hashimoto S., et al. A Novel Mode of Action of an ArfGAP, AMAP2/PAG3/Papα, in Arf6 Function. J Biol Chem. 2004, 279(36), 37677-37684.
    Hashimoto S, et al. Requirement for Arf6 in breast cancer invasive activities. Proc. Natl. Acad. Sci. USA. 2004, 101, 6647-6652.
    Honda A, et al. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell, 1999;99: 521-532.
    I ST, et al. ARAP3 is transiently tyrosine phosphorylated in cells attaching to fibronectin and inhibits cell spreading in a RhoGAP-dependent manner. J Cell Sci. 2004,1;117(25):6071-6084.
    Jackson TR,et al. ACAPs are arf6 GTPase-activating proteins that function in the cell periphery. J Cell Biol. 2000,30,151 (3):627-638.
    Khanna C, et al. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med. 2004,10, 182-186.
    Kondo A, et al. A new paxillin-binding protein, PAG3/Papα/KIAA0400, bearing an ADP-ribosylation factor GTPase-activating protein activity, is involved in paxillin recruitment to focal adhesions and cell migration.Mol Biol Cell. 2000,11(4): 1315-1327.
    Krugmann S, Andrews S, Stephens L, Hawkins PT. ARAP3 is essential for formation of lamellipodia after growth factor stimulation. J Cell Sci. 2006,1,119(3):425-432.
    Li J, Ballif BA, Powelka AM, Dai J, Gygi SP, and Hsu VW. Phosphorylation of ACAP1 by Akt regulates the stimulation-dependent recycling of integrin betal to control cell migration. Dev Cell, 2005,9(5): 663-673.
    Moss J. and Vaughan M. Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. J Biol Chem. 1995,270: 12327-12330.
    Nie Z, et al. AGAP1, an Endosome-associated, Phosphoinositide-dependent ADP- ribosylation Factor GTPase-activating Protein That Affects Actin Cytoskeleton. J. Biol. Chem. 2002,277:48965-48975.
    Oda A, et al. CrkL directs ASAP1 to peripheral focal adhesions. J Biol Chem. 2003 ,21,278(8):6456-60.
    Okabe H, et al. Isolation of development and differentiation enhancing factor-like 1 (DDEFL1) as a drug target for hepatocellular carcinomas. Int J Oncol. 2004,24,43-48.
    Powelka AM, et al. Stimulation-dependent recycling of integrin betal regulated by ARF6 and Rab11. Traffic, 2004, 5(1): 20-36.
    Radhakrishna H, Al-Awar O, Khachikian Z, Donaldson JG. ARF6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J Cell Sci. 1999,112: 855-866.
    Randazzo PA, Nie ZZ, Miura K, and Hsu VW. Molecular aspects of the cellular activities of ADP-ribosylation factors. Sci STKE 2000, RE1.
    Song J, Khachikian Z, Radhakrishna H, Donaldson JG Localization of endogenous ARF6 to sites of cortical actin rearrangement and involvement of ARF6 in cell spreading. J Cell Sci. 1998,111: 2257-2267.
    Tague SE, Muralidharan V, and D'Souza-Schorey C. ADP-ribosylation factor 6 regulates tumor cell invasion through the activation of the MEK/ERK signaling pathway. Proc. Natl. Acad. Sci. USA. 2004,101, 9671-9676.
    Thacker E, et al. The Arf6 GAP centaurin α-1 is a neuronal actin-binding protein which also functions via GAP-independent activity to regulate the actin cytoskeleton. Euro J Cell Biol., 2004,83(10), 541-554. Van Aelst L. and D'Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev. 1997,11: 2295-2322.
    Vitale N, et al. GIT Proteins, A Novel Family of Phosphatidylinositol 3,4,5-Trisphosphate-stimulated GTPase-activating Proteins for ARF6. J. Biol. Chem. 2000, 275(18), 13901-13906.
    Yu Y, et al. Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat Med, 2004,10, 175-181.
    Zhang Q, Cox D, Tseng CC, Donaldson JG, and Greenberg S. A requirement for ARF6 in Fc-γ receptor-mediated phagocytosis in macrophages. J Biol Chem. 1998,273: 19977-19981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700