亚洲棉CAP基因的克隆、表达与蛋白鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以亚洲棉(Gossypium arboreum L.)种质DPL971及其无短绒有纤维突变体(DPL972)为材料。从亚洲棉中分离得到腺苷酸环化酶结合蛋白(CAP)的cDNA表达序列及基因组DNA序列。为深入研究CAP基因对棉纤维发育的作用,对克隆的CAP基因的cDNA序列进行了表达和蛋白表达纯化,还分析了CAP基因在棉纤维早期发育阶段的表达水平及蛋白性质。主要研究结果包括:
     1.对253条棉纤维(表皮毛)发育相关基因在DPL971和DPL972基因组中的基因一级结构进行了比较。寻找到了与这对材料表型性状差异紧密相关的目标基因——CAP基因。
     2.以DPL971和DPL972为材料,利用RT-PCR技术克隆了亚洲棉的全长CAP基因-GaCAP和GaCAPm。该基因的开放阅读框(ORF)有1416 nt,共编码一个471氨基酸的蛋白质,分子量为50.6kDa。核苷酸序列及氨基酸序列的同源性比较表明:GaCAP及GaCAPm与已经报道的其它物种的CAP基因具有有较高的同源性。
     3.对CAP基因在野生型和突变体中的表达谱进行了RT-PCR和Northern杂交分析。结果显示,CAP基因在野生型和突变体材料的棉纤维发育早期阶段(-1~4 DPA)的表达信号稳定。但在突变体材料的4~9 DPA阶段,CAP基因的表达量随着时间的推移呈下降趋势,尤其是在9 DPA时,CAP基因仅有痕量表达。在野生型及突变体材料的叶片、下胚轴和根等组织器官中,均检测到了CAP基因一定丰度的表达信号。上述试验结果显示,CAP基因在棉花各组织器官中均有表达,尤其在棉纤维发育早期阶段的胚珠中表达信号较高;比对CAP基因在野生型及突变体胚珠不同发育阶段的表达信号,推测CAP基因参与了亚洲棉短绒纤维发育的起始过程。
     4.按所分离的棉花腺苷酸环化酶结合蛋白cDNA序列设计、合成特异引物,以亚洲棉叶片DNA为模板,通过PCR扩增分离获得棉花GaCAP基因DNA序列。利用DNAStar对该基因的序列进行分析表明:GaCAP基因编码区含有10个外显子和9个内含子,内含子的大小在100~1000 bp范围内不等。CAP蛋白在棉花和拟南芥中的序列长度一致(分别为471和476个氨基酸残基),但其在棉花(序列长度约4kb)和拟南芥(序列长度与2.4kb)基因组中的存在情况不同,说明棉花CAP基因内含子的复杂程度较高。
     5.多序列比对结果显示:GaCAP蛋白的C-末端与拟南芥、苜蓿和水稻的相似度达到83%,而N-末端的序列相似性分别为74%、73%和63%。表明GaCAP蛋白的C-末端较N-末端更为保守;CAP蛋白的特征序列:RLE重复基序(RLE repeats)、Actin结合域(actin binding domain)、SH3基序(SH3 motif)和多聚结合域(multimerization domain)均定位在预测的GaCAP蛋白序列之中;GaCAPm编码的蛋白序列的第44位是苏氨酸(极性氨基酸),这与GaCAP编码蛋白序列的同一位置(丙氨酸,非极性氨基酸)不同,而且在不同物种的CAP蛋白中,该位点是极为保守的,因此,这一位点的突变可引起GaCAPm蛋白的结构和功能变化。
     6.以GaCAP基因的cDNA序列为探针与基因组DNA酶切片段进行Southern blotting杂交分析,结果显示棉花基因组中仅含有一个CAP基因的拷贝。
     7.构建了GaCAP原核表达载体,在E.coli中进行表达,并纯化目的蛋白,进行理化分析。结果显示,GaCAP蛋白的最适反应温度为36℃,并且可以在一个较宽的温度范围(30~60℃)内保持其高结合活性(>60%);该蛋白的最适pH值在5.0~6.0之间,在pH=4.0的缓冲液中处理30min后,GaCAP的蛋白活性仍然有80%,说明该蛋白有一定程度的耐酸性。
Two cotton germplasm(Gossypium arboreum L.),DPL971 and its lint-fuzzlessmutant(DPL972), were used as materials in this study.The cDNA and DNA sequences of adenylyl cyclase-associated protein(CAP)were obtained from DPL971 and DPL972.To gain insight on the CAP role in cotton fiber development,the cloned CAP cDNA was expressed and purified.The expression level in earlier stages of fiber development and protein characters of this CAP gene were analyzed in this research. The main results are as follows:
     1.The primary structure of 253 fiber(trichome)development associated-genes were compared between fuzzless mutant(DPL972)and wild-type(DPL971),and the target gene(cap)closely related to the fuzzless mutant was found.
     2.The whole cDNA sequence of the cap genes(GaCAP/GaCAPm)were cloned between DPL971 and DPL972 by RT-PCR technology.This gene possess an open reading frame(ORF)of totally 1416 nt encoded a protein of 471 amino acids,and the molecular weight of its protein is 50.6kDa.The deducible nucleotide sequence and amino acid sequence of GaCAP/GaCAPm are highly homologous to the CAP genes of other species.
     3.The expression patterns of GaCAP and GaCAPm were identified in different tissues from DPL971 and DPL972 using semi quantitative reverse transcriptase PCR(RT-PCR)and confirmed by Northern blot analysis.The results showed that CAP transcripts maintained a persistent high level during the early ovule development(from -1 to 4 DPA)in both DPL971 and DPL972.While the level of CAP transcripts in the mutant decreased gradually as the ovule developed(4 to 9 DPA)and hardly any transcripts were detected in the 9 DPA ovule.In addition,a moderate level of CAP was detected in leaves,hypocotyls,and roots during the different developmental stages.These results indicated the CAP gene specifically expressed in ovules during the fiber developmental stages compared with that in other tissues over various vegetative periods.The comparison of gene expression profiles between wild type and fuzzless mutant also provided the evidence that CAP was involved in fuzz formation.
     4.The specific primers were designed by the GaCAP cDNA sequence isolated from cotton.Using the leaf DNA of Gossypium arboreum L.as template,GaCAP DNA sequence was obtained by PCR. The gene's sequence was analyzed by means of DNAStar.The coding region of the GaCAP gene contains ten exons and nine introns.The intron size is approximately ranged from 100 to 1000 bp.The CAP proteins in G.arboreum(471 amino acids)and A.thaliana(476 amino acids)are similar in size. However,the genome sequence of GaCAP(~4kb)was much larger than AtCAP gene(~2.9kb)which indicated that the sequence of intron is more complex in G.arboreum.
     5.The alignment of the amino acid sequences between G.arboreum CAP and the CAPs from other species showed that the identity between the C-terminal domain of G.arboreum L.CAPs and those of A. thaliana,Medicago truncatula and Oryza sativa CAP is 83%,while the N-terminal domain of G arboreum L.CAP is 74%,73%and 63%identical with the corresponding regions of A.thaliana,M. truncatula and O.sativa CAP,respectively.So the C-terminal domain of G.arboreum L.CAP shows higher homology with other plant CAPs than the N-terminal domain.The CAP key motifs(e.g.Arginine, Leucine and Glutamic acid repeats motif,actin binding domain,SH3 motif and multimerization domain) were consistently found in the putative GaCAP protein sequence.Intriguingly,the nonpolar amino acid Alanine was substituted by a polar amino acid Threonine at conserved position 44 of GaCAPm.This may result in the different structure and function of GaCAPm from other CAP homologs.
     6.To determine the copy number of GaCAP gene homologue in cotton genomic DNA,Southern blotting hybridization was conduced by applying GaCAP cDNA probe.The result indicated that there was only one copy in cotton genome.
     7.The Prokaryota expression vector was constructed,the protein was expressed in vitro and purified to study the characterization of objective protein.The optimal temperature of the recombinant CAP was 30-60℃with a best temperature at 36℃,and its optimal pH was 5.0~6.0.The GaCAP maintained 80%activity after treated 30 min in the buffer with pH 4.0,and this reveal the protein is acid tolerance.
引文
1.安贤惠.拟南芥及其研究进展.西北农业学报,1998,7(1):92-94.
    2.柏长青,徐楚年,贾君镇.棉胚珠培养的研究.北京农业大学学报,1992,122-128.
    3.董合忠,王志芬.棉纤维发育及其调控的紧张.莱阳农学院学报,1996,13(3):197-201.
    4.杜雄明,陈金桂,张天真,潘家驹,汪若海.5个棉花纤维突变体胚珠内源激素差异及对纤维分化和前期生长的影响.棉花学报,1998,10(1):43-51.
    5.郭香墨,刘正德,罗云佳.我国面向21世纪棉花纤维品质改良对策.棉花学报,1999,11(6):321-325.
    6.侯磊,肖月华,李先碧,王文锋,罗小英,裴炎.棉花洞A雄性不育系花药发育的mRNA 差别显示.遗传学报,2002,29(4):359-363.
    7.胡竞良.棉花纤维.1958,棉花知识.
    8.李宏,王新力.植物组织RNA提取的难点及对策.生物技术通报,1999,1:36-39.
    9.李满.大肠杆菌中重组蛋白包涵体的形成机制及其影响因素.生物工程进展,1992,12:34-37.
    10.刘康,Kohe,R.J.内源及外源植物激素对陆地棉突变体胚珠纤维初始发育诱导效应的研究.棉花学报,1999,11(1):48-56.
    11.刘康,张天真.陆地棉纤维初始发育与胚珠过氧化物酶和吲哚乙酸氧化酶的关系的研究.棉花学报,1999,11(6):293-296,302.
    12.罗明,李名扬,侯磊,肖月华,张正圣,裴炎,季道籓.棉花纤维发生相关AFLP标记.遗传学报,2001,28(7):677-682.
    13.倪中福,孙其信,吴利民.普通小麦不同优势杂交种及其亲本之间基因表达差异比较研究.中国农业大学学报,2000,5(1):1-8.
    14.王水平,沈曾佑,张志良.棉纤维细胞伸长生长与过氧化物酶和IAA氧化酶的关系.植物生理学报,1985,11(4):409-417.
    15.王素会.棉纤维发育突变体SSR标记定位和遗传相似性分析.中国农业科学院博士生论文,2004.
    16.王学德,朱玉贤,季道藩,蒋淑丽,李悦有.棉纤维相关cDNA的克隆及其在4个纤维突变体中的结构变异.科学通报,2000,45(17):1852-1858.
    17.夏兰芹,郭三堆.棉花RNA的快速提取方法田.棉花学报,2000,12(4):205-207.
    18.徐楚年.棉花纤维发育学,1988,北京农业大学农学系印刷.
    19.徐亚浓,王学德,蒋淑丽,程超华.排除棉酚等干扰提取棉纤维细胞RNA方法的研究.棉花学报,2002,14(3):143-146.
    20.徐宗修 译.Dimitropoulou,KK.(著).激素对棉花纤维发育的影响.国外农学-棉花1984,37(1):39-42.
    21.杨伟华,项时康,唐淑荣,熊宗伟,胡育昌.20年来我国自育棉花品种纤维质量分析.棉花学报,2001,13(6):377-384.
    22.于晓红,朱勇清,卢山,张天真,陈晓亚,许智宏.陆地棉徐州-142种子无毛突变体的比较研究.中国科学,2000,30(5):537-522.
    23.张凤鑫.发展高品质棉迎接加入WTO新挑战.安徽农学通报,2000,6(6):6-8.
    24.周宝良,陈松,黄骏麒.论我国棉花纤维品质改良的紧迫性、可行性及策略.科技导报,1998-05-12
    25.Amberg,D.C.,Basart,E.,and Botstein,D.Defining protein interactions with yeast actin in vivo.Nature Structural Biology 1995.2,28-35.
    26.Amor,Y.,Haigler,C.H.,Johnson,S.,Wainscott,M.,and Delmer,D.R A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants.Proceedings of the National Academy of Sciences of the United States of America 1995.92,9353-9357.
    27.Anthony,W.S.1999.Postharvest management of fiber quality.In Cotton Fibers:Developmental Biology,Quality Improvement,and Textile Processing.,A.S.Basra,ed(New York:Haworth Press),pp.193-337.
    28.Applequist,W.L.,Cronn,R.,and Wendel,J.F.Comparative development of fiber in wild and cultivated cotton.Evolution & Development 2001.3,3-17.
    29.Arpat,A.B.,Waugh,M.,Sullivan,J.R,Gonzales,M.,Frisch,D.,Main,D.,Wood,T.,Leslie,A.,Wing,R.A.,and Wilkins,T.A.Functional genornics of cell elongation in developing cotton fibers.Plant Molecular Biology 2004.54,911-929.
    30.Ayscough,K.R.In vivo functions of actin-binding proteins.Current Opinion in Cell Biology 1998.10,102-111.
    31.Barrero,R.A.,Umeda,M.,Yamamura,S.,and Uchimiya,H.Arabidopsis CAP regulates the actin cytoskeleton necessary for plant cell elongation and division.Plant Cell 2002.14,149-163.
    32.Barrero,R.A.,Umeda,M.,Yamamura,S.,and Uchimiya,H.Over-expression of Arabidopsis CAP causes decreased cell expansion leading to organ size reduction in transgenic tobacco plants.Annals of Botany 2003.91,599-603.
    33.Basra,A.S.Cotton Fibers:Developmental Biology,Quality Improvement,and Textile Processing.1999.(New York:Haworth Press).
    34.Basra,A.S.,and Malik,C.R Dark metabolism of CO_2 during fiber elongation of hairs.Proceedings of the Royal Society of London.Series B.Biological Sciences 1983.95,72-89.
    35.Basra,A.S.,and Malik,C.P.Development of the cotton fiber.International Review of Cytology 1984.89,65-113.
    36.Baum,B.,Li,W.,and Perrimon,N.A cyclase-associated protein regulates actin and cell polarity during Drosophila oogenesis and in yeast.Current Biology 2000.10,964-973.
    37.Beasley,C.A.Hormonal Regulation of Growth in Unfertilized Cotton Ovules.Science 1973.179, 1003-1005.
    38. Beasley, C.A. 1977. Ovule culture: fundamental and pragmatic research for the cotton industry. In plant cell, tissue and organ culture., J.R. Reinert and Y.P.S. Baja, eds (Berlin: Springer-Verlag), pp. 160-178.
    39. Beasley, C.A. 1984. Culture of cotton ovules. In Cell Culture and Somatic Cell Genetics of Plants., I.K. Vasil, ed (New York: Academic Press), pp. 232-240.
    40. Beasley, C.A., and Ting, I.P. The effects of plant growth substances on in vitro fibre development from fertilized cotton ovules. American Journal of Botany 1973. 60, 130-139.
    41. Beasley, C.A., Birnbaum, E.H., Dugger, W.M., and Ting, I.P. A quantitative procedure for estimating cotton fiber growth. Stain Technology 1974. 49, 85-92.
    42. Beasley, J.O. The production of polyploid in Gossypium. The Journal of Heredity 1940. 31, 39-48.
    43. Beasley, J.O. Meiotic chromosome behaviour in species, species hybrids, haploids and induced polyploids of Gossypium. Genetics 1942. 27, 25-54.
    44. Bendtsen, J.D., Nielsen, H., von Heijne, G., and Brunak, S. Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology 2004. 340, 783-795.
    45. Benedict CR, S.A., Kohel RJ. 1980. Carbon metabolism in developing cotton seed:sink demand and the distribution of assimilates. In the Beltwide Cotton Conference (National Cotton Council, Memphis, TN), pp. 346-351.
    46. Benlali, A., Draskovic, I., Hazelett, D.J., and Treisman, J.E. act up controls actin polymerization to alter cell shape and restrict Hedgehog signaling in the Drosophila eye disc. Cell 2000. 101, 271-281.
    47. Berlin, J.D. 1986. The outer epidermis of the cotton seed. In Cotton Physiology, J. Maunery and J. Stewart, eds (Memphis, TN: The Cotton Foundation), pp. 375-413.
    48. Bichet, A., Desnos, T., Turner, S., Grandjean, O., and Hofte, H. BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis. The Plant Journal 2001. 25, 137-148.
    49. Bomblies, K., and Weigel, D. Arabidopsis: a model genus for speciation. Current Opinion in Genetics & Development 2007. 17, 500-504.
    50. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 1976. 72, 248-254.
    51. Brown, J.R., and Montezinos, D. Cellulose microfibrils: visualization of biosynthetic and oriented complexes in association with the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America 1995. 73,143-147.
    52. Brown, R., and Saxena, I. Cellulose biosynthesis:a model for understanding the assembly of biopolymers. Plant Physiology and Biochemistry 2000. 38, 57-67.
    53. Carlier, M.F., and Pantaloni, D. Actin assembly in response to extracellular signals: role of capping proteins, thymosin beta 4 and profilin. Seminars in cell biology 1994. 5, 183-191.
    54. Carpita, N.C., and Gibeaut, D.M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal 1993. 3,1-30.
    55. Catherine, H.S. Production of soluble recombinant proteins in bacteria. Biotechnology 1989. 7, 1141-1149.
    56. Cedroni, M.L., Cronn, R.C., Adams, K.L., Wilkins, T.A., and Wendel, J.F. Evolution and expression of MYB genes in diploid and polyploid cotton. Plant Molecular Biology 2003. 51, 313-325.
    57. Chaudhry, M.R. 2007. Outlook for cotton production and developments in production research. (Bamako).
    58. Cravchic, A., and Matus, A. A novel strategy for the immunological tagging of cDNA construets. Gene 1993. 137, 139-143.
    59. Cui, X., Shin, H., Song, C, Laosinchai, W., Amano, Y., and Brown, R.M., Jr. A putative plant homolog of the yeast beta-1,3-glucan synthase subunit FKS1 from cotton (Gossypium hirsutum L.) fibers. Planta 2001. 213, 223-230.
    60. Delanghe, E.A.L. 1986. Lint development. In Cotton physiology, J.R. Maunery and J.M. Stewart, eds (Memphis, TN.: The Cotton Foundation.
    61. Delmer, D.P., Pear, J.R., Andrawis, A., and Stalker, D.M. Genes encoding small GTP-binding proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers. Molecular & General Genetics 1995. 248, 43-51.
    62. Dhindsa, R.S., Beasley, C.A., and Ting, I.P. Osmoregulation in Cotton Fiber: Accumulation of Potassium and Malate during Growth. Plant Physiology 1975. 56, 394-398.
    63. Doblin, M.S., Kurek, I., Jacob-Wilk, D., and Delmer, D.P. Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiology 2002. 43, 1407-1420.
    64. Dong, C.H., Kost, B., Xia, G., and Chua, N.H. Molecular identification and characterization of the Arabidopsis AtADFl, AtADF5 and AtADF6 genes. Plant Molecular Biology 2001a. 45, 517-527.
    65. Dong, C.H., Xia, G.X., Hong, Y., Ramachandran, S., Kost, B., and Chua, N.H. ADF proteins are involved in the control of flowering and regulate F-actin organization, cell expansion, and organ growth in Arabidopsis. Plant Cell 2001b. 13, 1333-1346.
    66. Du, X.M., Pan, J.J., Wang, R.H., Zhang, T., Zh , and Shi, Y.Z. Genetic analysis of presence and absence of lint and fuzz in cotton. Plant Breeding 2001. 120, 519-522.
    67. El Mogahzy, Y. 1999. Fiber-to-fabric engineering: optimization of cotton fiber quality. In Cotton Fibers:Developmental Biology,Quality Improvement,and Textile Processing., A.S. Basra, ed (New York: Haworth Press), pp. 339-376.
    68. Fedor-Chaiken, M., Deschenes, R.J., and Broach, J.R. SRV2, a gene required for RAS activation of adenylate cyclase in yeast. Cell 1990. 61, 329-340.
    69. Fedorcsak, I., and Ehrenberg, L. Effects of diethyl pyrocarbonate and methyl methanesulfonate on nucleic acids and nucleases. Acta Chemica Scandinavica 1966. 20,107-112.
    70. Feng, J.X., Ji, S.J., Shi, Y.H., Xu, Y., Wei, G., and Zhu, Y.X. Analysis of five differentially expressed gene families in fast elongating cotton fiber. Acta Biochimica et Biophysica Sinica 2004.36,51-56.
    71. Fenger, U., Hofmann, M., Galliot, B., and Schaller, H.C. The role of the cAMP pathway in mediating the effect of head activator on nerve-cell determination and differentiation in hydra. Mechanisms of Development 1994. 47, 115-125.
    72. Field, D.J. What is the goal of sensory coding? Neural Computation 1994. 6, 559-601.
    73. Field, J., Vojtek, A., Ballester, R., Bolger, G., Colicelli, J., Ferguson, K., Gerst, J., Kataoka, T., Michaeli, T., Powers, S., and et al. Cloning and characterization of CAP, the S. cerevisiae gene encoding the 70 kd adenylyl cyclase-associated protein. Cell 1990. 61, 319-327.
    74. Freeman, N.L., Chen, Z., Horenstein, J., Weber, A., and Field, J. An actin monomer binding activity localizes to the carboxyl-terminal half of the Saccharomyces cerevisiae cyclase-associated protein. The Journal of Biological Chemistry 1995. 270, 5680-5685.
    75. Freeman, N.L., Lila, T., Mintzer, K.A., Chen, Z., Pahk, A.J., Ren, R., Drubin, D.G., and Field, J. A conserved proline-rich region of the Saccharomyces cerevisiae cyclase-associated protein binds SH3 domains and modulates cytoskeletal localization. Molecular and Cellular Biology 1996. 16, 548-556.
    76. Fryxell, P.A. Morphology of the base of seed hairs of Gossypium. I. Gross morphology. Botanical Gazette 1963. 124,196-199.
    77. Fryxell, P.A. Morphology of the base of seed hairs of Gossypium. II. Comparative morphology. Botanical Gazette 1964.125,108-114.
    78. Fryxell, P.A. A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea 1992. 2, 108-165.
    79. Gerst, J.E., Ferguson, K., Vojtek, A., Wigler, M., and Field, J. CAP is a bifunctional component of the Saccharomyces cerevisiae adenylyl cyclase complex. Molecular and Cellular Biology 1991.11,1248-1257.
    80. Gieselmann, R., and Mann, K. ASP-56, a new actin sequestering protein from pig platelets with homology to CAP, an adenylate cyclase-associated protein from yeast. FEBS Letters 1992. 298, 149-153.
    81. Gipson, J. 1986. Teperature effects on growth, development and fiber properties. In Cotton Physiology, J. Maunery. and J. Stewart, eds (Memphis, TN: The Cotton Foundation), pp. 47-56.
    82. Gottwald, U., Brokamp, R., Karakesisoglou, I., Schleicher, M., and Noegel, A.A. Identification of a cyclase-associated protein (CAP) homologue in Dictyostelium discoideum and characterization of its interaction with actin. Molecular Biology of The Cell 1996. 7, 261-272.
    
    83. Graves, D.A., and Stewart, J.M. Analysis of the protein constituency of developing cotton fibres. Journal of Experimental Botany 1988. 39, 59-69.
    
    84. Hasenfratz, M.P., Tsou, C.L., and Wilkins, T.A. Expression of two related vacuolar H(+)-ATPase 16-kilodalton proteolipid genes is differentially regulated in a tissue-specific manner. Plant Physiology 1995. 108,1395-1404.
    
    85. Ho, H.Y., Rohatgi, R., Ma, L., and Kirschner, M.W. CR16 forms a complex with N-WASP in brain and is a novel member of a conserved proline-rich actin-binding protein family. Proceedings of the National Academy of Sciences of the United States of America 2001. 98, 11306-11311.
    
    86. Hockney, R.C. Recent developments in heterologous protein production in Escherichia coli. Trends in biotechnology 1994. 12, 456-463.
    
    87. Hsieh, Y.L. 1999. Structural development of cotton fibers and linkages to fiber quality. In Cotton Fibers: Developmental Biology, Quality Improvement, and Textile Processing, A.S. Basra, ed (New York: Haworth Press), pp. 137-165.
    
    88. Hsu, C.-Y, Jenkins, J.N., Saha, S., and Ma, D.P. Transcriptional regulation of the lipid transfer protein gene LTP3 in cotton fibers by a novel MYB protein. Plant Science 2005. 168,167-181.
    
    89. Hubberstey, A.V., and Mottillo, E.P. Cyclase-associated proteins: CAPactity for linking signal transduction and actin polymerization. The FASEB Journal 2002. 16,487-499.
    
    90. Hulskamp, M. Plant trichomes: a model for cell differentiation. Nature Reviews. Molecular Cell Biology 2004. 5, 471-480.
    
    91. Hiilskamp, M., Misbra, S., and Jurgens, G. Genetic dissection of trichome cell development in Arabidopsis. Cell 1994. 76,555-566.
    
    92. Humphries, J.A., Walker, A.R., Timmis, J.N., and Orford, S.J. Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1) gene. Plant Molecular Biology 2005. 57, 67-81.
    
    93. Huwyler, H.R., and Meier, H. Changes in the composition of cotton fibre cell walls during development. Planta 1979. 146, 635-642.
    
    94. Itoh, T. Fine structure and formation of cell walls of developing cotton fiber. Wood Research 1974.56,49-61.
    
    95. Jenkins, J.N., McCarty, J.C., Jr., and Wofford, T. 1995. B.t. cotton: a new era in cotton production. In Proceedings Beltwide Cotton Conference, National Cotton Council. (Memphis, TN, USA), pp. 171-173.
    
    96. Ji, S., Lu, Y, Li, J., Wei, G., Liang, X., and Zhu, Y. A beta-tubulin-like cDNA expressed specifically in elongating cotton fibers induces longitudinal growth of fission yeast. Biochemical and Biophysical Research Communications 2002. 296, 1245-1250.
    
    97. Ji, S.J., Lu, Y.C., Feng, J.X., Wei, G., Li, L., Shi, Y.H., Fu, Q., Liu, D., Luo, J.C., and Zhu, Y.X. Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucleic Acids Research 2003. 31, 2534-2543.
    
    98. John, M.E. An efficient method for isolation of RNA and from plants containing polyphenolics. Nucleic Acids Research 1992. 20,2381.
    
    99. John, M.E. Structural characterization of genes corresponding to cotton fiber mRNA, E6: reduced E6 protein in transgenic plants by antisense gene. Plant Molecular Biology 1996. 30, 297-306.
    
    100. John, M.E. 1999. Genetic engineering strategies for cotton fiber Modification. In Cotton fibers: Developmental Biology, Quality Improvement, and Textile Processing., A.S. Basra, ed (New York: Food Products Press), pp. 271-292.
    
    101. John, M.E., and Crow, L.J. Gene expression in cotton (Gossypium hirsutum L.) fiber:cloning of the mRNAs. Proceedings of the National Academy of Sciences of the United States of America 1992. 89, 5769-5773.
    
    102. Joshi, P.A., Stewart, J.M., and Graham, E.T. Ultrastructural localization of ATPase activity in cotton fiber during elongation. Protoplasma 1988.143,1-10.
    
    103. Joshi, PC, Wadhwani, A.M., and John, B.M. Morphological and embryological studies of Gossypium L. Proceedings of the National Institute of Sciences of the India 1967. 33, 37-93.
    
    104. Kane, J.F., and Hartiey, D.L. Formation of recombinant proteins in clusion bodies in Escherichia coli Tibtech 1988. 6, 95-102.
    
    105. Kawai, M., Aotsuka, S., and Uchimiya, H. Isolation of a cotton CAP gene: a homologue of adenylyl cyclase-associated protein highly expressed during fiber elongation. Plant Cell Physiology 1998. 39, 1380-1383.
    
    106. Kawamukai, M., Gerst, J., Field, J., Riggs, M., Rodgers, L., Wigler, M., and Young, D. Genetic and biochemical analysis of the adenylyl cyclase-associated protein, cap, in Schizosaccharomycespom.be. Molecular Biology of the Cell 1992. 3,167-180.
    
    107. Kessels, M.M., Engqvist-Goldstein, A.E., and Drubin, D.G. Association of mouse actin-binding protein 1 (mAbpl/SH3P7), an Src kinase target, with dynamic regions of the cortical actin cytoskeleton in response to Racl activation. Molecular Biology of the Cell 2000. 11, 393-412.
    
    108. Kim, H.J., and Triplett, B.A. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiology 2001. 127,1361-1366.
    
    109. Kim, H.J., and Triplett, B.A. Characterization of GhRacl GTPase expressed in developing cotton (Gossypium hirsutum L.) fibers. Biochimica et Biophysica Acta 2004.1679, 214-221.
    
    110. Kirik, V., Simon, M., Huelskamp, M., and Schiefelbein, J. The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis. Developmental Biology 2004a. 268, 506-513.
    
     111. Kirik, V., Simon, M., Wester, K., Schiefelbein, J., and Hulskamp, M. ENHANCER of TRY and CPC 2 (ETC2) reveals redundancy in the region-specific control of trichome development of Arabidopsis. Plant Molecular Biology 2004b. 55, 389-398.
    
    112. Kloth, R.H. Variability of malate dehydrogenase among cotton cultivars with differing fiber traits. Crop Science 1992. 32, 617-621.
    
    113. Kohel, R.J., Quisenberry, J.E., and Benedict, C.R. Fiber elongation and dry weight changes in mutant lines of cotton. Crop Science 1974. 14,471-474.
    
    114. Koorneef, M. The complex syndrome of ttg mutants. Arabidopsis Information Service 1981. 18, 45-51.
    
    115. Kost, B., Spielhofer, P., and Chua, N.H. A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. The Plant Journal 1998.16,393-401.
    
    116. Kost, B., Mathur, J., and Chua, N.H. Cytoskeleton in plant development. Current Opinion in Plant Biology 1999. 2, 462-470.
    
    117. Ksiazek, D., Brandstetter, H., Israel, L., Bourenkov, G.P., Katchalova, G, Janssen, K.P., Bartunik, H.D., Noegel, A.A., Schleicher, M., and Holak, T.A. Structure of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum. Structure 2003. 11, 1171-1178.
    
    118. Kumar, A., and Lindberg, U. Characterization of messenger ribonucleoprotein and messenger RNA from KB cells. Proceedings of the National Academy of Sciences of the United States of America 1972. 69, 681-685.
    
    119. Kurek, I., Kawagoe, Y., Jacob-Wilk, D., Doblin, M., and Delmer, D. Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. Proceedings of the National Academy of Sciences of the United States of America 2002. 99, 11109-11114.
    
    120. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970. 227, 680-685.
    
    121. Lang, A.G. The Origin of lint and fuzz hairs of cotton. Journal of Agricultural Research 1938. 56, 507-521.
    
    122. Larkin, J.C., Young, N., Prigge, M., and Marks, M.D. The control of trichome spacing and number in Arabidopsis. Development 1996. 122, 997-1005.
    
    123. Lee, J.J., Woodward, A.W., and Chen, Z.J. Gene expression changes and early events in cotton fibre development. Annals of Botany 2007. 100,1391-1401.
    
    124. Lee, J.J., Hassan, O.S., Gao, W., Wei, N.E., Kohel, R.J., Chen, X.Y., Payton, P., Sze, S.H., Stelly, D.M., and Chen, Z.J. Developmental and gene expression analyses of a cotton naked seed mutant. Planta 2005. 1-15.
    
    125. Lee, J.J., Hassan, O.S., Gao, W., Wei, N.E., Kohel, R.J., Chen, X.Y., Payton, P., Sze, S.H., Stelly, D.M., and Chen, Z.J. Developmental and gene expression analyses of a cotton naked seed mutant. Planta 2006. 223,418-432.
    126. Lee, M.G, Lewis, S.A., Wilde, C.D., and Cowan, N.J. Evolutionary history of a multigene family: an expressed human beta-tubulin gene and three processed pseudogenes. Cell 1983. 33, 477-487.
    
    127. Lehrer, S.S., and Kerwar, G. Intrinsic fluorescence of actin. Biochemistry 1972. 11,1211-1217.
    
    128. Li, C.H., ZHU, Y.P., Meng, Y.L., Wang, J.W., Xu, K.X., and Zhang, T.Z.e.a. Isolation of genes preferentially expressed in cotton fibers by cDNA filter arrays and RT-PCR. Plant Science 2002a. 163,1113-1120.
    
    129. Li, X., Wang, X.D., Zhao, X., and Dutt, Y. Improvement of cotton fiber quality by transforming the acsA and acsB genes into Gossypium hirsutum L. by means of vacuum infiltration. Plant Cell Report 2004. 22, 691-697.
    
    130. Li, X.B., Cai, L., Cheng, N.H., and Liu, J.W. Molecular characterization of the cotton GhTUBl gene that is preferentially expressed in fiber. Plant Physiology 2002b. 130, 666-674.
    
    131. Li, X.B., Fan, X.P., Wang, X.L., Cai, L., and Yang, W.C. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 2005a. 17, 859-875.
    
    132. Li, Y, Qian, Q., Zhou, Y, Yan, M., Sun, L., Zhang, M., Fu, Z., Wang, Y, Han, B., Pang, X., Chen, M., and Li, J. BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell 2003. 15, 2020-2031.
    
    133. Li, Y.L., Sun, J., and Xia, G.X. Cloning and characterization of a gene for an LRR receptor-like protein kinase associated with cotton fiber development. Molecular Genetics and Genomics 2005b.273,217-224.
    
    134. Liu, Y.G., Mitsukawa, N., Oosumi, T., and Whittier, R.F. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. The Plant Journal 1995. 8,457-463.
    
    135. Loguercio, L.L., and Wilkins, T.A. Structural analysis of a hmg-coA-reductase pseudogene: insights into evolutionary processes affecting the hmgr gene family in allotetraploid cotton (Gossypium hirsutum L.). Current Genetics 1998. 34, 241-249.
    
    136. Loguerico, L.L., Zhang, J.Q., and Wilkins, T.A. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.). Molecular & General Genetics 1999. 261, 660-671.
    
    137. Luo, M., Xiao, Y., Li, X., Lu, X., Deng, W., Li, D., Hou, L., Hu, M., Li, Y, and Pei, Y. GhDET2, a steroid 5alpha-reductase, plays an important role in cotton fiber cell initiation and elongation. The Plant Journal 2007. 51,419-430.
    
    138. Lupas, A., Van Dyke, M., and Stock, J. Predicting coiled coils from protein sequences. Science 1991.252,1162-1164.
    
    139. Ma, D.P., Liu, H.C., Tan, H., Creech, R.G., Jenkins, J.N., and Chang, Y.F. Cloning and characterization of a cotton lipid transfer protein gene specifically expressed in fiber cells. Biochimica et Biophysica Acta 1997. 1344,111-114.
    140. Matviw, H., Yu, G, and Young, D. Identification of a human cDNA encoding a protein that is structurally and functionally related to the yeast adenylyl cyclase-associated CAP proteins. Molecular and Cellular Biology 1992. 12, 5033-5040.
    
    141. Maunery., J., and Stewart, J. Cotton Physiology. 1986. (Memphis, TN: The Cotton Foundation).
    
    142. Meagher, R.B., and Williamson, R.E. 1994. The plant cytoskeleton. In Arabidopsis, E. Meyerowitz and C. Somerville, eds (Cold Spring Harbor: Cold Spring Harbor Laboratory Press, NY), pp. 1049-1084.
    
    143. Meinert, M.C., and Delmer, D.P. Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiology 1977. 59,1088-1097.
    
    144. Meredith, W.R.J. 1992. Improving fiber strength through genetics and breeding. In Cotton Fiber Cellulose: Structure Function and Utilization Conference., C.R. Benedict, ed (Savannah, GA: Natl. Cotton Council Am., Memphis, TN.), pp. 289-302.
    
    145. Mishra, R., Wang, H.Y., Yadav, N.R., and Wilkins, T.A. Development of a highly regenerable elite Acala cotton (Gossypium hirsutum cv. Maxxa) - a step towards genotype - independent. Plant Cell, Tissue and Organ Culture 2003. 73, 21-35.
    
    146. Nicol, F., His, I., Jauneau, A., Vernhettes, S., Canut, H., and Hofte, H. A plasma membrane-bound putative endo-l,4-beta-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. The EMBO Journal 1998.17, 5563-5576.
    
    147. Nielsen, H., Engelbrecht, J., Brunak, S., and von Heijne, G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering 1997. 10, 1-6.
    
    148. Nishida, Y., Shima, F., Sen, H., Tanaka, Y., Yanagihara, C., Yamawaki-Kataoka, Y., Kariya, K., and Kataoka, T. Coiled-coil interaction of N-terminal 36 residues of cyclase-associated protein with adenylyl cyclase is sufficient for its function in Saccharomyces cerevisiae Ras pathway. The Journal of Biological Chemistry 1998. 273, 28019-28024.
    
    149. Noda, K., Glover, B.J., Linstead, P., and Martin, C. Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature 1994. 369, 661-664.
    
    150. Notle, K.D., Hendrix, D.L., Radin, J.W, and Koch, K.E. Sucrose synthase localization during initiation of seed development and trichome differentiation in cotton ovules. Plant Physiology 1995. 109,1285-1293.
    
    151. O'kelley, J.C., and Carr, PH. 1953. Elongation of the cotton fiber. In Growth and differentiation in plants., W. Loomis, ed, pp. 55-68.
    
    152. Oppenheimer, D.G., Herman, PL., Sivakumaran, S., Esch, J., and Marks, M.D. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell 1991. 67, 483-493.
    
    153. Orford, S.J., and Timmis, J.N. Specific expression of an expansin gene during elongation of cotton fibres. Biochimica et Biophysica Acta 1998.1398, 342-346.
    
    154. Orford, S.J., and Timmis, J.N. Expression of a lipid transfer protein gene family during cotton fibre development. Biochimica et Biophysica Acta 2000.1483, 275-284.
    
    155. Pardee, J.D., and Spudich, J.A. Purification of muscle actin. Methods in Enzymology 1982. 85 Pt B, 164-181.
    
    156. Pathsarathy, M.V., Perdue, T.D., Witzmun, A., and Alvernaz, J. Actin network as a normal component of the cytoskeleton in many vascular plant cells.. American Journal of Botany 1985. 72, 1318-1323.
    
    157. Payne, C.T., Zhang, F., and Lloyd, A.M. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics 2000. 156, 1349-1362.
    
    158. Payne, T., Clement, J., Arnold, D., and Lloyd, A. Heterologous myb genes distinct from GL1 enhance trichome production when overexpressed in Nicotiana tabacum. Development 1999. 126,671-682.
    
    159. Pear, J.R., Kawagoe, Y., Schreckengost, W.E., Delmer, D.P., and Stalker, D.M. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proceedings of the National Academy of Sciences of the United States of America 1996. 93, 12637-12642.
    
    160. Peng, L., Hocart, C.H., Redmond, J.W., and Williamson, R.E. Fractionation of carbohydrates in Arabidopsis root cell walls shows that three radial swelling loci are specifically involved in cellulose production. Planta 2000. 211,406-414.
    
    161. Pillonel, C, Buchala, A.J., and Meier, H. Glucan synthesis by intact cotton fibers fed with different precursors at the stages of primary and secondary wall formation. Planta 1980. 149, 306-312.
    
    162. Potikha, T.S., Collins, C.C., Johnson, D.I., Delmer, D.P., and Levine, A. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiology 1999.119,849-858.
    
    163. Preuss, M.L., Kovar, D.R., Lee, Y.R., Staiger, C.J., Delmer, D.P., and Liu, B. A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers. Plant Physiology 2004. 136, 3945-3955.
    
    164. Qin, Y.M., Hu, C.Y., Pang, Y, Kastaniotis, A.J., Hiltunen, J.K., and Zhu, Y.X. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell 2007a. 19, 3692-3704.
    
    165. Qin, Y.M., Pujol, F.M., Hu, C.Y., Feng, J.X., Kastaniotis, A.J., Hiltunen, J.K., and Zhu, Y.X. Genetic and biochemical studies in yeast reveal that the cotton fibre-specific GhCER6 gene functions in fatty acid elongation. Journal of Experimental Botany 2007b. 58,473-481.
    
    166. Qin, Y.M., Ma Pujol, R, Shi, Y.H., Feng, J.X., Liu, Y.M., Kastaniotis, A.J., Hiltunen, J.K., and Zhu, Y.X. Cloning and functional characterization of two cDNAs encoding NADPH-dependent 3-ketoacyl-CoA reductased from developing cotton fibers. Cell Research 2005. 15, 465-473.
    167. Qualmann, B., Kessels, M.M., and Kelly, R.B. Molecular links between endocytosis and the actin cytoskeleton. The Journal of Cell Biology 2000. 150, F111-116.
    168. Ramey, H.H. 1986. Stress influences on fiber development. In Cotton Physiology, J. Maunery. and J. Stewart, eds (Memphis, TN: The Cotton Foundation), pp. 351-360.
    169. Ramsey, J.C., and Berlin, J.D. Ultrastructure of early stages of cotton fiber differentiation. Botanical Gazette 1976. 137,11-19.
    170. Ratajczak, R. Structure, function and regulation of the plant vacuolar H(+)-translocating ATPase. Biochimica et Biophysica Acta 2000. 1465,17-36.
    171. Roberts, A.W., Frost, A.O., Roberts, E.M., and Haigler, C.H. Roles of microtubules and cellulose microfibril assembly in the localization of secondary-cell-wall deposition in developing tracheary elements. Protoplasma 2004. 224, 217-229.
    172. Roberts, E.M., Nunna, R.R., Huang, J.Y., Trolinder, N.L., and Haigler, C.H. Effects of cycling temperatures on fiber metabolism in cultured cotton ovules. Plant Physiology 1992. 100, 979-986.
    173. Rong, J., Abbey, C., Bowers, J.E., Brubaker, C.L., Chang, C., Chee, P.W., Delmonte, T.A., Ding, X., Garza, J.J., Marler, B.S., Park, C.H., Pierce, G.J., Rainey, K.M., Rastogi, V.K., Schulze, S.R., Trolinder, N.L., Wendel, J.F., Wilkins, T.A., Williams-Coplin, T.D., Wing, R.A., Wright, R.J., Zhao, X., Zhu, L., and Paterson, A.H. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 2004.166, 389-417.
    174. Ruan, Y.L., and Chourey, P.S. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds. Plant Physiology 1998. 118, 399-406.
    175. Ruan, Y.L., Llewellyn, D.J., and Furbank, R.T. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K~+ transporters and expansin. Plant Cell 2001.13,47-60.
    176. Ruan, Y.L., Xu, S.M., White, R., and Furbank, R.T. Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover. Plant Physiology 2004. 136, 4104-4113.
    177. Ryser, U. Cell wall biosyhthesis in differentiating cotton fibres. European Journal of Cell Biology 1985. 39, 236-256.
    178. Sambrook, J., and Russell, D.W. Molecular Cloning: A laboratory manual. 2001. (New York: Cold Spring Harbor Laboratory Press).
    179. Saxena, I.M., Lin, F.C., and Brown, R.M., Jr. Identification of a new gene in an operon for cellulose biosynthesis in Acetobacter xylinum. Plant Molecular Biology 1991. 16, 947-954.
    180. Scheible, W.R., and Pauly, M. Glycosyltransferases and cell wall biosynthesis: novel players and insights. Current Opinion in Plant Biology 2004. 7, 285-295.
    
    181. Schindelman, G., Morikami, A., Jung, J., Baskin, T.I., Carpita, N.C., Derbyshire, P., McCann, M.C., and Benfey, P.N. COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes & Development 2001. 15, 1115-1127.
    
    182. Schnittger, A., and Hulskamp, M. Trichome morphogenesis: a cell-cycle perspective. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 2002. 357, 823-826.
    
    183. Schubert, A.M., Benedict, C.R., Berlin, J.D., and Kohel, R.J. Cotton fiber development-Kinetics of cell elongation and secondary wall thickening. Crop Science 1973. 13, 704-709.
    184. Seagull, R.W. A quantitative electron microscopic study of changes in microtubule arrays and wall microfibril orientation during in-vitro cotton fiber development. Journal of Cell Science 1992. 101, 561-577.
    185. Senchina, D.S., Alvarez, I., Cronn, R.C., Liu, B., Rong, J., Noyes, R.D., Paterson, A.H., Wing, R.A., Wilkins, T.A., and Wendel, J.F. Rate variation among nuclear genes and the age of polyploidy in Gossypium. Molecular Biology and Evolution 2003. 20, 633-643.
    186. Serna, L., and Martin, C. Trichomes: different regulatory networks lead to convergent structures. Trends in Plant Science 2006. 11, 274-280.
    187. Shi, Y.H., Zhu, S.W., Mao, X.Z., Feng, J.X., Qin, Y.M., Zhang, L., Cheng, J., Wei, L.P., Wang, Z.Y., and Zhu, Y.X. Transcriptome Profiling, Molecular Biological, and Physiological Studies Reveal a Major Role for Ethylene in Cotton Fiber Cell Elongation. Plant Cell 2006. 18, 651-664.
    188. Shimizu, Y., Aotsuka, S., Hasegawa, O., Kawada, T., Sakuno, T., Sakai, F., and Hayashi, T. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells. Plant Cell Physiology 1997. 38, 375-378.
    189. Silk, W.K. Quantitative descriptions of development. Annual Review of Plant Physiology 1984. 35,479-518.
    190. Simpson, G.G., and Filipowicz, W. Splicing of precursors to mRNA in higher plants: mechanism, regulation and sub-nuclear organisation of the spliceosomal machinery. Plant Molecular Biology 1996.32,1-41.
    191. Smart, L.B., Vojdani, F., Maeshima, M., and Wilkins, T.A. Genes involved in osmoregulation during turgor-driven cell expansion of developing cotton fibers are differentially regulated. Plant Physiology 1998. 116, 1539-1549.
    192. Smith, C.W., and Cothren, J.T. Cotton: Origin, History, Tecnology and Production. 1999. (New York: John Wiley & Sons, Inc.).
    193. Sohn, R.H., and Goldschmidt-Clermont, P.J. Profilin: at the crossroads of signal transduction and the actin cytoskeleton. Bioessays 1994. 16,465-472.
    194. Song, P., and Allen, R.D. Identification of a cotton fiber-specific acyl carrier protein cDNA by differential display. Biochimica et Biophysica Acta 1997.1351, 305-312.
    195. Stader, J.A., and Silhavy, T.J. Engineering Escherichia coli to secrete heterologous gene products. Methods in Enzymology 1990. 185, 166-187.
    196. Stevenson, V.A., and Theurkauf, W.E. Actin cytoskeleton: putting a CAP on actin polymerization. Current Biology 2000. 10, R695-697.
    197. Stewart, J. Fibre initiation on the cotton ovule (Gossypium hirsutum). American Journal of Botany 1975. 62, 723-730.
    198. Su, L.J., Brenowitz, M., and Pyle, A.M. An alternative route for the folding of large RNAs: apparent two-state folding by a group II intron ribozyme. Journal of Molecular Biology 2003. 334, 639-652.
    199. Sun, J., Li, Y.L., Wang, R.H., and Xia, G.X. [Identification of genes that are specifically/preferentially expressed in developing cotton fibers by mRNA fluorescence differential display (FDD)]. Sheng Wu Gong Cheng Xue Bao 2004. 20, 39-42.
    200. Suo, J., Liang, X., Pu, L., Zhang, Y., and Xue, Y. Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). Biochimica et Biophysica Acta 2003. 1630, 25-34.
    201. Swiston, J., Hubberstey, A., Yu, G., and Young, D. Differential expression of CAP and CAP2 in adult rat tissues. Gene 1995.165, 273-277.
    202. Szymanski, D.B., Lloyd, A.M., and Marks, M.D. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends in Plant Science 2000. 5, 214-219.
    203. Taliercio, E.W., and Boykin, D. Analysis of gene expression in cotton fiber initials. BMC Plant Biology 2007. 7, 22.
    204. Tamura, K., Dudley, J., Nei, M., and Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 2007. 24,1596-1599.
    205. Tan, H., Creech, R.G., Jenkins, J.N., Chang, Y.F., and Ma, D.P. Cloning and expressionanalysis of two cotton (Gossypium hirsutum L.) genes encodingcell wall proline-rich proteins. DNA Seq 2001.12,367-380.
    206. Taylor, N.G., Laurie, S., and Turner, S.R. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 2000. 12, 2529-2540.
    207. Taylor, N.G., Scheible, W.R., Cutler, S., Somerville, C.R., and Turner, S.R. The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 1999. 11,769-780.
    208. Thimann, K.V., and Biradivolu, R. Actin and the elongation of plant cells. 2. The role of divalent ions.. Protoplasma 1994.183, 5-9.
    209. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 1997. 25,4876-4882.
    210. Tiwavi, S.C., and Wilkins, T.A. Cotton (Gossypium hirsutum) seed trichomes expand via diffuse growing mechanism. Canadian Journal of Biology 1995. 73, 746-757.
    211.Toda, T, Uno, I., Ishikawa, T., Powers, S., Kataoka, T., Broek, D., Cameron, S., Broach, J., Matsumoto, K., and Wigler, M. In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 1985.40, 27-36.
    
    212. Tu, L.L., Zhang, X.L., Liang, S.G., Liu, D.Q., Zhu, L.F., Zeng, F.C., Nie, Y.C., Guo, X.P., Deng, F.L., Tan, J.F., and Xu, L. Genes expression analyses of sea-island cotton (Gossypium barbadense L.) during fiber development. Plant Cell Report 2007. 26,1309-1320.
    213. Turley, R.B., and Ferguson, D.L. 1995. Profiles of ovule protein during early stages of fiber initiation. In USA National Cotton Council of America, pp. 1092.
    214. Turley, R.B., and Kloth, R.H. Identification of a third fuzzless seed locus in upland cotton (Gossypium hirsutum L.). The Journal of Heredity 2002. 93, 359-364.
    215. Vantard, M., and Blanchoin, L. Actin polymerization processes in plant cells. Current Opinion in Plant Biology 2002. 5, 502-506.
    216. Vojtek, A., Haarer, B., Field, J., Gerst, J., Pollard, T.D., Brown, S., and Wigler, M. Evidence for a functional link between profilin and CAP in the yeast 5. cerevisiae. Cell 1991. 66, 497-505.
    217. Vojtek, A.B., and Cooper, J.A. Identification and characterization of a cDNA encoding mouse CAP: a homolog of the yeast adenylyl cyclase associated protein. Journal of Cell Science 1993. 105 (Pt 3), 777-785.
    218. Wan, C.Y., and Wilkins, T.A. Isolation of multiple cDNAs encoding the vacuolar H(+)-ATPase subunit B from developing cotton (Gossypium hirsutum L.) ovules. Plant Physiology 1994a. 106, 393-394.
    219. Wan, C.Y., and Wilkins, T.A. A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Analytical Biochemistry 1994b. 223, 7-12.
    220. Wang, H.Y., Yu, Y., Chen, Z.L., and Xia, G.X. Functional characterization of Gossypium hirsutum profilin 1 gene (GhPFNl) in tobacco suspension cells Characterization of in vivo functions of a cotton profilin gene. Planta 2005. 222, 594-603.
    221. Wang, S., Wang, J.W., Yu, N., Li, C.H., Luo, B., Gou, J.Y., Wang, L.J., and Chen, X.Y. Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 2004.16, 2323-2334.
    222. Werker, E. Trichome diversity and development. Advances in Botanical Research 2000. 31,1-35.
    223. Whittaker, D.J., and Triplett, B.A. Gene-specific changes in alpha-tubulin transcript accumulation in developing cotton fibers. Plant Physiology 1999. 121,181-188.
    224. Wilkins, T.A. Vacuolar H(+)-ATPase 69-kilodalton catalytic subunit cDNA from developing cotton (Gossypium hirsutum) ovules. Plant Physiology 1993. 102, 679-680.
    225. Wilkins, T.A., and Jernstedt, J.A. 1999. Molecular genetics of developing cotton fibers. In Cotton Fibers:Developmental Biology,Quality Improvement,and Textile Processing., A.S. Basra, ed (New York: Haworth Press), pp. 231-270.
    226. Wilkins, T.A., and Arpat, A.B. The cotton fiber transcriptome. Physiologia Plantarum 2005. 124, 295-300.
    227. Wu, Y., Machado, A.C., White, R.G., Llewellyn, D.J., and Dennis, E.S. Expression profiling identifies genes expressed early during lint fibre initiation in cotton. Plant Cell Physiology 2006. 47,107-127.
    228. Wu, Y, Llewellyn, D.J., White, R., Ruggiero, K., Al-Ghazi, Y, and Dennis, E.S. Laser capture microdissection and cDNA microarrays used to generate gene expression profiles of the rapidly expanding fibre initial cells on the surface of cotton ovules. Planta 2007. 226,1475-1490.
    229. Xu, W.L., Wang, X.L., Wang, H., and Li, X.B. Molecular characterization and expression analysis of nine cotton GhEF1A genes encoding translation elongation factor 1A. Gene 2007. 389, 27-35.
    230. Yang, S.S., Cheung, E., Lee, J.J., Ha, M., Wei, N.E., Sze, S.H., Stelly, D.M., Thaxton, P., Triplett, B., Town, C.D., and Jeffrey Chen, Z. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. The Plant Journal 2006. 47,761-775.
    231. Yu, G., Swiston, J., and Young, D. Comparison of human CAP and CAP2, homologs of the yeast adenylyl cyclase-associated proteins. Journal of Cell Science 1994. 107 (Pt 6), 1671-1678.
    232. Yu, X., Zhu Yongqing, Lu Shan, Zhang Tianzhen, Chen Xiaoya, and Xu Zhihong. A comparative analysis of a fuzzless-lintless mutant of Gossypium hirsutum L. cv. Xu-142. Science in China (Series C) 2000. 43, 623-630.
    233. Zelicof, A., Protopopov, V., David, D., Lin, X.Y., Lustgarten, V., and Gerst, J.E. Two separate functions are encoded by the carboxyl-terminal domains of the yeast cyclase-associated protein and its mammalian homologs. Dimerization and actin binding. The Journal of Biological Chemistry 1996. 271, 18243-18252.
    234. Zhang, F., Gonzalez, A., Zhao, M., Payne, C.T., and Lloyd, A. A network of redundant bHLH proteins functions in all TTG1 -dependent pathways of Arabidopsis. Development 2003. 130, 4859-4869.
    235. Zhao, G.R., and Liu, J.Y. Isolation of a cotton RGP gene: a homolog of reversibly glycosylated polypeptide highly expressed during fiber development. Biochimica et Biophysica Acta 2002. 1574,370-374.
    236. Zhao, G.R., Liu, J.Y., and Du, X.M. Molecular cloning and characterization of cotton cDNAs expressed in developing fiber cells. Bioscience Biotechnology Biochemistry 2001. 65, 2789-2793.
    237. Zhu, Y.Q., Xu, K.X., Luo, B., Wang, J.W., and Chen, X.Y. An ATP-binding cassette transporter GhWBCl from elongating cotton fibers. Plant Physiology 2003. 133, 580-588.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700