Eu(Ⅱ)或Eu(Ⅲ)激发的偏磷酸盐的合成、发光及其在发光二极管中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1996年,第一支白光LED问世后,由于其寿命长、节能、绿色环保照明等显著优点被喻为新一代照明光源。但由于目前应用于~ 400 nm近紫外-紫外芯片上的三基色荧光粉主要还是传统的荧光粉,这些传统的荧光粉在近紫外区激发的光效不高,并且其中的绿色荧光粉和红色荧光粉均为硫化物,稳定性差,在制备和使用过程中容易对环境造成污染,使得白光LED发光效率和使用寿命不易提高。因此,研究新型的InGaN-LED用荧光粉具有重要的学术意义和实际应用前景。本学位论文就是寻找适合近紫外InGaN基荧光转换型LED用的新型、高效、稳定的荧光粉,分别研究了能适合于近紫外InGaN基荧光转换型白光LED用的稀土离子Eu(Ⅱ/Ⅲ)掺杂的无机荧光粉,并利用XRD(X-射线衍射对其结构进行表征,详细研究其光致发光性能,最后,筛选出荧光性能较好的化合物与近紫外InGaN芯片结合,制成LED,探讨其发光性能。本学位论文共分6章撰写。
     第1章首先介绍白光二极管的发展历程,综述了当前白光LED用荧光粉的研究现状并简述了稀土发光材料的研究进展。最后阐述了本学位论文的选题依据以及研究内容。
     第2章采用高温固相法制备了Eu~(3+)离子掺杂系列Y_(1-x)Eu_x(PO_3)_3 (0≤x≤1)红色荧光粉,采用XRD和荧光光谱对其结构及荧光性质进行了表征。结果表明在600℃~ 900℃温度范围内,均可得到单一的Y(PO_3)_3、Eu(PO_3)_3纯相,我们选择800℃条件下焙烧所得的样品,详细的研究其光致发光性能,结果得出当x = 1时其发光最强。
     第3章采用高温固相法制备了Eu~(3+)离子掺杂BaCa_(1-x)(PO_3)_4:xEu~(3+)系列荧光粉,并在对其合成和表征的基础上进行了Li+离子离子共掺杂的研究工作,制备系列BaCa_(0.9-x)Eu_(0.1)Li_x(PO_3)_4红色荧光粉,并用XRD和荧光光谱对其结构及荧光性质进行了表征。结果显示,在得到纯相的前提下,BaCa_(1-x)(PO_3)_4:xEu~(3+)荧光粉中Eu~(3+)掺杂含量为0.10时发光强度最高,当Li~+掺杂浓度为0.15时,荧光粉BaCa0.75Eu0.1Li0.15(PO_3)_4的发光强度最高,并且通过Li~+的共掺杂,在补偿电荷的同时,也增强了荧光粉的发光强度。
     第4章采用CO弱还原气氛高温固相法制备了Eu~(2+)、Mn~(2+)掺杂系列Ba_(1-x)EuxCa (PO_3)_4,Ba_(0.85)Eu_90.15)Ca_(1-x)Mn_x(PO_3)_4荧光粉,并研究了其光致发光性质。结果表明,掺杂Eu~(2+)的Ba_(1-x)Eu_xCa (PO_3)_4的荧光粉为纯相的前提下,在此体系中随着Eu~(2+)离子掺杂浓度的增加,发光强度也在增加,当掺杂浓度为0.15时最强,激发光谱没有明显的改变。在Ba_(0.85)Eu_(0.15)Ca_(1-x)Mn_x(PO_3)_4体系中,随着Mn~(2+)离子浓度的增加,发生了能量的传递。
     第5章研究了所制备的荧光粉在近紫外InGaN基白光LED中的应用。将制备所得到的性能较好的单色荧光粉Eu(PO_3)_3 , BaCa_(0.9)(PO_3)_4:0.1Eu~(3+) ,BaCa_(0.75)Eu_(0.1)Li_(0.15)(PO_3)_4分别于~395 nm芯片结合制作红光LED。
     第6章总结了本学位论文的主要工作,并根据工作的进展和存在的不足,对今后近紫外光激发光转换型LED用的稀土荧光粉的研究作了简要的展望。
Since the first white-light emitting diode (WLED) came into being in 1996, more and more interests have been focused on them because they have a lot of advantages on long lifetime, lower consumption, and eco-friendly etc. However, the current tri-color phosphors for NUV LEDs are mainly some traditional phosphors. These phosphors show lower excitation efficiency in NUV region. Furthermore, the green and red phosphors show low stabilities and cause some environmental problems both in preparation and in LED application as they contain sulfur element, which would release toxic sulfur oxides in use. All the above reasons cause the difficulties to improve luminescence efficiency and operation lifetime of white LEDs. Hence it is academic interesting and shows application potential to improve traditional phosphors or search for new phosphors applied in near UV LEDs. The purpose of this thesis is to search for novel phosphors which have high luminescence efficiency and stability for NUV LEDs. To overcome the defects and shortages of the currently used phosphors, Eu(Ⅱ/Ⅲ) doped complex oxides were synthesized in the NUV WLEDs in this thesis. The structure and morphology of the phosphors were characterized by X-ray diffraction(XRD), their photoluminescent properties were investigated. Finally, LEDs were fabricated by coating the chosen phosphors onto the NUV-emitting InGaN chips. The thesis consists of the following six chapters.
     In the first chapter, the development of WLEDs illumination was briefly introduced. The development of white LEDs and the current phosphors for near UV LEDs were reviewed. At last, the research subject and content of thesis were designed.
     In the second chapter, a series of Eu~(3+) doped Y_(1-x)Eux(PO_3)_3 (0≤x≤1) phosphors were prepared by solid state reactions. The XRD and photo-luminescent properties of the phosphors were investigated. The results show that, the obtained phosphors were pure-phase when the sample Y_(1-x)Eux(PO_3)_3 calcinated at the temperature range between 600 and 900℃, then we studied the photoluminescent properties of the samples calcinated at 800℃in detail, and the samples have a best photoluminescent properties can be obtained when x=1.
     In the third chapter,a series of Eu~(3+) doped BaCa_(1-x)(PO_3)_4:xEu~(3+) phosphors were prepared by solid state reactions, a series of Li+ and Eu~(3+) codoped BaCa(PO_3)_4 were prepared in the following time. The XRD and photo-luminescent properties of the phosphors were investigated. The results show that, the emission intensity of BaCa_(0.9)(PO_3)_4:0.1Eu~(3+) among the BaCa_(1-x)(PO_3)_4:xEu~(3+) is the highest, the photo-luminescence intensity of BaCa_(0.75)Eu_(0.1)Li_(0.15)(PO_3)_4 is the highest in BaCa_(0.9-x)Eu_(0.1)Li_x(PO_3)_4 , the results show that the photo-luminescence can be enhanced by doping Li~+ ions. Furthermore, the test results of BaCa_(0.9-x)Eu_(0.1)Li_x(PO_3)_4 phosphors show that the doping of Li+ ions under some concentration can obviously enhance the photo-luminescence intensity, with the compensation for charge.
     In the fourth chapter, a series of phosphors Ba_(1-x)Eu_xCa(PO_3)_4 ,Ba_(0.85)Eu_(0.15)Ca_(1-x)Mnx(PO_3)_4 were prepared in CO ambience at 700℃and their photoluminescent properties were studied. With the increase of the doped Eu~(2+) concentration, the resultsindicate that the excitation spectra of the phosphors have no obvious change, but the photoluminescent intensity continually enhanced. It began to decreased when x=0.15. With the increase in Mn~(2+), energy transfer can be observed in Ba0.85Eu0.15Ca_(1-x)Mnx(PO_3)_4.
     In the fifth chapter, in order to investigate the application of the synthesized phosphors in NUV-InGaN-based white LED, red LEDs were fabricated by coating the phosphors Eu(PO_3)_3 , BaCa_(0.9)(PO_3)_4:0.1Eu~(3+) , BaCa_(0.75)Eu_(0.1)Li_(0.15)(PO_3)_4 onto the NUV-emitting InGaN chips.,
     In the last of this thesis, the main research results were summarized and a brief prospect on the phosphors applied in NUV InGaN-based LED was made.
引文
[1]张国义,陈志忠,固态照明光源的基石——氮化镓基白光发光二极管,物理学和高新技术, 2004, 33(11):833-842.
    [2]魏戈兵,现代照明光源的发展趋势,灯与照明, 2003, 27(3):26-29.
    [3]王声学,吴广宁,蒋伟,等.LED原理及其照明应用[J].灯与照明, 2006, 30(4): 32-35.
    [4] N. Holonyak Jr, S. F. Bevaqua, Coherent (visible) light emission from Ga(As1-xPx) junctions. Appl . Phys. Lett. 1962,1: 82-83
    [5]尹长安,赵成久,刘学彦,侯凤勤,郑岩,卢景贵,蒋大鹏,申德振,白光LED的最新进展.发光学报. 2000, 21: 380-382..
    [6] T. Niina, Gallium phosphide red light emitting diodes produced by a rotating boatsystem of liquid phase epitaxial growth. J. Electrochem. Soc. 1977,124 :1285-1289.
    [7] H. P.Maruska, J. J. Tietjen, Preparation and properties of vapor-deposited single-crystalline gallium nitride. Appl. Phys. Lett. 1969, 15: 367-369.
    [8] H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Metalorganic vapor phase epitaxial growth of a high quality gallium nitride (GaN) film using an aluminum nitride (AlN) buffer layer. Appl. Phys. Lett., 1986, 48: 353-355.
    [9] H. Sugawara, M. Ishikawa, G. Hatakoshi, High-efficiency indium gallium aluminum phosphide/gallium arsenide visible light-emitting diodes. Appl. Phys. Lett., 1991, 58: 1010-1012.
    [10] S. Nakamura, M. Senoh, T. Mukai, High-power InGaN/GaN double-heterostructure violet light emitting diodes. Appl. Phys. Lett. 1993, 62:2390-2392.
    [11] J. Cao, D. Pavlidis, Y. Park, J. Singh, A. Eisenbach, Improved quality GaN by growth on compliant silicon-on-insulator substrates using metalorganic chemical vapor deposition. J. Appl. Phys., 1998, 83:3829-3834.
    [12] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, S. L. Rudaz, Illumination With Solid State Lighting Technology. IEEE J. Select. Top. Quant. Elect. 2002, 8: 310-320.
    [13] S. Nakamura, T. Mukai, M. Senoh. Candela - class high brightness InGaN/AlGaN double-heterostructure blue light emitting diodes [J] App. . Phys. Lett , 1994, 64(13): 1687-1689.
    [14]徐修冬,许贵真,吴占超,等.白色发光二极管用荧光粉研究进展(I)——蓝光或近紫外光发射半导体芯片激发的荧光粉[J].中山大学学报(自然科学版), 2007, 46(5): 124-128.
    [15]徐修冬,许贵真,吴占超,等.白色发光二极管用荧光粉研究进展(II)——近紫外光发射半导体芯片激发的荧光粉(续)与器件研究[J].中山大学学报(自然科学版), 2007, 46(6): 125-130.
    [16] T. Nishida, T. Ban, N. Kobayashi, High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors, Appl. Phys. Lett., 2003, 82: 3817.
    [17]皇家菲利浦电子有限公司.包括发光二极管和荧光发光二极管的混合白光源.荷兰: CN00803336, 2000-11-17.
    [18] S. Muthu, F. P. Schuurmans, M. D. Pashley, Red, Green, and Blue LEDs for White Light Illumination. IEEE. J. Sele. Top Quan. Electron., 2002, 8: 333-338.
    [19] S. J. Chang, L. W. Wu, Y. K. Su, C. H. Kuo, W. C. Lai, Y. P. Hsu, J. K. Sheu, J. F. Chen, J. M. Tsai, Si and Zn co-doped InGaN-GaN white light-emitting diodes. IEEE. Trans. Electron Dev., 2003, 50: 519-521.
    [20]尹长安,赵成久,刘学彦,侯凤勤,郑岩,卢景贵,蒋大鹏,申德振,白光LED的最新进展.发光学报. 2000, 21: 380-382.
    [21]彭万华,我国超高亮度及白光LED产业的现状与发展.激光与红外., 2005, 35: 223-227.
    [22]王晓明,郭伟玲,高国,沈光地, LED-新一代照明光源.现代显示. 2005, 53: 15-19.
    [23]刘行仁,薛胜薜,黄德森,林秀华,白光LED现状和问题.光源与照明. 2003, 3: 4-8.
    [24]李建宇,稀土发光材料及其应用.北京:化学工业出版社. 2003,14.
    [25] G.. P. Vissokov, Phase machemical technology for high-dispersion products. J. Mater. Sci.,1988, 232: 415-418.
    [26]苏文斌,谷学新,邹洪,朱若华,稀土元素发光特性及其应用.化学研究,2001, 12 (4): 55-59
    [27]徐叙瑢,苏勉增.发光学与发光材料.北京:化学工业出版社.2004,p261.
    [28] C. R. Ronda, T. Jüstel, H. Nikol, Rare earth phosphors fundamentals and applications. J. Alloy. Compd., 1998, 275-277: 669-676.
    [29] T. Jüstel, H. Nikol, C. Ronda, New Developments in the Field of Luminescent Materials for Lighting and Displays. Angwe. Chem. Int. Ed., 1998, 37: 3084-3103
    [30] J.-H. Yum, S.-Y. Seo, S. Lee, Y.-E. Sung, Y3Al5O12: Ce0.05 Phosphor on Gallium Nitride for White Light Diodes. J. Electrochem. Soc., 2003, 150: H47-H52.
    [31] S. Lee, S.Y. Seo, Optimization of Yttrium Aluminum Garnet: Ce3+ Phosphors for White Light-Emitting Diodes by Combinatorial Chemistry Method. J. Electrochem. Soc., 2002, 149: J85-J88.
    [32]刘如熹,石景仁,白光发光二极管用钇铝石榴石萤光粉配方与机制研究,中国稀土学报, 2002, 20: 495-501.
    [33] T. Tamura, T. Setomoto, T. Taguchi, Illumination characteristics of lighting array using 10 candela-class white LEDs under AC 100V operation, J. Lumin, 2000, 87-89: 1180-1182.
    [34]徐叙瑢,苏勉增,发光学与发光材料.北京:化学工业出版社. 2004,p367
    [35]杨遇春.稀土漫谈.化学工业出版社. 1999,p74.
    [36]徐叙瑢,苏勉增.发光学与发光材料.北京:化学工业出版社. 2004, p323
    [37]李奇,陈光巨,材料化学,北京:高等教育出版社, 2004.
    [38]天津中环三津有限公司.一种发白光和绿光的高亮度发光二极管.中国: CN2498747Y, 2002-07-03.
    [39]徐叙瑢,苏勉增,发光学与发光材料.北京:化学工业出版社. 2004,p323-325
    [40]谢安,袁曦明.白光LED用稀土红色荧光粉的研究进展[J].化工新型材料, 2008, 36(12): 14-17.
    [41] S. Neeraj, N. Kijima, A.K. Cheetham, Novel Red Phosphors for Solid– state Lighting: The System NaM(WO4)2-x(MoO4)x: Eu3+ (M=Gd, Y, Bi). Chem. Phys. Lett., 2004, 387: 2-6.
    [42] S. J. Chang, L. W. Wu, Y. K. Su, C. H. Kuo, W. C. Lai, Y. P. Hsu, J. K. Sheu, J. F. Chen, J. M. Tsai, Si and Zn co-doped InGaN-GaN white light-emitting diodes. IEEE. Trans. Electron Dev., 2003, 50: 519-521.
    [43]徐叙瑢,苏勉增.发光学与发光材料.北京:化学工业出版社. 2004,p289
    [44] V. Natarajan, M. K. Bhide, A. R. Dhobale, S. V. Godbole, T. K. Seshagiri, Photoluminescence, thermally stimulated luminescence and electron paramagnetic resonance of europium-ion doped strontium pyrophosphate. Mater. Res. Bull. 2004, 39: 2065.
    [45] Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazaki, T. Mukai, Phosphor-conversion white light emitting diode using InGaN near-ultraviolet chip. Jpn. J. Appl. Phys. Part 2, 2002, 41, L371.
    [46] W. J. Yang, T. M. Chen, White-light generation and energy transfer in SrZn2 (PO4)2: Eu, Mn phosphor for ultraviolet light-emitting diodes. Appl. Phys. Lett., 2006, 88: 101903.
    [47] A. Meijerink and G. Blasse, Photoluminescence and thermoluminescence properties of Ca2PO4Cl: Eu2+. J. Phys.: Condens. Matter, 1990, 2: 3619-3628.
    [48] W. L. Wanmaker, A. Bril, J. W. ter Vrugt, Sensitiation of Tb3+ Luminescence by Sn2+ and Cu+ in Alkaline Earth Phosphates. Appl. Phys. Lett., 1966, 8: 260-261.
    [49] L. Elammari, B. Elouadi, G. Muller-Vogt, Study of phase transitions in the system alkali metal divalent metal phosphate (AIBIIPO4with AI = Li, Rb and BII = Mg, Ca, Sr, Ba, Zn, Cd, Pb). Phase Transitions, 1988, 13: 29-32.
    [50] C. S. Liang, H. Eckert, T. E. Gier, G.D. Stucky, Compositionally Induced Phase Transitions and Nonlinear Optic Response in ABCO4 Crystal Solution Phases ALiPO4(A = Sr, Ba, Pb). Chem. Mater., 1993, 5: 597-603.
    [51] D. Kovacheva, V. Nikolov, K. Petrov, R. M. Rojas, P. Herrero, J. M. Rojo, Synthesis and ionic conductivity of pure and Co-doped lithium barium diphosphates Li2-2xCOxBaP2O7(0≤x≤0.06). J. Mater. Chem., 2001, 11: 444-448.
    [52] J. Y. Sun, C.S. Shi, Y. M. Li, Crystal-field and covalent characteristic influence on the electronic transition emission of europium(2+) ion. Bull. Electrochem., 1988, 4: 835–839.
    [53] Riadh Ternane, Mokhtar Ferid, Gérard Panczer et al. Site-selective spectroscopy of Eu3+-doped orthorhombic lanthanum and monoclinic yttrium polyphosphates [J]. Optical Materials, 2005, 27: 1832-1838.
    [54] S. Briche, D. Zambon, D. Boyer, et al. Sol-gel derived Y(PO3)3 polyphosphate: Synthesis and characterization [J]. Optical Materials, 2006, 28: 615-620.
    [55] Yuhua Wang, Dan Wang. Photoluminescence properties of La(PO3)3:Tb3+ under VUV excitation [J] .Journal of Solid State Chemistry, 2007, 180: 3450-3455.
    [56] Anis Jouini, Mokhtar Ferid, Jean-Claude Gacon, Laurent et al. Crystal structure and optical study of praseodymium polyphosphate Pr(PO3)3 [J].Materials Research Bulletin, 2003, 38: 1613-1622.
    [57] Caldino, U. G., Munoz, A. F., Rubio. J. O., Luminescence and energy transfer in CaF2 slightly doped with europium and manganese, J. Phys.: Condens. Matter. 1990,2: 6071.
    [58] Caldino, U. G.; Munoz, A. F.; Rubio, J. O., Energy transfer in CaCl2:Eu,Mn crystals, J. Phys.: Condens. Matter. 1993, 5: 2195.
    [59] Barry, T. L. J. Electrochem. Soc. 1970, 117:381.
    [1]于亚勤,唐雪琼,李玫. YP5O14:Ho3+、Er3+、Tm3+晶体的发光性质[J].稀土, 1986(4): 13-17.
    [2] Yuhua Wang, Dan Wang. Photoluminescence properties of La(PO3)3:Tb3+ under VUV excitation [J]. Journal of Solid State Chemistry, 2007, 180: 3450–3455.
    [3] M. Zhang, J. Wang, W. Ding, et al. A novel white light-emitting diode (w-LED) fabricated with Sr6BP5O20:Eu~(2+) phosphor [J]. Appl. Phys. B,2007, 86:647–651.
    [4] Hakima Aouad, Mohamed Maazaza, Ilias Belharouak. Crystal structure and luminescence properties of silver(I) doped polyphosphate NaZn(PO3)3 [J]. Materials Research Bulletin, 2000, 35: 2457–2467.
    [5] T. Riadh, M. Ferid, G. Panczer, M. Trabelsi-Ayadi, and G. Boulon. [J].Optical Materials 27, (2005)1832.
    [6] S. Brucgem, D. Zambon, D. Boyer, G. Chadeyron, R. Mahiou. [J]. Optical Materials 28, (2006)615.
    [7] W. SZUSKIEWICE, T. ZNAMIEROWSKA. [J]. Polish J. Chem., 63, (1989)381.
    [8] A. Jouini, M. Ferid, J.C. Gacon, L. Grosvaler, A. Thozet, Malika Trabelsi-Ayadi. [J]. Materials Research Bulletin 38. (2003)1613.
    [9] M. Graia, A. Driss, T. Jouini. [J]. Solid State Sciences 5, (2003)393.
    [10] A. Jouini, M. Ferid, J.C. Gacon, L. Grosvaler, A. Thozet, Malika Trabelsi-Ayadi. [J]. Materials Research Bulletin 38. (2003)1613
    [1] J.K. Park, M.A. Lim, C.H. Kim, H.D. Park, J.T. Park, S.Y. Choi, White light-emitting diodes of GaN-based Sr2SiO4: Eu and the luminescent properties. Appl. Phys. Lett., 2003, 82: 683.
    [2] J.S. Kim, P.E. Jeon, J.C. Choi, H.L. Park, S.I. Mho, G.C. Kim, Warm-white-light emitting diode utilizing a single-phase full-collor Ba3MgSi2O8: Eu2+, Mn2+ phosphor. Appl. Phys. Lett., 2004, 84: 2931.
    [3] J.S. Kim, P.E. Jeon, Y.H. Park, J.C. Choi, H.L. Park, G.C. Kim, T.W. Kim, White-light generation through ultraviolet-emitting diode and white-emitting phosphor. Appl. Phys. Lett., 2004, 85: 3696.
    [4] S. Neeraj, N. KiJima, and A.K. Cheetham, Novel red phosphors for solid-state lighting: the system NaM(WO4)2-x(MoO4)x: Eu3+ (M=Gd, Y, Bi). Chem. Phys. Lett., 2004, 387: 2.
    [5] D.A. Steigerwald, J.C. Bhat, D. Collins, R.M. Fletcher, M.O. Holcomb, M.J. Ludowise, P.S. Martin, and S.L. Rudaz, Illumination with solid state lighting technology. IEEE J. Sel. Top. Quantum Electron. 2002, 8: 310.
    [6] M.G. Craford, N. Holonyak, F.A. Kish, In pursuit of the ultimate lamp. Sci. Am., 2001, 284: 62.
    [7] M. Graia, A. Driss, T. Jouini. [J]. Solid State Sciences 5, (2003)393.
    [8] W. SZUSKIEWICE, T. ZNAMIEROWSKA. [J]. Polish J. Chem., 63, (1989)381
    [9] T. Riadh, M. Ferid, G. Panczer, M. Trabelsi-Ayadi, and G. Boulon. [J].Optical Materials 27, (2005)1832.
    [10] S. Brucgem, D. Zambon, D. Boyer, G. Chadeyron, R. Mahiou. [J]. Optical Materials 28, (2006)615.
    [11] Jun-Lin Yuan, Hui Zhang a, Jing-Tai Zhao. Synthesis, structure and luminescent properties of Lu(PO3)3 [J]. Optical Materials, 2008, 30: 1369–1374.
    [12] Henning A. H?ppe and J. Michel U. Panzer. Crystal Structure, Vibrational Spectra and Activation of BaCa(P4O12) with Eu2+ Compared withβ-Sr(PO3)2:Eu. Eur. J. Inorg. Chem. 2009, 3127–3130.
    [1] S. Nakamura, G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and laser, Berlin, Springer, 1997, P216.
    [2] Zhang M., Wang J., Ding W., Zhang Q., Su Q., A novel white light-emitting diode (w-LED) fabricated with Sr6BP5O20:Eu2+ phosphor, Applied Physics B: Lasers and Optics, 2007, 86(4):647-651.
    [3] Wu Zhanchao, Gong Menglian, Shi Jianxin, Wang Gang, Su Qiang, Dibarium magnesium diphosphate yellow phosphor applied in InGaN-based LEDs, Chemistry Letters, 2007, 36(3):410-411.
    [4] Zhang Hongchuan, Horikawa Takashi, Hanzawa Hiromasa, Hamaguchi Ayanori, Machida Ken-ichi, Photoluminescence properties ofα-SiAlON:Eu2+ prepared by carbothermal reduction and nitridation method, Journal of the Electrochemical Society, 2007, 154(2):J59-J61.
    [5] Kimura Naoki, Sakuma Ken, Hirafune Syunichiro, Asano Kenichiro, Hirosaki Naoto, Xie Rong-jun, Extrahigh color rendering white light-emittiong diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode, Applied Physics Letters, 2007, 90(5):051109/1-051109/3.
    [6] Xie Rong-jun, Hirosaki Naoto, Mitomo Mamoru, Sakuma Ken, Kimura Naoki, Wavelength-tunable and thermally stable Li-α-sialon:Eu2+ oxynitride phosphors for white light-emitting diodes, Applied Physics Letters, 2006, 89(24):241103/1-241103/3.
    [7] Caldino, U. G., Munoz, A. F., Rubio. J. O., Luminescence and energy transfer in CaF2 slightly doped with europium and manganese, J. Phys.: Condens. Matter. 1990, 2: 6071.
    [8] Caldino, U. G.; Munoz, A. F.; Rubio, J. O., Energy transfer in CaCl2:Eu,Mn crystals, J. Phys.: Condens. Matter. 1993, 5: 2195.
    [9] Barry, T. L. J. Electrochem. Soc. 1970, 117:381.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700