大豆子房原位转化法的建立与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花粉管通道法是一种无需组织培养的原位转化技术,可用于解决传统农杆菌介导法与微弹注射法转化困难的作物的遗传转化问题。然而,对于这种方法的推广来说,转化操作的重复性差、转化效率低仍旧是最大的障碍。因此,对于该方法,确认影响转化的关键因素,并对相关因素加以优化,是实现转化操作标准化的重要前提条件。通常认为,大豆产量偏低主要归因于花、幼荚等生殖器官的大量脱落,据报道不同品种的大豆花荚脱落率可达43%-81%。大豆花、荚脱落率除受品种的基因型影响外,干旱、光照不足、营养缺乏、高温等胁迫条件均可导致脱落率升高。在这些胁迫反应过程中,乙烯作为逆境激素起到了关键性的“信号分子”作用。1-氨基环丙烷-1羧酸合酶(ACC合酶,EC4.4.114)是乙烯生物合成途径的限速酶,在植物的乙烯释放过程中起到了关键性的调控作用。因此,克隆、构建ACC合酶反义基因并转化大豆,考察乙烯释放减少对于大豆产量性状的影响,对于大豆的品种改良而言,将具有重要的理论与生产实践意义。
     为此,本论文进行了如下实验:
     1、首先采用pBI121质粒作为转化载体,比较切割1/3花柱和贴近子房切割两种不同长度的转化路径的转化效应。结果发现平均转化率分别为1.6%和3.1%,转化率差异显著,说明了转化路径是影响转化的重要因素。
     2、本研究进一步设计了仅由35S启动子、gus报告基因、nos终止子以及25bp大小的T-DNA左、右边界作为侧翼序列组成的gus报告基因最小化线性转化元件。烟草叶片瞬时表达阳性结果确证了最小化线性转化元件设计的可行性。
     3、采用此线性转化元件,在辽豆14中比较了4种不同长度的转化路径的转化效应差异,即Ⅰ,只切割柱头;Ⅱ,切割1/2-2/3花柱;Ⅲ,完全去除花柱,而不伤害子房;与Ⅳ,部分切除子房。平均转化率分别为0%、1.0%、11.0%和2.0%,转化率差异显著。最佳的转化路径为完全去除花柱,而不伤害子房。采用这种最佳转化路径,进一步对铁丰29、辽豆13和辽豆14三个大豆栽培品种进行了扩大转化实验,转化率分别为7.1%、7.3%和11.3%,转化率差异不显著,揭示了大豆品种基因型差异对转化率无影响,说明采用此最佳转化路径具有无基因型依赖的特征,这对于实现转化操作的标准化具有重要意义。我们将这种采用最小化线性转化元件设计与最佳转化路径的转化方法定义为大豆子房原位转化法。
     4、从大豆叶片cDNA文库中克隆了一个伤害诱导的1-氨基环丙烷-1-羧酸(ACC)合酶基因(SACS2), RT-PCR法分析该基因的正义链表达情况,发现了ACC合酶基因的天然反义转录物(ASACS2);进一步分析了6种栽培大豆,确认了ASACS2在大豆中存在的普遍性,序列分析表明ASACS2属于顺式天然反义转录物;Real Time RT-PCR测定铁丰29营养生长期SACS2和ASACS2的表达量,发现二者的比值为一常数;进一步分析发现在不同的大豆品种这一比值不同,具有品种特异性的特征。
     5、将SACS2反向克隆到pBI121质粒表达载体上,以构建的质粒为模板,PCR法构建了仅由35S启动子、反向SACS2、nos终止子和T-DNA左、右边界组成的最小化ACC合酶反义基因线性转化元件,采用大豆子房原位转化法进行大豆转化。分子生物学检测(PCR、Southen杂交)确证了外源ACC合酶反义基因已经整合到转化获得大豆植株基因组中,并稳定遗传到转化后代植株中;在5日龄的转基因黄化大豆苗中,ACC合酶的酶活性升高约17.6%-23.4%,而乙烯释放在检测前6小时升高,之后下降,乙烯释放总量下降,表明外源ACC合酶反义基因在转基因大豆中的表达抑制了乙烯的释放,而且这种表达受到了复杂的转录后调控,而导致酶活性升高;与对照株相比,在所有的转基因世代(T0~T2)中营养生长期延长了7天左右;不同的T2转基因后代株系田间小试结果发现,部分株系中平均单株结荚数显著增多,平均百粒重显著增加,具有明显的增产特征;在形态上,单株株高降低,节数增加,而节间距缩短明显,表现了明显的乙烯释放减少特征。
     总之,我们在大豆中建立的具有生物安全性的子房原位转化法是一种在产量提高、品质改良上具有广泛应用前景的转化技术。
Pollen-tube pathway transformation method is one kind of in planta techniques that is tissue culture-independent. It is also a promising method that can replace the conventional Agrobacterium-mediated transformation and particle bombardment methods in the transformation of recalcitrant crops. However, the low repeatability and transformation frequency still prevents its application in soybean. Thus, it is of great significance to identify the factors on transformation frequency and optimize the key factors of this transformation method and to standardize the manipulation of the protocol in soybean. Low grain yield in legumes has been found to be attributed to abortion of flowers and pods, and abscission rates of 43 to 81% have been reported for different genotype soybean varieties. At the same time, the environmental cues, such as water deficiency, light insufficiency, inadequate nutrition and high temperature-would-enhance the abscission of reproductive organs. The stress hormone, ethylene, serves as a key signaling molecule and plays a critical role in response to the various abiotic stresses.1-aminocyclopropane-l-carboxylate synthase (ACC synthase, EC 4.4.114) is the rate-limiting enzyme in ethylene biosynthesis pathway. Its expression regulates the release of ethylene in plants; hence it might be a good attempt to transform soybean with ACC synthase antisense gene to improve the yield in soybean through the reverse genetics pathway and investigate the relationship between the ethylene release and yield-related traits.
     The aims and results of this study were as follow:
     1. To determine whether the length of the passageway through which foreign DNA enters the embryo sac is a key factor to the success of pollen-tube pathway transformation, we compared the transformation efficiencies of two different lengths of the passageway including cutting off 1/3 stigma or cutting near the ovary, using the plasmid pBI121 as the foreign DNA. Different lengths of the passageway were found to produce significant different transformation efficiencies,1.6% and 3.1%.
     2. By reference to the mechanism of T-DNA borders in Agrobacterium-mediated transformation, we designed the minimal cassette, which only contains the 35S promoter, gus reporter gene, and nos terminator, and both ends of the cassette were flanked with T-DNA borders and obtained them by Polymerase Chain Reaction (PCR). Transformation of this minimal cassette into transcient expression system of tobacco leaves resulted in three positive expression of the reporter gene among all thirty leaves, thus pointing to the feasibility of its design.
     3. To optimize the transformation passageway, we compared the effects of four types of of passageway lengths on the transformation, and the optimized length of the passageway was further tested in more soybean cultivars to investigate the effects of genotypes. A maximum transformation frequency of 11.0% was obtained in soybean cultivar Liaodou 14 with their styles extensively removed, whereas removal of the stigma, partial style cutting and partial ovary cutting contributed to a transformation frequency of 0%, 1.0% and 2.0%, respectively. An average transformation frequency of 8.2% was obtained when 619 flowers from three soybean cultivars (Liaodou14, Liaodou13, and Tiefeng29) were transformed by this optimized method. No significant difference in the transformation frequencies was observed among the different cultivars, indicating no genotype specificity. This also supported the feasibility for standardizing the manipulation through optimizing the transformation pathway, and hence, the modified protocol along with using minimal cassettes was designated as ovarian in planta transformation.
     4. To investigate whether the natural antisense transcript (NATs) of ACC synthase gene exists in soybean, the expression of the non-template strand was analyzed by RT-PCR. The NATs of ACC synthase gene (designated as ASACS2) was detected in six soybean cultivars by RT-PCR and sequence analysis showed it and its sense counterpart, SACS2 belonged to cis-NATs, the ratios of SACS2 to SACS2, as measured by real-time RT-PCR were constant among the various soybean cultivars, indicating the presence of cultivars specificity. NATs might be a new regulation pathway governing the release of ethylene in soybean.
     5. To improve the soybean yield, the ovarian in planta transformation of minimal ACC synthase antisense gene cassettes were carried out. One cDNA of wound-induced ACC synthase, SACS2, was cloned from soybean leave and inversely inserted into the plasmid pBI121 to give the construct pBI121-SACS2. A linear minimal cassette composed of 35S promoter, ACC synthase antisense gene, and nos terminator and the flanked T-DNA border sequences was amplified from pBI121-SACS2 by PCR. The integration of the foreign ACC synthase antisense DNA into the soybean genome and its subsequent inheritance by the progenies were confirmed by PCR and Southern blotting analysis. The activity of ACC synthase was not reduced according to the theory expectation of antisense gene, but increased for 17.6%-23.4%, indicating there must be a complex regulation system to ethylene release, and the total quantity of ethylene released has first increased and then decrased in the young etiolated transgenic plants compared to the wild type. In field trials, all transgenic plants (To-T2) had one prolonged vegetative growth stage, the lasting seven days longer than that of wild type and result into a delayed reproductive stage. Average pod-bearing number and average one-hundred-grain weight of the partial transgenic lines had increased significantly compared to wildtype ones, that showed the traits of increasing yield, and on the plant external morphology, the plant height had decreased, the node number had increased, and the average distance of stem-stem was significantly shortened in all detected transgenic lines, showed the traits of the decreased ethylene release.
     In conclusion, the ovarian in planta transformation in soybean with the linear minimal cassette and the optimal transformation passageway is a new prospective transformation method in yield and quality improvement.
引文
[1]周新安.我国大豆生产与科研现状及其发展对策[J].作物杂志,2007,6:1-4.
    [2]李秀菊,孟繁静.大豆花荚败育期间的植物激素变化[J].植物学通报,1999,16(4):464-467.
    [3]张兴文,任红玉,严红.大豆花荚败育及脱落的研究进展[J].大豆科学,2002,21(4):290-294.
    [4]李秀菊,孟繁静.植物激素在大豆生殖器官脱落过程中的变化(英)[J].植物生理学报,1997,3(4):342-346.
    [5]BROWN K M. Ethylene and abscission [J]. Physiologia Plantarum,1997,100:567-576.
    [6]YANG SF, HOFFMAN NE. Ethylene biosynthesis and its regulation in higher plants [J]. Annu Rev Plant Physiol,1984,35:155-189.
    [7]余永亮,梁慧珍,王树峰,等.中国转基因大豆的研究进展及其产业化[J].大豆科学,2010,29(1):143-150.
    [8]王关林,孙月剑,那杰等.中国转基因植物产业化的研究进展及存在问题[J].中国农业科学,2006,39(7):1328-1335.
    [9]农业生物技术学报本刊评论.中国批准转基因水稻商业化迈出全球农业生物技术一大步[J].2010,18(1):1-2.
    [10]BERTOLLA F,KAY E, SIMONET P. Potential dissemination of antibiotic restistance genes from transgenic plants to microorganisms. Infect ControlHospEpidemiol,2000,21 (6):390-393.
    [11]LOSEY J E, RAYOR L S, CARTER M E. Transgenic pollen harms monarch larvae. Nature, 1999,399:214-216.
    [12]QIAN Y Q, MAK P. Progress in the studies on genetically modified organisms and the impact of its release in environment. Acta Ecol. Sin.,1998,18:1-9.
    [13]MULLER A E, KAMISUGI Y, GRUNEBERG R, et al. Palindromic sequence and A+T-rich DNA elements promote illegitimate recombination in Nicotiana tabacum [J]. J Mol Biol,1999, 291:29-46.
    [14]ASSAAD FF, TUCKER KL, SIGER E R. Epigenetic repeat induced gene silencing (RIGS) in Arabidopsis[J]. Plant Molecular Biology,1993,22:1067-1085.
    [15]DALE P J. Unnecessary transgene integration and expression in plants:how do we minimise and manage this? superfluous DNA integration during transformation:does it matter for risk assessment? [R]. Department for Enviroment, Food & Rural Affairs:2001,2,16.
    [16]STOGER E, WILLIAMS S, KEEN D, CHRISTOU P. Molecular characteristics of transgenic wheat and the effect on transgene expression[J]. Transgenic Res.1998,7:463-471.
    [17]SRIVASTAVA V, VASIL I K. Molecular characterization of the fate of transgenes in transformed wheat (Triticum Aestivum L.)[J]. Theor. Appl. Genet,1996,92:1031-1037.
    [18]PALMITER R D, BRINSTER R L. Germline transformation of mice[J]. Ann Rev Genet,1986, 20:465-499.
    [19]董志峰,马荣才,彭于发等.转基因植物中外源非目的基因片段的生物安全研究进展[J].植物学报,2001,43(7):61-672.
    [20]贾士荣.转基因植物食品中标记基因的安全性评价[J].中国农业科学,1997,30(2):1-15.
    [21]贾士荣.转基因作物的安全性争论及其对策[J].生物技术通报,1999,17(6):1-17.
    [22]赵艳,王慧,于彦春,等.转基因植物中标记基因的安全性新策略[J].遗传,2003,25(1):119-122.
    [23]侯学文,姜悦,郭勇.转基因中的筛选标记[J].生物学通报,1997,32(10):19-21.
    [24]FRISCH DA, HARRIS-HALLER LW, YOKUBAITIS NT, et al. Complete sequence of the binary vector Binl9[J]. Plant molecular biology,1995,27:405-409.
    [25]XIANG C, HAN P, LUTZIGER I, et al. A mini binary vector series for plant transformation[J]. Plant molecular biology,1999,40:711-717.
    [26]HELLENS RP, EDWARDS EA, LEYLAND NR, et al. pGreen:a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation[J]. Plant molecular biology, 2000,42:819-832.
    [27]THOLE V, WORLAND B, SNAPE JW, et al. The pCLEAN Dual Binary Vector System for Agrobacterium-Mediated Plant Transformation[J]. Plant Physiology,2007,145:1211-1219.
    [28]HANSON B, ENGLER D,MOY Y, et al. A simple method to enrich an Agrobacterium-transformed population for plants containing only T-DNA sequences [J]. Plant J.1999,19 (6):727-34.
    [29]KURAYA Y, OHTA S, FUKUDA M, et al. Suppression of transfer of non-T-DNA'vector backbone'sequences by multiple left border repeats for transformation of higher plants mediated by Agrobacterium tumefaciens[J]. Mol Breed,2004,14:309-320.
    [30]YE X, WILLIAMS EJ, SHEN J, et al. Plant development inhibitory genes in binary vector backbone improve quality event efficiency in soybean transformation[J]. Transgenic Res, 2008,17:827-838.
    [31]OFFRINGA R, DE GROOT M J, HAAGSMAN H J. et al. Extrachromosomal homologous recombination and gene targeting in plant cells after Agrobacterium mediated transformation[J] EMBO J. 1990,9(10):3077-3084.
    [32]OFFRINGA R, FRANKE-VAN DIJK M E, DE GROOT M J. etal. Nonreciprocal homologous recombination between Agrobacterium transferred DNA and a plant chromosomal locus [J]. Proc. Natl. Acad. Sci. USA,1993,90:7346-7350.
    [33]DE GROOT M J, OFFRINGA R, GROET J, et al. Non-recombinant background in gene targeting:illegitimate recombination between a hpt gene and a defective 5'deleted npt II gene can restore a Kmr p henotype in tobacco[J]. Plant Mol Biol.1994,25(4):721-33.
    [34]RISSEEUW E. OFFRINGA R. FRANKE-VAN DIJK M E. et al. Targeted recombination in plants using Agrobacterium coincided with additional rearrangements at the target locus [J] Plant J,1995 7(1):109-19.
    [35]RISSEEUW E. FRANKE-VAN DIJK M E. HOOYKAAS P J. Gene targeting and instability of Agrobacterium T-DNA loci in the plant genome[J]. Plant J.1997,11(4):717-728.
    [36]KIRIK A, PECINKA A, WENDELER E, et al. The chromatin assembly factor subunit FASCIATA1 is involved in homologous recombination in plants[J]. Plant Cell,2006,18:2431-2442.
    [37]HANIN M, VOLRATH S, BOGUCKI A, et al. Gene targeting in Arabidopsis[J]. Plant J.2001, 28:671-677.
    [38]TERADA R,URAWA H, INAGAKI Y, TSUGANE K, et al. Efficient gene targeting by homologous recombination in rice[J]. Nature Biotechnology,2002,20:1030-1034.
    [39]LLOYD A, PLAISIER CL, CARROLL D, et al.. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis [J]. Proc. Natl. Acad. Sci. USA,2005,102:2232-2237.
    [40]WRIGHT DA,TOWNSEND JA, WINFREY RJ JR, et al. High-frequency homologous recombination in plants mediated by zinc-finger nucleases [J]. Plant Journal,2005,44:693-705.
    [41]WRIGHT DA, THIBODEAU-BEGANNY S, SANDER JD, et al. Standardized reagents and protocols for engineering zincfinger nucleases by modular assembly[J]. Nature Protocols,2006, 1:1637-1652.
    [42]SHAKED H, MELAMED-BESSUDO C, LEVY AA. High frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene [J]. Proc. Natl. Acad. Sci. USA.,2005,102:12265-12269.
    [43]HOHN B, PUCHTA H. Gene therapy in plants [J]. Proc. Natl. Acad. Sci. USA,1999,96: 8321-8323.
    [44]JOHZUKA-HISATOMI Y,.TERADA R, IIDA S. Efficient transfer of base changes from a vector to the rice genome by homologous recombination:involvement of heteroduplex formation and. mismatch correction[J]. Nucleic Acids Research,2008,36(14):4727-4735.
    [45]FU XD, DUC LT, FONTANA S. Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns [J]. Transgenic Res,2000,9:11-19.
    [46]LOC NT, TINJUANGJUN P, GATEHOUSE AMR, et al. Linear transgene constructs lacking vector backbone sequences generate transgenic rice plants which accumulate higher levels of proteins conferring insect resistance[J]. Mol Breeding,2000,9:231-244.
    [47]赵艳,于彦春,钱前.无载体主干序列的bar和cecropin B基因表达框共转化水稻[J].遗传学报,2003,30(2):135-141.
    [48]VIDAL J R. KIKKERT J R. DONZELLI BD. WALLACE PG. REISCH B I. Biolistic transformation of grapevine using minimal gene cassette technology [J]. Plant Cell Rep,2006,25:807-814.
    [49]SHI N,HE G,LI K,et al. Transferring a Gene Expression Cassette Lacking the Vector Backbone Sequences of the lAxl High Molecular Weight Glutenin Subunit into Two Chinese Hexaploid Wheat Genotypes[J]. Agricultural:Sciences in China.2007,6(4):381-390.
    [50]JAYARAJ J, LIANG GH, MUTHUKRISHNAN S and PUNJA ZK. Generation of low copy number and stably expressing transgenic creeping bentgrass plants using minimal gene cassette bombardment [J]. BIOLOGIA PLANTARUM,2008,52(2):215-221.
    [51]Sandhu S and Altpeter F. Co-integration, co-expression and inheritance of unlinked minimal transgene expression cassettes in an apomictic turf and forage grass (Paspalum notatum Flugge) [J]. Plant Cell Rep,2008,27:1755-1765.
    [52]AGRAWAL P K, KOHLI A, TWYMAN R M. AND CHRISTOU P. Transformation of plants with multiple cassettes generates simple transgene integration patterns and high expression levels [J]. Molecular Breeding,2005,16:247-260.
    [53]KOMARI T,HIEI Y,SAITO Y, et al. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacteruim tumefaciens and segregation of transformants free from selection markers [J]. Plant J,1996,10(1):165-174.
    [54]DE NEVE M, DE BUCK S, JACOBS A. T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs [J]. Plant J,1997,11:15-29.
    [55]DE FRANMOND AJ, BACK EW, CHILTON WS. Two unlinked T-DNAs can transform the same tobacco plant cell and segrate in the flageneration [J]. Mol Gen Genet,1986,202:125-131.
    [56]DALEY M, KNAUF VC, SUMMERFELT KR. Co-transformation with one Agrobacterium tumefaciens strain cotaining two binary plasmids as a method for producing marker-free transgenic plants[J]. Plant Cell Rep,1998,17:489-496.
    [57]DEPICKER A, HERMAN L, JACOBS A. Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium/plant cell interaction [J]. Mol Gen Genet,1985,201:477-484.
    [58]侯爱菊,朱延明,张晶,等.转基因植物中筛选标记基因的利用及消除[J].遗传,2003,25(4):466-470.
    [59]YODER JI, GOLDSBROUGH AP. Transformation systems for generating marker-free transgenic plants [J]. Biotechnology,1994,12:263-267.
    [60]GOLDSBROUGH AP, LASTRELLA CN, YODER J. Transposition mediated re-positioning and subsequent elimination of marker genes from transgenic tomato[J]. Biotechnology,1993, 11:1286-1292.
    [61]HEHL R, BAKER B. Properties of the maize transposable element of activator in transgenic tobacco plants:A versatile inter-species genetic tool [J]. Plant Cell,1990,2:709-721.
    [62]GATZ C. Chemical control of gene expression [J]. Ann Rev Plant Physiol Plant Mol Biol, 1997,48:89-108.
    [63]ZUBKO E, SCUTT C, MEYER P. Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes[J]. Nat Biotechnol,2000, 18:442-445.
    [64]李晓兵,陈彩艳,翟文学.培育具有安全选择标记或无选择标记的转基因植物.遗传,2003,25(3):345-349.
    [65]OW DW, MEDBERRY SL. Genome manipulation through site-specific recombination[J]. Crit Rev Plant Sci,1995,14:239-261.
    [66]CREGG J M, MADDEN K R. Use of site-specific recombination to regenerate selectable markers[J]. Mol Gen Genet,1989,219:320-323.
    [67]GUO F, GOPAU DN, VAN DUYNE GD. Structure of Cre recombinase complexed with DNA. in a site-specific recombination synapse[J]. Nature,1997,389:40-46.
    [68]KILBY N J, DAVIES G J, HODGES T K. FLP recombinase in transgenic plants:constitutive activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis[J]. Plant J,1995,8:637-652.
    [69]WOO H J, CHO H S, LIM SH, et al. Auto-excision of selectable marker genes from transgenic tobacco via a stress inducible FLP/FRT site-specific recombination system [J]. Transgenic Research, 2009,18(3),455-465.
    [70]LYZNIK L, RAO KV, HODGES TK. YLP-mediated recombination of FRT sites in the maize genome[J]. Nucleic Acids Res,1996,24:3784-3789.
    [71]HOHN B, LEVY A, PUCHTA H. Elimination of selection markers from transgenic plants[J].Current Opinion in Biotechnology,2001,12(2):139-143.
    [72]SUGITA K, KASAHARA T, MATSUNAGA E, et al. A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency [J]. Plant J,2000,22(5):461-469.
    [73]SUGITA K, MATSUNAGA E, EBINUMA H. Effective selection system for generating maker-free transgenic plants independent of sexual crossing [J]. Plant Cell Rep,1999,18:941-947.
    [74]DE VETTEN N, WOLTERS AM, RAEMAKERS K. A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop [J]. Nat Biotechnol,2003, 21:439-442.
    [75]KONDRAK M., VAN DER MEER I M, BANFALVI Z. Generation of marker- and backbone-free transgenic potatoes by site-specific recombination and a bi-functional marker gene in a non-regular one-border Agrobacterium transformation vector[J]. Transgenic Res 2006,15: 729-737.
    [76]夏志辉,李晓兵,陈彩艳等.无选择标记和载体骨干序列的Xa21转基因水稻的获得[J].生物工程学报,2006,22(2):204-210.
    [77]RICHAEL CM, KALYAEVA M, CHRETIEN RC, et al. Cytokinin vectors mediate marker-free and backbone-free plant transformation [J]. Transgenic Res,2008, 17:905-917.
    [78]GAO X R, WANG G K, SU Q, et al. Phytase expression in transgenic soybeans:stable transformation with a vector-less construct[J]. Biotechnol. Lett.,2007,29(11):1781-1787.
    [79]LIU J F, SU Q, AN L J, et al. Transfer of a minimal linear marker-free and vector-free smGFP cassette into soybean via ovary-drip transformation [J]. Biotechnol. Lett.,2009, 31(2):295-303.
    [80]WU W, SU Q, XIA XY et al. The Suaeda liaotungensis Kitag betaine aldehyde dehydrogenase gene improves salt tolerance of transgenic maize mediated with minimum linear length of DNA fragment[J]. Euphytica,2008,159(1-2):17-25.
    [81]YANG AF, SU Q, AN LJ. Detection of vector-and selectable marker-free transgenic maize with a linear GFP cassette transformation via the pollen-tube pathway [J]. J. Biotechnol. 2009,139(1):1-5.
    [82]YANG AF, SU Q, AN L. Ovary-drip transformation:a simple method for directly generating vector- and marker-free transgenic maize (Zea mays L.) with a linear GFP cassette transformation[J]. Planta,2009,229(4):793-801.
    [83]CHENG Y Q, YANG J, XU F P, et al. Transient expression of minimum linear gene cassettes in onion epidermal cells via direct transformation [J]. Appl. Biochem. Biotechnol.,2009, 159(3):739-749.
    [84]任永霞,季静,王罡,等.植物遗传转化方法概述[J].河北北方学院学报(自然科学版),2005,21(6):38-42.
    [85]刘进平.植物遗传转化中基因受体的选择[J].农业与技术,2003,4:97-100.
    [86]贾士荣.高等植物遗传转化研究的发展和应用.植物遗传转化技术手册[M].傅荣昭、孙勇如、贾士荣编著.中国科学技术出版社.1994:1-11.
    [87]刘进平,郑成木,胡新文.体细胞无性系变异研究进展[J].华南热带农业大学学报,2000,(2):22-29.
    [88]TZFIRA T, LI J, LACROIX B, Citovsky V. Agrobacterium T-DNA integration:molecules and models[J]. Trends Genet.2004, 20, 375-383.
    [89]TZFIRA T, TIAN GW, LACROIX B, VYAS S, LI J, LEITNER-DAGAN Y, KRICHEVSKY A, TAYLOR T, VAINSTEIN A, CITOVSKY V. pSAT vectors:a modular series of plasmids for fluorescent protein tagging and expression of multiple genes in plants[J]. Plant Mol Biol,2005,57:503-516
    [90]TZFIRA T, S V. KOZLOVSKY and V CITOVSKY. Advanced Expression Vector Systems:New Weapons for Plant Research and Biotechnology[J]. Plant Physiology,2007,145:1087-1089
    [91]王峰,黄璐圆.双元Ti载体的发展西北植物学报[J].2006,26(11):2397-2401.
    [92]LEE LY, GELVIN S B. T-DNA Binary Vectors and Systems[J]. Plant Physiology,2008,146, 325-332.
    [93]TINLAND B, SCHOUMACHER F, GLOECKLER V, et al. The Agrobacterium tumefaciens virulence D2 protein is responsible for precise integration of T-DNA into the plant genome [J].EMBO J,1995,14:3585-3595.
    [94]李卫,郭光沁,郑昌.根癌农杆菌介导遗传转化研究的若干新进展[J].科学通报,2000,45(8):798-807.
    [95]ZUPAN JR, ZAMBRYSKI P. Transfer of T-DNA from Agrobacterium to the plant cell [J]. Plant Physiol.1995,107(4):1041-1047.
    [96]SHENG J AND CITOVSKY V. Agrobacterium-plant cell DNA transport:have virulence proteins, will travel [J]. Plant Cell,1996,8(10):1699-1710.
    [97]GELVIN S B. Agrobacterium and plant genes involved in T-DNA transfer and integration[J]. Plant Mol.Biol.,2000,51:223-256.
    [98]ATTIKUM H, BUNDOCK P, J. J. HOOYKAAS P. Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration[J]. EMBO J,2001:6550-6558.
    [99]HARTER K, JACOBS A, VAN MONTAGU M, et al. Plant chromosome/marker gene fusion assay for study of normal and truncated T-DNA integration events[J]. Mol Gen Genet,1990,224: 248-256.
    [100]KONCZ C,NEMETH N, REDEI G P, et al. T-DNA insertional mutagenesis in Arabidopsis [J]. Plant Mol, Bio,1992,20:963-976.
    [101]BRUNAUD V, BALZERGUE S, DUBREUCQ B,et al. T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites[J]. EMBO Rep,2002:1152-1157.
    [102]GHEYSEN G, VILLARROEL R, VAN MONTAGE M. Illegitimate recombination in plants:a model for T-DNA integration[J]. Genes Dev,1991,5:287-297.
    [103]MAYERHOFER R, KONCZ-KALMAN Z, NAWRATH C, et al. T-DNA integration:a model of illegitimate recombination in plants[J]. EMBO J,1991,10:697-704.
    [104]MARTON L, HROUDA M, PECSVARADI A, et al. T-DNA-insert in dependent mutation induced in transformed plant cells during Agrobacterium co-cultivation [J]. Transgenic Res,1994, 3(5):317-325.
    [105]方进,翟文学,王文明,李素文,朱立煌.转基因水稻T-DNA侧翼序列的扩增与分析[J].遗传学报,2001,28(4):345-351.
    [106]朱学峰,陈学伟,李小兵,钱前,黄大年,朱立煌,翟文学.转Xa21基因水稻中T-DNA整合的遗传定位[J].遗传学报,2002,29(10):880-886.
    [107]MYSORE K S.BASSUNER B,DENG X B, et al. Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration[J]. Mol. Plant Microbe Interact. 1998,11(7), 668-683.
    [108]NARASIMHULU S B, DENG X B, SARRIA R, et al. Early transcription ofAgrobacteriumT-DNA genes in tobacco and maize[J]. Plant Cell,1996,8:873-876.
    [109]NAM J, MATTHYSSE A G, GELVIN S B. Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration[J]. Plant Cell, 1997,9:317-333.
    [110]刘凡,王国英,曹鸣庆.农杆菌介导的植物原位转基因方法研究进展[J].分子植物育种,2003,1(1),108-116.
    [111]张庆祝,韩天富.植物非组培遗传转化方法研究的进展.分子植物育种[J].2004,2(1):85-91.
    [112]CHANG S S, PARK S K, KIM B C, et al. Stable genetic transformation of Arabidopsis thaliana by Agrobacterium inoculation in planta[J]. The Plant Journal,1994,5 (4):551-558.
    [113]KATAVIC V, HAUGHN GW, REED D. In planta transformation of Arabidopsis thaliana[J]. Mol. Gen. Genet.,1994,245:363-370.
    [114]BENT A F. Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species[J]. Plant Physiol.,2000,124(4):1540-1547.
    [115]BECHTOLD N, ELLIS J, PELLETIER G. In Planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants[M]. C T Acad Sci Paris life Sci,1993, 316:1194-1199.
    [116]CECCHINE E, GONG Z H, GERI C, et al. Transgenic Arabidopsis lines expressing gene VI from cauliflower mosaic virus variants exhit a range of symptom-like phenotype and accumulate inclusion bodies [J]. Mol Plant Microbe Interactions,1997,10:1094-1101.
    [117]CLOUGH S J, BENT A F. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J]. The Plant Journal,1998,16 (6):735-743.
    [118]ZHANG X, HENRIQUES R, LIN SS, et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc.,2006,1:641-646.
    [119]CHUNG M H, CHEN M K, PAN S M. Floral spray transformation can efficiently generate Arabidopsis transgenic plants[J]. Transgenic Research,2000,9:471-476.
    [120]ARAGAO F. J. L., SAROKIN L., VIANNA G. R.,et al. Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max(L.)Merril] plants at a high frequency [J]. Theor Appl Genet,2000,101:1-6.
    [121]FELDMANN K A, MARKS M D. Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana:a non-tissue culture approach [J]. Mol Gen Genet, 1987,208:1-9.
    [122]MYSORE KS, KUMAR CTR, GELVIN S B. Arabidopsis ecotypes and mutants that are recalcitrant to Agrobacterium root transformation are susceptible to germ-line transformation [J].The Plant Journal,2000,21(1):9-16.
    [123]TAGUE B W. Germ-line transformation of Arabidopsis lasiocarpa [J]..Transgenic Research, 2001,10:259-267.
    [124]TODD R, TAGUE B W. Phosphomannose Isomerase:A versatile selectable marker for Arabidopsis thaliana germ-line transformation [J]. Plant Molecular Biology Reporter,2001, 19:307-319.
    [125]BARTHOLMES C, NUTT P, THEIBEN G. Germline transformation of Shepherd's purse (Capsella bursa-pastoris) by the'floral dip'method as a tool for evolutionary and developmental biology[J]. Gene,2008,409:11-19.
    [126]ROHINI VK, RAO KS Transformation of peanut(Arachis hypogaea L.):a non-tissue culture based approach for generating transgenic plants. Plant Science,2000,150:41-49.
    [127]CURTIS I S and NAM H G, Transgenic radish(Raphanus sativus L longipinnatusBailey) by floral-dip method-plant development and surfactant are important in optimizing transformation efficiency[J]. Transgenic Research,2001,10:363-371.
    [128]ARAGAO F J L, VIANNA G R, CARVALHEIRA S BRC, et al. Germ line genetic transformation in cotton (Gossypium hirsutum L.) by selection of transgenic meristematic cells with a herbicide molecule[J]. Plant Science,2005,168 (5):1227-1233.
    [129]WEEKS JT, YE J, ROMMENS C M. Development of an in planta of alfalfa(Medicago sativa) [J]. Transgenic Res,2008,17:587-597.
    [130]王全伟,张海玲,白晶,徐香玲.农杆菌介导的大豆植株整体转化大豆科学,2008,27(2):190-193,198.
    [131]钱叶雄,江海洋,韩国民,等.农杆菌介导的玉米原位转化方法改良(英).激光生物学报,2009,18(2):250-256.
    [132]ZALE JM, AGARWAL S, LOAR S, et al. Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens[J]. Plant Cell Rep,2009,28:903-913.
    [133]YASMEEN A, MIRZA B, INAYATULLAH S, et al. In Planta Transformation of Tomato [J]. Plant Mol Biol Rep,2009,27:20-28.
    [134]KUMAR A, REDDY KN, SREEVATHSA R, et al. Towards crop improvement in bell pepper (Capsicum annuum L.):Transgenics(uid A::hpt Ⅱ)by a-tissue-culture-independent Agrobacterium-mediated in planta approach[J]. Scientia Horticulturae 2009,119:362-370.
    [135]张广辉,巩振辉,薛万新.大白菜和油菜真空渗入遗传转化法初报[J].西北农业大学学报,1998,26(4):81-86.
    [136]张军杰,刘凡,赵泓,等.蛋白酶抑制剂基因真空渗入法转化不结球白菜获得抗虫性材料.植物保护学报,2006,33(1):17-21.
    [137]CAO M Q,LIU F, YAO L, et al. Transformation of Pakchoi(Brassica rapaL. ssp. chinensis)by Agrobacterium infiltration[J]. Mol Breeding,2000(6):67-72.
    [138]XU H, WANG X, ZHAO H, et al. An intensive understanding of vacuum infiltration transformation of pakchoi(Brassica rapa ssp.chinensis)[J]. Plant Cell Rep,2008,27: 1369-1376.
    [139]XU HJ, ZHAO H, WANG XF, et al. Exploration on the vacuum infiltration transformation of pakchoi[J]. BIOLOGIA PLANTARUM,2008,52(4):763-766.
    [140]王道杰.真空渗透法转化油菜及转化种子的筛选[J].植物学报2009,44(2):216-222.
    [141]TRIEU AT, BURLEIGH SH, KARDAILSKY IV,et al. Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium[J]. Plant J.2000,22: 531-541.
    [142]CHABAUD M, RATET P, SOUSA A et al. Agrobacterium tumefaciens-Mediated Transformation and in vitro Plant Regeneration of M. truncatula[M/OL].2007. Available from http://www.noble.org/MedicagoHandbook/
    [143]ZHOU GY, WENG J, HUANG J, et al. Introduction of exogenous DNA into cotton embryos [J]. Methods Enzymol,1983,101:433-4.
    [144]HU CY, WANG LZ. In planta soybean transformation technologies developed in China: procedure, confirmation and field performance[J]. In Vitro Cell. Dev. Biol. Plant,1999, 35(5):417-420.
    [145]林栖凤,李冠一,黄骏麒.植物遗传转化的主要方法(二)——生殖细胞原位转化法[G]/第四届全国植物分子育种学术研讨会论文集,第二章,2004,41-53.
    [146]郭学兰.油菜雌蕊转基因研究[D].武汉:油料作物研究所,2009.
    [147]BOWEN B A. Markers for plant gene transfer[M]//Kung S,Wu R Transgenic plants: engineering and utilization. Academic Press, SanDiego,1993:89-123.
    [148]SANTAREM E R, TRICK H N, ESSIG J S, et al. Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons:optimization of transient expression [J]. Plant Cell Reports,1998,17(10):752-759.
    [149]ZENG P, VADNAIS D A, ZHANG Z, et al. Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycinemax(L.)Merrill][J]. Plant cell reports,2004,22(7):478-482.
    [150]PAZ MM, SHOU H X, GUO Z B, et al. Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant [J]. Euphytica,2004,136 (2):167-179.
    [151]PAZ M M, MARTINEZ J C, KALVIG A B, et al. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation[J]. Plant cell reports,2006,25(3):206-213.
    [152]LIU SJ, WEI ZM, HUANG JQ. The effect of cocultivation and selection parameters on Agrobacterium-mediated transformation of Chinese soybean varieties [J]. Plant Cell Reports, 2008,27(3):489-498.
    [153]OWENS LD, DEAN C. Genotypic variability of soybean response to Agrobacterium strains harboring the Ti or Ri plasmids [J]. Plant Physiol,1985,77(1):87-94.
    [154]HINCHEE M A W, CONNOR-WARD DV, NEWELL C A, et al. Production of transgenic soybean plants using Agrobacterium-Mediated DNA transfer[J]. Nature Bio/technology,1988,6:915-922.
    [155]王连铮,尹光初,罗教芬,等.大豆致瘤及基因转移研究[J].中国科学(B辑),1984,14(2):137-141.
    [156]WANG G, WANG P, Y LN, et al. The studies of sensitivity of genotypes in soybean to line of Agrobacterium tumefaciens[J]. Hereditas(Beijing),2002,24(3):297-300.
    [157]KUDIRKA D T, COLBURN SM, HINCHEEM A, et al. Interactions of Agrobacterium tumefaciens with soybean leaf explants in tissue culture[J]. Can J Genet Cytol,1986,28:808-817.
    [158]MOORE PATRICIA J, MOORE ALLEN, COLLINSGLENN B. Genotypic and developmental regulation of transient expression of a reporter gene in soybean zygotic cotyledons[J]. Plant Cell Reports,1994,13:556-560.
    [159]刘海坤,卫志明.大豆遗传转化研究进展[J].植物生理与分子生物学学报,2005,31(2):126-134.
    [160]MARUYAMA E K, ISHI A,MIGITA S, et al.. Screening of suitable sterilization of explants and proper media for tissue culture of eleven tree species of Peru-Amazon forest [J]. Journal of Agricultural.Science,1989,33(4):252-261.
    [161]PERLA, LOTAN 0, ABU-ABIED M, et al. Establishment of an agrobacterium-mediated transformation system for grape (Vitis vinifera L.):The role of antioxidants during grape-Agrobacterium interactions[J]. Nature Biotechnology,1996,14:624-628.
    [162]ENRIQUEZ-OBREGON G A, PRIETO-SAMSONOV D L, DELA RIVA G A, et al. Agrobacterium-mediated Japonica rice transformation:a procedure assisted by antinecrotic treatment [J]. Plant Cell Tissue and Organ Culture, 1999,59(3):159-168.
    [163]FRAME B R, SHOU H, CHIKWAMBA R K, et al. Agrobacterium tumefaciens-mediated transformation ofmaize embryos using standard binary vector system[J]. Plant Physiology, 2002,129(1):13-22.
    [164]OLHOFT PM, FLAGE LE, DONOVAN CM, et al. Efficientsoybean trans formation using hygromycin B selection in the cotyledonary-node method [J]. Planta,2003,216(5):723-735.
    [165]DENNEHEY BK, RETERSEN W L, FORD-SANTINO C, et al. Comparison of selective agents for use with the selectable marker gene bar in maize transformation[J]. Plant Cell Tissue and Organ Culture, 1994,36:1-7.
    [166]WANG K B, FRAME, MARCELL L. Genetic transformation of maize[K]//JaiwalP K& Singh R P. PlantEngineeringVo.12, Improvement of Food Crops, Science Tech Publishing LLC, USA 2003: 175-217.
    [167]YAN B, REDDY M S S, COLLINS G B, et al. Agrobacterium tumefaciens-mediated transformation of soybean[Glycine max(L.)Merrill] using immature zygotic cotyledon explants [J]. Plant Cell Reports,2000,19:1090-1097.
    [168]FINERK R, FINER J J. Use of Agrobacterium expressing green fluorescent protein to evaluate colonization of sonication-assisted Agrobacterium-mediated transformation-treated soybean cotyledons [J]. Letters in Applied Microbiology,2000,30(5):406-410.
    [169]WROBLEWSKI T, TOMCZAK A M, MICHELMORE R. Optimization of Agrobacterium-mediated transientassays ofgene expression in lettuce, tomato and Arabidopsis[J]. Plant Biotechnology,2005,3:259-273.
    [170]CHENG T Y, SAKA T,VOQUI-DINH TH. Plant regeneration from soybean cotyledonary node segments in culture[J]. Plant Science Letters,1980,19(2):91-99.
    [171]WRIGHT MS, KOEHLER SM, HICHEE MA, et al. Plant regeneration by organogenesis in Glycine max[J]. Plant Cell Rep,1986,5:150-154.
    [172]WRIGHT MS, WILLIAMS MH, PIERSON PE, et al. Initiation and propagation of Glycine maxL. M.:Plants from tissue-cultured epicotyls[J]. Plant Cell Tiss Org Cult,1987,8:83-90.
    [173]KARTHA KK, PAHL K, LEUNG NL, et al. Plant regeneration from meristems of grain legumes: soybean, cowpean, peanut, chickpea and bean[J], Can J Bot,1981,59:1671-1679.
    [174]LIU H K, CHAOY, WEI ZM. Effficient Agrobacterium tumefaciens-mediated transformation of soybeans using an embryonic tip regeneration system [J]. Planta,2004,219:1042-1049.
    [175]Dan Y H, Reichert N A. Organogenic regeneration of soybean from hypocotyl explants[J]. In vitro cellular& developmental biology,1998,34:14-21.
    [176]Aragao F JL, Sarokin L, ViannaG R, et a.l Selection of transgenic meristematic cells utilizing a herbicidalmolecule results in the recovery of fertile transgenic soybean [Glycine max (L.)Merril] plants at a high frequency [J]. Theoretical and Applied Genetics, 2000,101:1-6.
    [177]汲逢源,王戈亮,许亦农.抗氧化剂对农杆菌介导的大豆下胚轴GUS基因瞬时表达的影响[J].植物生态学报,2006,30(2):330-334.
    [178]Wang G L, Xu Y N. Hypocotyl-based Agrobacterium-mediated transformation of soybean(Glycine max) and application for RNA interference[J]. Plant Cell Reports, 2008, 27(7):1177-1184.
    [179]MCCABE D E, SWAIN W F,MARTINELL B J et al. Stable transformation of soybean (Glycine Max) byparticle acceleration[J]. Bio/Technology,1988,12(6):923-926.
    [180]SATO S, NEWELL C, KOLACZ K, et al. Stable transformation via particle bombardment in. two different soybean regeneration systems[J]. Plant Cell Reports,1993,12(6):408-413.
    [181]MOORE P J, MOORE A, COLLINS G B. Genotypic and developmental regulation of transient expression of a reporter gene in soybean zygotic cotyledons[J]. Plant Cell Reports, 1994,13(8):556-560.
    [182]胡张华,刘智宏,郎春秀等.影响大豆基因枪转化的几个参数[J].浙江农业大学报,1999,11(5):242-244.
    [183]HADI M Z, MCMULLEN M D, FINER J J. Transformation of 12 different plasmids into soybean via particle bombardment[J]. Plant Cell Reports,1996,15(6):500-505.
    [184]SIMMONDS D H, DONALDSON P A. Genotype screening for proliferative embryogenesisi and biolistic transformation of short-season soybean genotypes[J]. Plant Cell Reports, 2000,19 (7):485-490.
    [185]王萍,王罡,吴颖等.影响大豆基因枪遗传转化因子的研究[J].农业生物技术学报,2002,10(3):36-37.
    [186]STEWART C N, ADANG M J, All J N, et al. Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene[J]. Plant Physiol,1996,112 (1):12-19.
    [187]苏彦辉,王慧丽,俞梅敏等.苏云金芽抱杆菌杀虫晶体蛋白基因导入大豆的研究[J].植物学报,1999,41(10):1046-1051.
    [188]HAZEL C B, KLEIN T M, ANIS M et al. Growth characteristics and transforma of soybean embryogenic cultures[J]. Plant Cell Reports,1998,179(12):765-772.
    [189]MAUGHAN P J.WIDHOLM J M, VODKIN L 0. Biolistic transformation, expression and inheritance of bocene Bcasein in soybean (Glycine max) [J]. In Vitro Cell Biol,1999, 35(6):344-349.
    [190]Neuhaur q,Spangenberg q, Mittelsten Scheid 0 et al. Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids[J]. Theor Appl Genet,1987,75 (4):30-36.
    [191]刘博林,岳绍先,胡乃壁,等.龙葵抗性基因向大豆叶绿体的转移及在转基因植株中的表达[J].中国科学(B辑),1989,19(7):699-705.
    [192]LUO ZX, WU R. A simple method for the transformation of rice via the pollen-tube pathway[J]. Plant Molocular Biology Reporter,1988,6:165-174.
    [193]曾君祉,王东江,吴有强,等.花粉管通道(或运载)法转化的植株后代遗传表现及转化机理的探讨[J].中国科学B辑,1998,43(6):561-566.
    [194]丁群星,谢友菊,戴景瑞,等.用子房注射法将Bt毒蛋白基因导入玉米的研究[J].中国科学B辑1993,7,37-43.
    [195]WANG Y Q, CHEN D J, WANG D M, et al. Over-expression of Gastrodia anti-fungl protein enchances Verticillium wilt resistance in coloured cotton[J]. Plant breeding,2004,123: 454-459.
    [196]ZHANG YS, YIN XY, YANG AF, et al. Stability of inheritance of transgenes in maize (Zea mays L.) lines produced using different transformation methods[J]. Euphytica,2005, 144:11-22.
    [197]谢纬武,王斌,雷勃钧.外源野生大豆DNA导入栽培大豆及RAPD分子验证[J].中国科学B辑,1995,38(10):1195-1201.
    [198]SHOU HX, PALMER R G, WANG K. Irreproducibility of the soybean pollen-tube pathway transformation procedure[J]. Plant Molecular Biology Reporter,2002,20:325-334.
    [199]龚蓁蓁,沈慰芳,周光宇,等.授粉后外源DNA导入植物技术—DNA通过花粉管通道进入胚囊[J].中国科学B辑,1988,6:611-614.
    [200]黄国存,董越梅,孙敬三以GFP为标记用花粉管通道途径导入外源DNA[J]科学通报,1998,43(23):2531-2533.
    [201]邓德旺,郭三堆,杨志民棉花花粉管通道法转基因的分子细胞学机理研究[J].中国农业科学,1999,32(6):113-114.
    [202]MOORE S, CROUGHAN T, MYERS G, et al. Investigation of transferring the bar gene into soybean via the pollen-tube pathway [J]. Soybean Genet. Newslett.1996,23:167-168.
    [203]崔岩,杨庆凯,周思军等,提高大豆花粉管通道技术的转化率研究[J].大豆科学,2003,22(1):75-77.
    [204]刘建凤.大豆子房滴注转化方法的研究及耐盐基因(AlNHX1)的转化[D].大连:大连理工大学,2009.
    [205]胡适宜.被子植物双受精发现100年:回顾与展望[J].植物学报,1998,40(1):1-13.
    [206]申家恒.大豆授精作用的研究[J].植物学报1983,25(3):213-218.
    [207]CHRISTOU P. Transformation technology[J]. Trends in Plant Science,1996,1(12): 423-431.
    [208]李长缨,简元才.花粉管通道法在植物遗传转化中的应用[J].生物学杂志,2000,17(1):9-10.
    [209]BHAT S R, SRINIVASAN S.Molecular and genetic analyses of transgenic plants: considerations and approaches [J]. Plant Science,2002,163:673-681.
    [210]GUZMAN P, ECKER J R. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants [J]. Plant Cell,1990,2:513-523.
    [211]植物生理学[M/OL], http://jpkc.yzu.edu.cn/course/zhwshl/ppebook/07z/ppe0706.htm.扬州大学网络教程.
    [212]BLEECKER AB, KENDE H. Ethylene:a gaseous signal molecule in plants [J]. Annu Rev Cell Dev Biol,2000,16:1-18.
    [213]GOESCHL J D, PRATT H K, BONNER B A. An effect of light on the production of ethylene and the growth of the plumular portion of etiolated pea seedlings [J]. Plant Physiol,1967, 42:1077-1080.
    [214]JIAO X Z, YIP W K, YANG S F. The effect of light and phytochrome on 1-aminocyclopropane-1-carboxylic acid metabolism in etiolated wheat seedling leaves[J]. Plant Physiol,1987, 85:643-647.
    [215]FRANKOWSKI K, KESY J, WOJCIECHOWSKI W, et al. Light- and IAA-regulated ACC synthase gene (PnACS) from Pharbitis nil and its possible role in IAA-mediated flower inhibition [J]. J Plant Physiol,2009,166(2):192-202.
    [216]VOGEL JP, SCHUERMAN P, WOESTE KW, et al. Isolation and characterization of Arabidopsis mutants defective in induction of ethylene biosynthesis by cytokinin[J]. Genetics,1998, 149:417-427.
    [217]WOESTE K, VOGEL JP, KIEBER J J. Factors regulating ethylene biosynthesis in etiolated Arabidopsis thaliana seedlings[J]. Physiol Plant,1999,105:478-484.
    [218]ADAMS DO, YANG SF. Ethylene biosynthesis:identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the Conversion of methionine to ethylene [J]. Proc Natl Acad Sci USA,1979,76:170-174.
    [219]MIYAZAKI J H, YANG S F. The methionine salvage pathway in relation to ethylene and polyamine biosynthesis[J]. Physiol Plant,1987,69:366-370.
    [220]MIYAZAKI J H, YANG S F. Metabolism of 5-methylthioribose to methionine[J]. Plant Physiol,1987,84(2):277-281.
    [221]Y00 S D, CHO Y H, SHEEN J. Emerging connections in the ethylene signaling network[J]. Trends in Plant Science,2009,14 (5):270-279.
    [222]ARGUESO C T, HANSEN M, KIEBER J J. Regulation of Ethylene Biosynthesis[J]. J Plant Growth Regul,2007,26:92-105.
    [223]LI J, QU L, LI N. Tyr152 plays a central role in the catalysis of 1-aminocyclopropane-l-carboxylate synthase[J]. J Exp Bot,2005,56:2203-2210.
    [224]ALEXANDER F W, SANDMEIER E, MEHTA P K, et al. Evolutionary relationships between pyrodoxal-5-phosphate-de.pendent enzymes [J]. Eur J Biochem,1994,219:953-960.
    [225]CAPITANI G, HOHENESTER E, FENG L, et al. Structrue of 1-aminocyclopropane-1-carbo-xylate [J]. Plant-Physiol,2002,128:1313-1322.
    [226]CAPITANI G, HOHENESTER E, FENG L, et al. Structure of 1-aminocyclopropane-1-carboxy-late synthase, a key enzyme in the biosynthesis of the plant hormone ethylene[J]. J Mol Biol,1999,294:745-756.
    [227]HUAI Q, XIA Y, CHEN Y, CALLAHAN B, LI N, KE H. Crystal Structures of 1-Aminocyclo propane-1-carboxylate (ACC) Synthase in Complex with Aminoethoxyvinylglycine and Pyridoxal-5-Phosphate Provide New Insight into Catalytic Mechanisms [J]. The Journal of Biological Chemistry,2001,276(41):38210-38216.
    [228]TARUN A S, LEE J S, THEOLOGIS A. Random mutagenesis of 1-aminocyclopropane-1-carbo-xylate synthase:a key enzyme in ethylene biosynthesis [J]. Proc Natl Acad Sci USA,1998, 95:9796-9801.
    [229]TARUN A S, THEOLOGIS A. Complementation analysis of mutants of 1-aminocyclopropane-1-carboxylate synthase reveals the enzyme is a dimer with shared active sites[J]. J Biol Chem,1998,273:12509-12514.
    [230]TSUCHISAKA A, THEOLOGIS A. Heterodimeric interactions among the 1-aminocyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family[J]. ProcNatl Acad Sci USA,2004,101:2275-2280.
    [231]LIANG X, ABEL S, KELLER JA, et al. The 1-aminocyclopropane-l-carboxylate synthase gene family of Arabidopsis thaliana[J]. Proc Natl Acad Sci USA,1992,89:11046-11050.
    [232]LIANG X, OONO Y, SHEN N F, et al. Characterization of two members (ACS1 and ACS3) of the 1-aminocyclopropane-l-carboxylate synthase gene family of Arabidopsis thaliana[J]. Gene,1995,167:17-24.
    [233]LIANG X, SHEN N F, THEOLOGIS A. Li+-regulated 1-aminocyclopropane-l-carboxylate synthase gene expression in Arabidopsis thaliana[J]. Plant J,1996,10:1027-1036.
    [234]TANG X N, CHANG L, WU S, et al. Auto-regulation of the promoter activities of Arabidopsis 1-aminocyclopropane-l-carboxylate synthase genes AtACS4, AtACS5, and AtACS7 in response to different plant hormones [J]. Plant Science,2008,175,161-167.
    [235]YAMAGAMI T, TSUCHISAKA A, YAMADA K, et al. Biochemical diversity among the 1-amino-cyclopropane-l-carboxylate synthase isozymes encoded by the Arabidopsis gene family [J]. J Biol Chem,2003,278:49102-49112.
    [236]TSUCHISAKA A, THEOLOGIS A. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-l-carboxylate synthase gene family members[J]. Plant Physiol,2004,136:2982-3000.
    [237]WANG N, SHIH M, LI N. The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes At-ACS4, AtACS5, and AtACS7 induced by hormones and stresses [J]. J Exp Bot,2005,56:909-920.
    [238]BARRY CS, LLOP-TOUS MI, GRIERSON D. The regulation of 1-aminocyclopropane-l-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato[J]. Plant Physiol.,2000,123:979-986.
    [239]GIOVANNONI J. Molecular biology of fruit maturation and ripening[J]. Annu Rev Plant Physiol Plant Mol Biol,2001,52:725-749.
    [240]ALEXANDER L, GRIERSON D. Ethylene biosynthesis and action in tomato:a model for climacteric fruit ripening[J]. J Exp Bot,2002,53:2039-2055.
    [241]OLSON DC, WHITE JA, EDELMAN L, et al. Differential expression of two genes for 1-aminocyclopropane-l-carboxylate synthase in tomato fruits[J]. Proc Natl Acad Sci USA, 1991,88:5340-5344.
    [242]ROTTMANN W H, PETER G F, OELLER P W, et all-Aminocyclopropane-1-carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence [J]. J Mol Bio,1991,1222:937-961.
    [243]YIP W K, MOORE T, YANG S F. Differential accumulation of transcripts for four tomato 1-aminocyclopropane-l-carboxyl-ate synthase homologs under various conditions[J]. Proc Natl Acad Sci USA,1992,89:2475-2479.
    [244]LINCOLN J, CAMPBELL A, OETIKER J, et al. LE-ACS4, a fruit-ripening and wound-induced 1-aminocyclopropane-l-carboxylate synthase gene of tomato (Lycopersicon esculentum). Expression in Escherichia coli, structural characterization, expression characteristics, and phylogenetic analysis[J]. J Biol Chem,1993,268:19422-19430.
    [245]ABEL S, NGUYEN M D, CHOW W, et al. ACS4, a primary indoleacetic acid-responsive gene encoding 1-amino-cyclopropane-l-carboxylate synthase in Arabidopsis thaliana [J]. J Biol Chem 1995,270:19093-19099.
    [246]ISHIKI Y, ODA A, YAEGASHI Y, et al Cloning of an auxin-responsive 1-aminocyclo-propane-1-carboxylate synthase gene (CMe-ACS2) from melon and the expression of ACS genes in etiolated melon seedlings and melon fruits[J]. Plant Sci,2000,159:173-181.
    [247]PENG H P, LIN T Y, WANG N N, et al.. Differential expression of genes encoding 1-aminocyclopropane-l-carboxylate synthase in Arabidopsis during hypoxia [J]. Plant Mol Biol,2005,58:15-25.
    [248]TANASE K, ONOZAKI T, SATOH S, et al. Differential expression levels of ethylene bi'osynthetic pathway genes during senescence of long-lived carnation cultivars. Postharvest Biology and Technology,2008,47:210-217.
    [249]ZHU Y, RUDELL D R, MATTHEIS J P. Characterization of cultivar differences in alcohol acyltransferase and 1-aminocyclopropane-l-carboxylate synthase gene expression and volatile ester emission during apple fruit maturation and ripening [J]. Postharvest Biology and Technology,2008,49:330-339.
    [250]LIU Y, ZHANG S. Phosphorylation of ACC synthase by MPK6, a stress-responsive MAPK, induces ethylene biosynthesis in Arabidopsis[J]. Plant Cell,2004,16:3386-3399.
    [251]TATSUKI M, MORI H. Phosphorylation of tomato 1-amino-cyclopropane-l-carboxylic acid synthase, LE-ACS2, at the C-terminal region[J]. J Biol Chem,2001,276:28051-28057.
    [252]SEBASTIA CH, HARDIN SC, CLOUSE SD, et al. Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate [J]. Arch Biochem Biophys,2004,428:81-91.
    [253]CHAE H S, KIEBER J J,. ETO BRUTE. The role of ACS turnover in regulating ethylene biosynthesis[J]. Trend Plant Sci,2005,10:291-296.
    [254]KENDE H, BOLLER T. Wound ethylene and 1-aminocyclo-propane-l-carboxylate synthase in ripening tomato fruit [J]. Planta,1981,151:476-481.
    [255]CHAPPELL J, HAHLBROCK K, BOLLER T. Rapid induction of ethylene biosynthesis in cultured parsley cells by fungal elicitor and its relationship to the induction of phenylalanine ammonia lyase[J]. Planta,1984,161:475-480.
    [256]FELIX G, GROSSKOPF D G, REGENASS M, et al. Elicitor-induced ethylene biosynthesis in tomato cells. Characterization and use as a bioassay for elicitor action[J]. Plant Physiol,1991,97:19-25.
    [257]SPANU P, FELIX G, BOLLER T. Inactivation of stress induced 1-aminocyclopropane carboxylate synthase in vivo differs from substrate-dependent inactivation in vitro[J]. Plant Physiol,1990,93:1482-1485.
    [258]VOGEL JP, WOESTE KW, THEOLOGIS A, et al. Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively [J]. Proc Natl Acad Sci USA, 1998, 95:4766-4771.
    [259]CHAE H S, FAURE F, KIEBER J J. The etol, eto2 and eto3 mutations and cytokinin treatment elevate ethylene biosynthesis in Arabidopsis by increasing the stability of the ACS5 protein[J]. Plant Cell,2003,15:545-559.
    [260]WOESTE K, YE C, Kieber J J. Two Arabidopsis mutants that overproduce ethylene are affected in the post-transcriptional regulation of ACC synthase[J]. Plant Physiol,1999, 119:521-530,
    [261]WANG K L C, YOSHIDA H, LURIN C, et al. Regulation of ethylene gas biosynthesis by the Arabidopsis ET01 protein[J]. Nature,2004,428:945-950.
    [262]YOSHIDA H, NAGATA M, SAITO K, et al. Arabidopsis ET01 specifically interacts with and negatively regulates type 21-aminocyclopropane-1-carboxylate synthases[J]. BMC Plant Biol,2005,5:14.
    [263]YOSHIDA H, WANG KL, CHANG CM, et al. The ACC synthase TOE sequence is required for interaction with ET01 family proteins and destabilization of targetproteins[J]. Plant Mol Biol,2006,62:427-437.
    [264]PINTARD L, WILLEMS A, PETER M. Cullin-based ubiquitin ligases:Cul3-BTB complexes join the family [J]. EMBO J,2004,23:1681-1687.
    [265]WILLEMS AR, SCHWAB M, TYERS M. A hitchhikers guide to the cullin ubiquitin ligases: SCF and its kin[J]. Biochim Biophys Acta,2004,1695:133-170.
    [266]DIETERLE M, THOMANN A, RENOU J P, et al. Molecular and functional characterization of Arabidopsis Cullin 3A[J]. Plant J,2005,41:386-399.
    [267]FIGUEROA P, GUSMAROLI G, SERINO G, et al. Arabidopsis has two redundant Cullin3 proteins that are essential for embryo development and that interact with RBXland BTB proteins to form multisubunit E3 ubiquitin ligase complexes in vivo[J]. Plant cell,2005, 17:1180-1195.
    [268]GINGERICH DJ, GAGNE JM, SALTER DW, et al. Cullins 3a and 3b assemble with members of the broad complex/tramtrack/bric-a-brac (BTB) protein family to form essential ubiquitin-protein ligases (E3s) in Arabidopsis[J]. J Biol Chem,2005,280:18810-18821.
    [269]DOWNES B, VIERSTRA R D. Post-translational regulation in plants employing a diverse set of polypeptide tags[J]. Biochem Soc Trans,2005,33:393-399.
    [270]WU JT, LIN HC, HU YC, CHIEN CT. Neddylation and deneddylation regulate Cull and Cul3 protein accumulation[J]. Nat Cell Biol,2005,7:1014-1020.
    [271]BOSTICK M, LOCHHEAD SR, HONDA A, et al. Related to ubiquitin 1 and 2 are redundant and essential and regulate vegetative growth, auxin signaling, and ethylene production in Arabidopsis [J]. Plant Cell,2004,16:2418-2432.
    [272]LARSEN P B, CANCEL J D. A recessive mutation in the RUB1-conjugating enzyme, RCE1, reveals a requirement for RUB modification for control of ethylene biosynthesis and proper induction of basic chitinase and PDF1.2 in Arabidopsis [J]. Plant J,2004,38:626-638.
    [273]GROSSKOPF D G, FELIX G, BOLLER T K.252a inhibits the response of tomato cells to fungal elicitors in vivo and their microsomal protein kinase in vitro[J]. FEBS Lett,1990, 275:177-180.
    [274]PETRUZZELLI L, STURARO M, MAINIERI D, et al. Calcium requirement for ethylene-dependent responses involving 1-aminocyclopropane-1-carboxylic acid oxidase in radicle tissues of germinated pea seeds [J]. Plant Cell Environ,2003,26:661-671.
    [275]JUNG T, LEE J H, CHO M H, et al. Induction of 1-aminocyclopropane-l-carboxylate oxidase mRNA by ethylene and in mung bean roots:possible involvement of Ca2+ phosphoinositides in ethylene signalling[J]. Plant Cell Environ,2000,23:205-213.
    [276]KIM CY, LIU Y, THORNE ET, et al. Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants [J]. Plant Cell,2003, 15:2707-2718.
    [277]LUDWIG A A, SAITOH H, FELIX G, et al. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants [J]. Proc Natl Acad Sci USA,2005,102:10736-10741.
    [278]谢兆辉.天然反义转录物及其调控基因的表达机制[J].遗传,2010,32(2):1-7.
    [279]YIN GL, CHEN Q, YANG WJ. Naturally occurring antisense RNA of allatostatin gene in the-prawn, Macrobrachium rosenbergii[J]. Comparative Biochemistry and Physiology Part B, 2007,146:20-25.
    [280]DOLNICK BJ. Naturally occurring antisense RNA [J]. Pharmacol. Ther.1997,75(3),179-184.
    [281]COCK J M, SWARUP R, DUMAS C. Natural antisense transcripts of the S locus receptor kinase gene and related sequences in Brassica oleraces[J]. Mol gen. genet.1997,255:514-524.
    [282]石东乔,陈正华.反义RNA及其在植物学中的应用[J].遗传,2001,23(1):73-76.
    [283]TSUCHISAKA A, YU G, JIN H, et al. A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana[J]. Genetics,2009,183(3):979-1003.
    [284]程云清.乙烯调控对大豆生长发育的影响研究[D]大连:大连理工大学,2009.
    [285]DROSTE A, PASQUALI G, BODANESE-ZANETTINI MH. Transgenic fertile plants of soybean [Glycine max (L). Merrill] obtained from bombarded embryogenic tissue [J]. Euphytica,2002, 127:367-376.
    [286]CARLSON JB, LERSTEN NR. Reproductive morphology. In:JR Wilcox (ed), Soybean: Improvement, production and uses[M].2nd ed. Agronomy 16,1987,95-134.
    [287]雷勃钧,尹光初,卢翠华,等.外源DNA导入大豆的适宜时期与相应方法[J].中国油料,1991,(1):88-89.
    [288]刘德璞,李长友.导入外源DNA获得抗SMV大豆品系[J].松辽学刊,1995,3(3):40-43.
    [289]MURRAY MG, THOMPSON WF. Rapid isolation of high molecular weight plant DNA[J]. Nucleic Acids Res,1980,8:4321-4325.
    [290]JEFFERSON RA. Assaying chimeric genes in plants:The GUS gene fusion systems[J]. Plant. Mol. Bio. Rep,1987,5,387-405.
    [291]SAMBROOK J, TRITSCH EF, MANIATIS T. Molecular Cloning:A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY,1989萨姆布鲁克J.,弗里奇E.F.曼尼阿帝斯T.分子克隆试验指南.第二版.译:金冬燕,黎孟枫.[M]北京:科学出版社,1999,pp.19.等.
    [292]MARTINEAU B, VOELKER T A, SANDERS R A. On defining T-DNA[J]. Plant cell,1994,6: 1032-1033.
    [293]RAMANATHAN V, VELUTHAMBI K. Transfer of non T-DNA portions of the Agrobacterium tumefaciens Ti plasmid pTiA6 from the left terminus of T1-DNA[J]. Plant Mol Biol,1995, 28:1149-1154.
    [294]VAN DER GRAAFF E, DEN DULK-RAS A, HOOYKASS P J. Deviating T-DNA transfer from Agrobacterium tumefaciens to plants[J]. Plant Mol Biol,1996,31:677-681.
    [295]WENCK A, CZAKO M, KANEVSKI I, et al. Frequence collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium mediated transformation [J]. Plant Mol Biol, 1997,34:913-922.
    [296]KONONOV M E, BASSUNER B, GELVIN S B. Integration of T-DNA binary vector'backbone' sequences into the tobacco genome:Evidence for multiple complex patterns of integration[J]. Plant J,1997, 11:945-957.
    [297]VAIN P, HARVEY A, WORLAND B, et al. The effect of additional virulence genes on transformation efficiency, transgene integration and expression in rice plants using the pGreen/pSoup dual binary vector system[J]. Transgenic Research,2004,13:593-603.
    [298]成善汉,谢从华,柳俊,等.马铃薯转基因株系载体骨架的整合分析[J].海南大学学报自然科学版,2006,24(3):305-308.
    [299]DURING K. A Plant transformation vector with minimal T-DNA [J]. Transgenic Res,1994,3: 138-140.
    [300]徐凤萍,杨君,程云清,等SmGFP最小线性表达框的直接渗透转化与瞬时表达[J].植物研究,2009,29(2):230-233.
    [301]WANG K L, LI H, ECKER J R. Ethylene biosynthesis and signaling networks [J]. Plant cell,2002, 14(suppl.):S131-151.
    [302]SPECHT JE, HUME DJ, KUMUDINI SV. Soybean Yield Potential—A Genetic and Physiological Perspective. Crop Science 1999,39:1560-1570.
    [303]程云清,杨君,安利佳,等.乙烯对大豆产量及花器官发育影响的研究[J].浙江大学学报(农业与生命科学版).2008,34(5):540-545.
    [304]JEN C H, MICHALOPOULOS I, WESTHEAD D R, et al. Natural antisense transcripts with coding capacity in Arabidopsis may have a regulatory role that is not linked to double-stranded RNA degradation [J]. Genome Biology,2005,6:R51.
    [305]ZUBKO E, MEYER P. A natural antisense transcript of the Petunia hybrida Sho gene suggests a role for an antisense mechanism in cytokinin regulation [J]. The Plant Journal, 2007,52(6):1131-1139.
    [306]WANG X J, GAASTERLAND T, CHUA N. Genome-wide.prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana[J]. Genome Biology,2005,6:R30. (Supplemental material, the putative ACC synthase NATs in the list of genomic-NATs).
    [307]关永贺.大豆ACC合酶的活性与纯化研究(D).大连:大连理工大学,2008.
    [308]DE LA RIVA G A, GONZALEZ-CABRERA J, VAZQUEZ-PADRON R, et al. Agrobacterium tumefaciens: a natural tool for plant transformation[J/OL]. Electronic journal of biotechnology,1998, 1(3), DOI:10.2225/voll-issue3-fulltext-1.
    [309]FLADUNG M, DEUTSCH F, HONICKA H, et al. T-DNA and transposon tagging in Aspen [J]. Plant Biol,2004,6(1):5-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700