无轴承永磁同步电机电磁设计与控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无轴承永磁同步电机是将磁轴承技术与永磁同步电机有机结合的新型电机。它既有永磁同步电机功率大、寿命长、效率高和积小体等优势,又有避免了机械轴承的磨损和温升问题,拓展了永磁同步电机在高速和超高速领域的应用空间,其独具的悬浮机理和结构特点使之在一些高新技术领域具有传统电动机无法实现和替代的技术和经济优势,具有良好的应用前景。
     本文以面贴式无轴承永磁同步电机为重点,对无轴承永磁同步电机悬浮力模型、影响稳定悬浮的因素、电磁设计的特殊性、电机控制策略和转子偏心位移控制等问题进行了较深入研究。
     系统地论述了无轴承永磁同步电机的研究意义、国内外的研究现状和发展趋势。针对面贴式无轴承永磁同步电机的特点,深入分析了无轴承永磁同步电机的悬浮机理和运行特点,从麦克斯韦力原理和虚位移原理不同角度,综合考虑了永磁体、转矩绕组、悬浮绕组磁场和转子偏心等因素,分析和建立了面贴式无轴承永磁同步电机的悬浮力数学模型和电机的完整数学模型。
     借助Ansoft软件,利用有限元分析方法,对所建立的悬浮力数学模型进行了验证,并首次系统地从定子绕组电流、转子偏心、磁路饱和、齿槽效应和洛仑兹力等方面较深入地分析了对悬浮力的影响,研究了相关规律。
     针对无轴承永磁同步电机电磁设计中存在的特殊问题和设计特点开展研究,通过对无轴承永磁同步电机退磁问题,悬浮力与永磁体厚度、气隙长度的关系研究分析,推导出了考虑退磁效应的最大转矩电流和悬浮电流表达式,创新性的提出通过建立反映永磁体厚度、气隙长度、悬浮力间关系的规律函数来优化电机转子设计,有限元分析验证了其正确性。首次从系统角度分析总结了面贴式无轴承永磁同步电动机的设计特点,完成了研究项目样机的电磁设计。
     针对无轴承永磁同步电机的特点,利用永磁同步电机控制策略,通过对无轴承永磁同步电机转矩和悬浮力解耦控制可能的策略分析,改进了基于完整数学模型的转子磁场定向控制策略,仿真结果表明,该策略在无轴承永磁同步电机仿真研究中具有较好预测实际系统性能的功能。针对无轴承永磁同步电机转子偏心位移控制问题,在无轴承永磁同步电机悬浮力控制策略中引入了模糊PID控制策略和提出了基于可控悬浮力模型的、转子磁场定向的转子偏心位移直接控制新方法,仿真表明:该两种控制策略构成的悬浮力控制系统实现了更有效的无轴承永磁同步电机悬浮力控制性能。
     本论文所研究的面贴式无轴承永磁同步电机问题,是相关研究未提及或提及而未深入研究的问题,因此,其研究具有一定的理论和实际应用价值。
Bearingless permanent magnet synchronous motor is a new type of motor combined with the magnetic levitation technology and permanent magnet motor, which has the advantages of high power of permanent magnet synchronous motor, long life, high efficiency and small size. What’s more, the wear and temperature rise of mechanical bearing can be avoided and the application space of the permanent magnet synchronous motor in the field of high speed and supper high speed has been expanded. The technical and economic advantages and a good prospect of application are obvious for its unique suspension mechanism and structure characteristics, which can not be replaced by the traditional electric motor.
     This dissertation focuses on a surface-mounted bearingless permanent magnet synchronous motor and the motor levitation force model, and the impact on the stability of the hanging, the features of electro-magnet design, motor control strategy and control of eccentric rotor displacement is deeply studied.
     The research significance of the bearingless permanent magnet synchronous motor, the recent research and development trends both at home and abroad is systematically discussed in the dissertation. Levitation mechanism and the operating feature of the bearingless permanent magnet synchronous motor have been analyzed. Considered the factors of permanent magnet, the field of windings and eccentric rotor, the mathematical model of levitation force and the complete mathematical model of surface-mounted bearingless permanent magnet synchronous motor have been analyzed and established from different point of views of Maxwell’s force principle and virtual displacement principle.
     With the help of Ansoft software, the established mathematical model of levitation force is verified by means of Finite Element Analysis. The impact of current stator windings, rotor eccentricity, saturation, cogging effect and Lorentz force on levitation force has been analyzed systematically and deeply for the first time. The related laws have been researched.
     The research on the special problems and design features existed in the electromagnetic design of the bearingless permanent magnet synchronous motor is conducted. By analyzing the relationships among the demagnetization of bearingless permanent magnet synchronous motor, levitation force and the thickness of the permanent magnet and air-gap length, the maximum torque current of the demagnetization effect and suspended current expression are derived. The optimization of rotor design by establishing the law of function which can reflect the thickness of permanent magnet, air-gap length and levitation force is creatively put forward, which is verified by Finite Element Analysis. For the first time, the design feature of surface bearingless permanent magnet synchronous motor from the perspective of the system is analyzed and the electromagnetic design of the research prototype has been completed.
     For the characteristics of bearingless permanent magnet synchronous motor and the control strategy of permanent magnet synchronous motor, the rotor field oriented control strategy based on a complete mathematical model is improved by analyzing the possible strategy of bearingless permanent magnet synchronous motor torque and levitation force decoupling control. The simulation result shows that the strategy has a better function to forecast the actual system performance in the simulation study of bearingless permanent magnet synchronous motor. To solve the problem of eccentric rotor displacement control of bearingless permanent magnet synchronous motor, the fuzzy PID control strategy is led into the suspension control strategy of bearingless permanent magnet synchronous motor. Meanwhile, the new method of direct control of eccentric rotor displacement based on accurate controllable force suspended model and rotor flux orientation is put forward. The simulation shows that a more effective levitation force control performance of bearingless permanent magnet synchronous motor has been achieved under the levitation force control system constituted by the two control strategies.
     So far, the research of the surface-mounted bearingless permanent magnet synchronous motor described in this dissertation is not mentioned or not researched further by others in this area. As a result, the study has its value both in theory and practical application.
引文
[1]刘迪吉,航空电机学,北京,航空工业出版社,1992.
    [2] R.Bosch,. Development of a bearingless electrical motor[C]. Proc. Int. Conf. Elec.Mach. ICEM’88,vol.3,pp:373-375.
    [3] P.K.Hermann. A radial active magnetic bearingless. London Patent No.1 478 868,20, Nov.1973.
    [4] P.K.Hermann. A radial active magnetic bearingless have a rotating drive. London Patent No.1 500 809,9, Feb.1974.
    [5] Meink P,Flachenecker G Electromagnetic drive assembly for rotary bodies using a magnetically mounted rotor[P]. America:3988658.1974
    [6] Higuchi T.Magnetically floating actuator having angular positioning function[P]. 4683391,1985
    [7] J.Bichsel.The bearingless electrical motor[C].Proc.Int.Symp.Magn.Suspension Technnol’91 NASA Langley Research Center:561-573.
    [8] Schoeb R. Beitraege Zur lagerlosen A synchronmaschine[D].Schweiz Eidgenoessische Technische Hochschule Zuerich,1993
    [9] Barletta N. Der lagerlose Scheibermoto[D].Schweiz Eidgenoessische Technische Hochschule Zuerich,1998
    [10] Nenninger K,Amrhein W.,Silber s.,Trauner G.Bearingless Single-phase PM Motor with Low-Cost Rotary Angle Sensor. 6th International Symposium on Magnetic Suspension Technology,2001, Turin,Italien.
    [11] J.Zhou,K.J.Tseng. A disk-type bearingless motor for use as satellite momentum-reaction wheel. IEEE,2002.
    [12] Chiba,T.Deido,M.A.Ranhman.No load characteristics of a bearingless induction motor[J].IEEE LAS Annual Meeting Record,1991,pp:126-132.
    [13] Y.Okada,et.Levitation control of permanent magnet type rotating motor[C].IEEJ Proc.of Symposium on dynamimcs of electro magnetic force,pp:251-256,June 1992.
    [14] Tera T,Yamauchi Y,Chiba A,Fukao T. Performances of bearingless and sensorless induction motor drive based on mutual inductances and rotor displacements estimation[J]. IEEE Transactions on industial Electronics,2006,53(1):187-194
    [15] W.Amrhein, S.Silber, K.Nenninger. Levitation Forces in Bearingless Permanent magnet Motors. IEEE Trans on Magnetics , 1999,35(5):4052-4054.
    [16] Kin D,Stephens LS Fault Tolerance of a Lorentz-type Slotless,Self-bearingmotor According to the coiling Schemes[C].7th Intemational Symposium on Magnetic Bearings,ETH Zurich,2000:219-224
    [17] Jumei Cai,Henneberger G. Radial force of bearingless wound-rotor induction motor[C].8th International Symposium on magnetic Bearings,Mio,Japan,2002:41-46
    [18] Wang Baoguo et al. Modeling and Analysis of Levitation force Considering Air-gap Eccentricity in a Bearingless Induction Motor[C].Proc. of the fifth international conference on Electrical Machine and Systems,2001.
    [19]王凤翔,郑柒拾,王宝国,不同转子结构无轴承电动机的悬浮力分析与计算[J],电工技术学报,2002,17(5):6-10.
    [20]王宝国,王凤翔,磁悬浮无轴承电机悬浮力绕组励磁及控制方式分析[J],中国电机工程学报,2002,2(5):105-108.
    [21] Baoguo W. et al. Levitation Force Control by Curreny Vector Orientation for a Bearingless Motor with Hybrid Rotor Structure. CCECE 2003-CCGEI 2003, Montcalm.
    [22]王凤翔,王宝国,徐隆亚,一种新型混合转子结构无轴承电动机悬浮力的矢量控制[J],中国电机工程学报.2005(5):98-103.
    [23]李冰,邓智泉,严仰光,一种新颖的永磁偏置三自由度电磁轴承[J],南京航空航天大学学报,2003,35(1):81-85.
    [24]李冰,邓智泉,严仰光,无轴承异步电动机的最大径向力有限元分析[J],中小型电机,2003,30(3):20-24.
    [25]邓智泉等,基于气隙磁场定向的无轴承异步电机非线性解耦控制[J],电工技术学报,2002,17(6):19-24.
    [26]邓智泉等,无轴承异步电机转子磁场定向控制[J],中国电机工程学报,2003,23(3):89-92.
    [27]邓智泉等,无轴承异步电机悬浮子系统独立控制的研究[J],中国电机工程学报,2003,23(9):107-111.
    [28]王晓琳,邓智泉,严仰光,一种新型的五自由度磁悬浮电机[J],南京航空航天大学学报,2004,36(2):210-214.
    [29]朱小春,徐龙祥,新型永磁同步无轴承电机的设计[J],机械工程与自动化,2005(3):42-44.
    [30]曹建荣等,感应型磁悬浮电动机的解耦控制[J],电工技术学报,2000,15(5):1-5
    [31]曹建荣等,磁悬浮电动机的状态反馈线性化控制[J],中国电机工程学报,2001,21(9)
    [32]年珩,贺益康,感应型无轴承电机悬浮力解析模型及其反馈控制[J],中国电机工程学报,2003,23(11):139-144.
    [33] HE Yikang,NIAN Heng.Analytical Model and Feedback Control of the Levitation Force for an Induction-Type Bearingless[C].PEDS 2003,Singapore,pp:242-246.
    [34]贺益康,年珩,陈秉涛,感应型无轴承电机的优化气隙磁场定向控制[J],中国电机工程学报,2004,24(6):116-121.
    [35]年珩,贺益康,秦峰,刘毅,永磁型无轴承电机的无传感器运行研究[J],中国电机工程学报,2004(11):101-105.
    [36]年珩,贺益康,永磁型无轴承电机的设计与运行分析[J],浙江大学学报,2005,39(6):891-895.
    [37]朱熀秋,翟海龙,无轴承永磁同步电机控制系统设计与仿真[J],中国电机工程学报,2005,25(14):120-124.
    [38] M.A.Rahaman,T.Fukao,T.Ohishi. Principle and development of bearingless AC motor[C]. IPEC,1995,Vol.3,pp:1334-1339.
    [39] Okada Y.et.al. Analysis and Comparisiom of PM Synchronous Motor and Induction Motor Type Magnetic Bearings[J].IEEE Trans.on IA,1995,31(5):1047-1053.
    [40] Andres O,Salazar,A.Chiba,T.Fukao.A Review of development in bearingless motor[C].17thInt. Symp.Magnetic Bearingless,2000:335-340.
    [41] W.Amrehein,S.Silber,K.Nenninger.Development on bearingless drive technology[C].8thInt. Symp.Magnetic Bearingless,Japan,2002:229-234.
    [42]邓智泉,严仰光,无轴承交流电动机的基本理论和研究现状[J],电工技术学报, 2000(4):29-35.
    [43]陈保进,朱熀秋,王德明,无轴承永磁同步电机基本原理及研究现状[J],排灌机械,2003,21(1):42-45.
    [44]刘贤兴,孙宇新,朱熀秋,王德明,孙玉坤,无轴承永磁同步电动机的发展、应用和前景[J],中国机械工程,2004,15(17):1594-1597.
    [45] A.Chiba et al. An analysis of bearingless ac motors[J],IEEE Trans on Energy Conversion, 1994,9(1):61-68.
    [46] A .Chiba et al. Analysis of no–load characteristics of a bearingless induction motor[J].IEEE Trans on IA ,1995,31 (1):77-83.
    [47] R.Schob,J.Bichsel. Vector control of the bearingless motor[C].Proc.4th Int.Symp.Magnetic Bearings,Zurich,Switzerland.1994:327-332.
    [48] R .Furuichi,Y Aikawa et al .A stable operation of induction type bearingless motor under loaded conditions[C]. 31th IAS Annual Meeting,IAS'96.vol.1,1996,pp:60 3-609.
    [49] A.Chiba, R.Futvichi et al. Sable operation of induction type bearingless motor under loaded conditions [J].IEEE Trans.On IA ,1997,33(4):919-924.
    [50] T.Suzuki,A.Chiba,M.A.Rahman.An air-gap flux oriented vector controller for stable magnetic suspension during high torque acceleration in bearingless induction motors[J]. 34th IAS Annual Meeting.1999,vol.3.pp :1543一1550.
    [51] T Suzuki et al. An Air-Gap-Flux-Oriented Vector Controller for Stable Operation of Bearingless Induction Motors[J].IEEE Trans.on IA,2000,36(4):1069-1076.
    [52] Rik W.De Doncker,et al .The Universal Field Oriented Controller[J].IEEE Trans. on IA,1994,30(l): 92-100.
    [53] Deng Zhiquan, Wang Xiaolin, et al. An independent controller of radial force subsystem for super-high-speed bearingless induction motors.9th international symposium on magnetic bearings,Kentuchky,USA,2004,#17.
    [54] M.Ohsawa,S.mori,T.Satoh. Study of the induction type bearingless motor[C].7th Int, Symp. Magnetic Bearings.
    [55] S.Nomura,A.Chiba,F.Nakamura,et al.A Radial Position Control of Induction type Bearingless motor considering phase delay caused by the Rotor Squirrel Cage[C].IEEE Power Conversion Conference. Yokohama 1993.pp:438-443.
    [56] Y.Okada,S.Shimura,A.Chiba. Optimal design of rotor circuits in induction type bearingless motors[j].IEEE Trans.On Magnetics.1998,34(4):2108-2110.
    [57] M.Yamashita,K.Yasuda,K.Kobayashi,et al. Power Generation of Radial Force Windings in Induction Type Bearingless Motors with 2-pole Drive[J].IEEJ SPC99:31-36.
    [58] M.Yamashita,K.Yasuda,K.Kobayashi,et al. An optimal signal injection of self-excited operation in Induction Type Bearingless Motors with 2-pole Drive[J].IEEJ LD99:39-44.
    [59] K.Kobayashi,M.Yamashita,A.Chiba. Principles of self-excitation at radial force winding terminals in bearingless induction motors with a squirrel cage rotor[C].IEEE Industry Applications Conference, 2000.vol.I,pp:235-240.
    [60] Koji Kiryu,et al. A Radial Force Detection and Feedback Effects on Bearingless Motors[J].IEEE IAS Annual Meeting Conf.Rec.vol,2001:64-69.
    [61] A.Chiba,M.A.rahman,R.Fukao,Radial force in a bearingless Reluctance Motor.IEEE Trans.on Magnetics,1991,27(2):786-791.
    [62] C.Michioka,T.sakamoto,O.Ichikawa,et al. A decoupling control method of reluctance type bearingless motors considering magnetic saturation. 30th IAS Annual Meeting, 1995, Vol.1,pp:405-411.
    [63] C.Mochioka,T.sakamoto, O.Ichikawa, et al. A decoupling control method of reluctance type bearingless motors considering magnetic saturation. IEEE Trans. On IA,1996,32(5): 1204-1210.
    [64] A.Chiba,K.Chida,T.Fukao. Principles and characteristics of a reluctance motor with windings of magnetic bearing[C].Proc.Int.Power Electron.Conf.Tokyo.April,1990,pp:919-926.
    [65] Chiba.A.,Hanazawa. M., Fukao. T. Effects of magnetic Saturation on Radial Force ofBearingless Synchronous Reluctance Machines[A]. Industry Applications Society Annual Meeting, conference Record of the 1993 IEEE. 1993,1:233-239.
    [66]黎海文,白越,贾宏光,于震雷,吴一辉,宣明,用于小卫星姿态控制的磁悬浮电机的设计[J],光学精密工程.2004.012(003):307-311.
    [67] W.Amrhein, S.Silber, K.Nenninger. Levitation Forces in Bearingless Permanent magnet Motors. IEEE Trans on Magnetics , 1999,35(5):4052-4054.
    [68] Y.Okada,S.Miyazawa,A.ohishi. Levitation and torque control of internal permanent magnet type bearingless motor[J].IEEE Trans.On control syst.Techn,1996,32(2):363-660.
    [69] M.Ooshima,S.Miyazawa,A.Chiba. A rotor design of a permanent magnet-type bearingless motor considering demagnetization. IEEE Proc. Power Conversion Conf. Nagaoka, 1997:655-660.
    [70] M.Ooshima,S.Miyazawa,Y.Shima,et al. Increase in radial force of a bearingless motor with buried permanent magnet type rotor. Proc. Of the fouth international conference on MOVIC,1998,vol.3, pp:1077-1082.
    [71] D.Dorrell, M.Ooshima,A.Chiba.Force analysis of a buried permanent magnet bearingless motor[C].IEEE International Electric Machines and Drives Conference,2003.Vol.2, pp:1091-1097.
    [72] Baoguo Wang,Zheng Wang,Fengxiang Wang.Levitation forces control by current vector orientation for a bearingless motor with hybrid rotor structure[C].IEEE Electrical and Computer Engineering,2003,Canadian,Vol.1,pp:383-386.
    [73] Fengxiang Wang, Baoguo Wang,Longya Xu. A novel bearingless motor with hybrid rotor structure and levitation force control. 37th LAS Annual Meeting.conference Vol.1,2002, pp:212-215.
    [74] Y.Okada,H.Konishi,H.Kanebako,et al. Lorentz force type self-bearing motor. Proc.7th Int.Symp.magnetic bearings,Switzerland.2000,pp:353-358.
    [75] T.Tokumto,D.Timms, Y.Okada,et al.Development of Lorentz force type self-bearing motor. Proc.8th Int.Symp.magnetic bearings,Japan,2002,pp:59-64.
    [76] M.Ooshima, A.Chiba, T.Fukao. Characteristics of a permanent magnet type bearingless motor. IEEE Trans.Indus.Application,1996,32(2):363~370.
    [77] M.Ooshima, S.Miyazawa, A.Chiba, et al. Performance Evaluation and Test Results of a 11,000r/min, 4kw Surface-mounted Permanent Magnet-type Bearingless Motor. In: 7th International Symposium on Magnetic Bearings, ETH Zürich, August 2000:377-382.
    [78] D.Kim, L.S.Stephens. Fault Tolerance of a Lorentztype Slotless, Self-bearing Motor According to the Coiling Schemes. In: 7th International Symposium on Magnetic Bearings,ETH Zurich, August 2000:219224-400.
    [79] T.Ohishi, Y.Okada, et al. Levitation Control of IPM type Rotating Motor. In: 5th International Symposium on Magnetic Bearings, Japan, August 1996:327-332.
    [80] M.Oshima, K.Yamashita, A.Chiba, etc. An improved control method of buried-type IPM bearingless motors considering magnetic saturation and magnetic pull variation. IEEE. Electron. Syst. Engineering, 2004,19(3):569-575.
    [81] Siegfried Silber, Wolfgang Amrhein, etc. Design aspects of bearingless slice motors. IEEE. Trans.Mechatronics, 2005,10(6):611-617.
    [82]徐龙祥,朱小春,姚凯,片状无轴承电机的研究[J],中国电机工程学报,2006,26(6):141-145.
    [83]周媛,贺益康,年珩,永磁型无轴承电机的完整数学模型[J],中国电机工程学报, 2006,26(6):134-139.
    [84] Masahide Oshima,et al. Characteristics of a Permanent Magnet Type Bearingless Motor[J].IEEE Trans.On IA,1996,32(2):363-370.
    [85] M.Oshima,S.Miyazawa,T,Deido,et al. Design and analysis of permanent magnet type bearingless motor[J].IEEE Trans.On industry electronics.1996:43(2):290-299.
    [86]朱秋,范海燕,李烽,无轴承永磁同步电动机永磁体参数设计[J],微电机2007,40(9):37-40.
    [87]邓智泉等,无轴承永磁同步电机的转子磁场定向控制研究[J],中国电机工程学报, 2005,25(1):104-108.
    [88]朱熀秋等.无轴承永磁同步电机的转子磁场定向控制系统研究[J].中国工程科学, 2006,8(6):35-40.
    [89] Kohei inagaki,A.Chiba,M.RAHMAN. Performance characteristics of inset-type permanent magnet bearingless motor drive[C].Power conversation conference,Nagaoka, 2000, vol.2:202-207.
    [90] M.Oshima,K.Yamaida et al.An improved control method of buried-type IPM bearingless motors considering magnetic saturation and magnetic pull variation. IEEE Trans on Energy Conversion,19(3),2004.pp:569-575.
    [91]费德成,朱熀秋,基于逆系统理论的无轴承永磁同步电机解耦控制研究[J],中国工程科学, 2005,7(11):48-54.
    [92]张少如等,无轴承永磁同步电机转子偏心位移的直接控制[J],中国电机工程学报,2007,27(12):65-70.
    [93] Wang Limei et al. Rotor Position Estimation for Permanent Magnet synchronous Motor Using Saliency-Tracking Self-Sensing Method,Proc.of IEEE-IAS,2000.
    [94] Jang J.H. et al. Sensorless Drive of Surface-Mounted permanent-Magnet Motor by High Frequency Signal Injection Based on Magnetic Saliency. IEEE Tran. on IA,2003,39(4).
    [95]唐任远,现代永磁电机理论与设计,北京:机械工业出版社, 2002.
    [96]王秀和等,永磁电机,北京:中国电力出版社, 2007.
    [97]汤蕴璆,电机内的电磁场,北京:科学出版社, 1998.
    [98]许实章,电机学,北京,机械工出版社, 1995.
    [99]杨顺昌,电机的矩阵分析,重庆:重庆大学出版社, 1988.
    [100]朱熀秋,张涛,无轴承永磁同步电机有限元分析[J],中国电机工程学报,2006 ,26(3):136-140.
    [101] A.Chiba,S.Onoya,et, An analysis of a prototype permagnet magnet-type bearingless mator using finite element methed.in Proc.5th Int.Symp.Magnetic Bearingless,Kanazawa, 1996,pp,351-356.
    [102] Deodhar,R.P.Staton,D.A.Miller,T.J.E.Modelling of skew using the flux-MMF diagram[C]. Power Electronics, Drives and Energy Systems for Industrial Growth,1996; 546-551 vol.1.
    [103] Touzhu Li.Slemon,G.Reduction of cogging torque in permanent magnet motors[J].IEEE Transactions on Magnetics,1988,24(6):2901-2903.
    [104] shikawa,T.Slemon,G.R. A method of reducing ripple torque in permanent magnet motors without skewing[J].IEEE Transactions on Magnetics,1993,29(3):2028-2031.
    [105] Cho,C.P.Fussell,B.K.Hung,J.Y.Detent torque and axial force effects in dual air-gap axial-field brushless motor[J].IEEE Transactions on Magnetics,1993,29(6):2416-2418.
    [106] Deodhar,R.P.Staton,D.A.jahns,T.M.;Miller,T.J.E. Prediction of cogging torque using the flux-MMF diagram technique[J].IEEE Transactiongs on Industry Applications,1996, 32(3):569-576.
    [107]陈世坤,电机设计,北京,机械工业出版社, 1990.
    [108]胡寿松,自动控制原理,北京,科学出版社,2007
    [109] M.Ooshima,T.Kurokawa,M.Sakagami,et al. An identification method of suspension force and magnetic unbalance pull force parameters in buried-type IPM bearingless motor[C]. Extended Summrary for IEEE-PES Meeting at Denver 2004 Panel Session on Super High Speed Machines, Denver, USA,2004.
    [110]刘金琨,先进PID控制仿真技术,北京,清华大学出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700