老年猕猴中颞视区细胞的功能性退化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正常老化过程常常伴随着视觉功能的进行性退化。眼睛光学性质和视网膜形态学的改变并不足以解释这些功能性退化,不少方面可能决定于老化引起的视觉中枢的变化。深入研究老化引起的皮层功能性变化对了解非病理性老化过程的机制及探讨延缓老化的途径都有重要意义。
     本研究采用在体细胞外单位记录方法,从以下四个方面进一步比较了青年和老年猕猴视觉皮层细胞反应特性的差异:
     1.研究了88个老年猕猴MT神经元和107个青年猕猴MT神经元对运动随机点的速度调谐曲线。我们发现,与青年猴相比,老年猕猴MT区细胞速度选择性显著下降,速度调谐曲线的最优速度朝低速偏移,同时自发放电活动、视觉刺激诱发反应强度和反应变异性显著增加,细胞活动信噪比则出现显著下降。而且,老年猕猴神经元对速度信息的调制能力和识别能力也显著弱于青年猴。同时,我们也估算了青年组和老年组猕猴的速度辨别阈值,发现老年猕猴的速度识别阈值显著高于青年猕猴。这些结果可能为老化引起的运动感知功能障碍提供必要的生理学基础。
     2.研究了老化对猕猴初级视皮层(V1)和MT区神经元对比度反应曲线的影响。与青年猕猴相比,老年猕猴V1和MT的对比敏感度均显著下降,MT区细胞受老化的影响更大。特别地,MT细胞受老化的影响更甚于V1区有方向选择性的细胞。这说明MT区表现出的老年性退化并非完全由V1区的变化引起的,老化的影响并不局限于V1,可能在皮层视觉通路中逐渐积累。另外,老年猕猴MT区细胞的非线性特性也明显弱于青年猕猴。以上的结果表明了在老化过程中,Magnocellular和Parvocellular通路均严重受损。我们的结果和老年皮层抑制的退化理论是一致的,可能为一些老年性视觉功能障碍提供生理依据。
     3.研究了老化对猕猴MT细胞对比度适应的影响。我们发现,由适应引起的老年猕猴细胞的反应增益变化显著高于青年细胞,而对比度增益变化则显著低于青年细胞。这些功能上的退化可能来自前一级皮层的输入,也可能与老年猕猴MT神经元自身疲劳机制和过度的兴奋性有关。
     4.研究了老化对V1和MT区细胞反应变应性的影响,希望能进一步了解老化过程对神经元信息处理能力的损害。我们发现,老年猴V1和MT区细胞的反应变异性增大,反应信噪比减小。这些变化可能会对视觉系统功能产生重要的影响,同时也反映了老化过程影响神经系统功能的一些普遍机制。老年动物视觉皮层兴奋系统与抑制系统的失衡和突触结构的改变可能介导了V1和MT区细胞的反应变异性异常。
     结论:猕猴MT区神经元对视觉刺激的反应特性呈现明显的年龄相关性变化。结果显示1)MT区神经元对速度信息的调谐特性受老化影响;2)与V1一样,老年猕猴MT区神经元的对比敏感度较之青年猴显著下降,而且MT受老化影响更为严重,这说明老化的影响可能在皮层视觉通路中逐渐积累;3)老年猕猴MT神经元的对比度适应出现异常;4)V1和MT的反应变异性显著受老化影响。这些结果可能为老年性视觉功能下降提供了必要的神经机制。
Human visual abilities decline during normal aging. Much of the decline cannot be attributed to the optical changes of the eye or changes in the retina, but and most likely reflect aged-related changes in visual cortical areas. To reveal the neural mechanism underlyng the visual function degradation during noral aging is of great practical importance to how to improve life quality for the old population and to slow down the aging process in humans.
     Using single-unit extracellular recording techniques, we compared the response properties of visual cortical cells in young and old monkeys. Our main findings are as follows:
     1. Aging affects the neural representation of speed in macaque area MT
     In the present study, we used random-dot patterns to study the effects of aging on speed tuning curves in cortical area MT of macaque visual cortex. Our results provide evidence for a significant degradation of speed selectivity in MT. Cells in old animals preferred lower speeds than did those in young animals. Response modulation and discriminative capacity for speed in old monkeys were also significantly weaker than those in young ones. Concurrently, MT cells in old monkeys showed increased baseline responses, peak responses and response variability. These changes were accompanied by very low signal-to-noise ratios. We also found that speed discrimination thresholds in old animals were higher than in young ones. The foregoing neural changes may mediate the declines in visual motion perception that occur during senescence.
     2. Aging affects contrast response functions of MT neurons in rhesus monkeys
     In the present study we studied the effects of aging on the coding of contrast in area V1 (primary visual cortex) and MT (middle temporal visual area) of the macaque monkey using single-neuron in vivo electrophysiology. Our results show that both MT and V1 neurons in old monkeys are less sensitive to contrast than those in young monkeys. Generally, contrast sensitivity is affected by aging more severely in MT cells than in V1 cells. Specifically, MT cells were affected more severely than motion direction selective V1 cells. Our results suggest that there may be an anomalous visual processing in both the magnocellular and parvocellular pathways. The neural changes described here are consistent with an age-related degeneration of intracortical inhibition and could underlie some deficits in visual function during normal aging.
     3. Aging affects contrast adaptation of MT neurons in rhesus monkeys
     We assessed age-related changes of neuronal adaptation to visual motion in MT. We also found age-related changes in neuronal adaptation to visual motion in MT. Compared to young animals, the contrast gain of MT neurons in old monkeys are less affected, but the response gain by adaptation of MT neurons are more affected. This may reflect a 'fatigue' mechanism and excitotoxic hyperactivity in old brains.
     4. Aging affects response variability of V1 and MT neurons in rhesus monkeys
     We examined how aging affects response variability of V1 and MT in rhesus (Macaca mulatta) monkeys. We found that mean response and response variability in both V1 and MT of old monkeys are significantly higher than in young monkeys. And signal-to-noise ratio in old monkeys is significantly lower than in young ones. The results are consistent with an age-related degradation of inhibitory intracortical circuits. The neural changes described here could contribute to declines in visual function during senescence.
     In summary, age-related changes in macaque MT were observed in the present study. The results indicated 1) the neural representation of speed in macaque area MT is affected by aging; 2) there is more severe functional degradation of higher areas in visual hirerchy; 3) the age-related changes in neuronal adaptation to visual motion in MT occur; 4) spike count variability in V1 and MT of old monkeys is significantly higher than young monkeys. All of the findings provide us a more comprehensive understanding about the mechanisms underlying the age-related degeneration of visual function.
引文
Adelson EH, Movshon JA (1982) Phenomenal coherence of moving visual patterns. Nature 300:523-525.
    Ahmad A, Spear PD (1993) Effects of aging on the size, density, and number of rhesus monkey lateral geniculate neurons. J Comp Neurol 334:631-643.
    Ahmed B, Allison JD, Douglas RJ, Martin KA (1997) An intracellular study of the contrast-dependence of neuronal activity in cat visual cortex. Cereb Cortex 7:559-570.
    Albrecht DG, Hamilton DB (1982) Striate cortex of monkey and cat: contrast response function. J Neurophysiol 48:217-237.
    Albrecht DG, Geisler WS (1991) Motion selectivity and the contrast-response function of simple cells in the visual cortex. Vis Neurosci 7:531-546.
    Albrecht DG, Farrar SB, Hamilton DB (1984) Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex. J Physiol 347:713-739.
    Albrecht DG, Geisler WS, Frazor RA, Crane AM (2002) Visual cortex neurons of monkeys and cats: temporal dynamics of the contrast response function. J Neurophysiol 88:888-913.
    Albright TD (1984) Direction and orientation selectivity of neurons in visual area MT of the macaque. J Neurophysiol 52:1106-1130.
    Albright TD, Desimone R, Gross CG (1984) Columnar organization of directionally selective cells in visual area MT of the macaque. J Neurophysiol 51:16-31.
    Alitto HJ, Usrey WM (2004) Influence of contrast on orientation and temporal frequency tuning in ferret primary visual cortex. J Neurophysiol 91:2797-2808.
    Allman J, Miezin F, McGuinness E (1985) Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT). Perception 14:105-126.
    Allman JM, Kaas JH (1971) A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). Brain Res 31:85-105.
    Andersen RA (1997) Neural mechanisms of visual motion perception in primates. Neuron 18:865-872.
    Anderson J, Lampl I, Reichova I, Carandini M, Ferster D (2000) Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex. Nat Neurosci 3:617-621.
    Anderson KC, Siegel RM (1999) Optic flow selectivity in the anterior superior temporal polysensory area, STPa, of the behaving monkey. J Neurosci 19:2681-2692.
    Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:1868-1871.
    Azouz R, Gray CM (1999) Cellular mechanisms contributing to response variability of cortical neurons in vivo. J Neurosci 19:2209-2223.
    Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Brain Res Rev 25:335-358.
    Bair W, Koch C (1996) Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Comput 8:1185-1202.
    Bair W, Cavanaugh JR, Movshon JA (2003) Time course and time-distance relationships for surround suppression in macaque V1 neurons. J Neurosci 23:7690-7701.
    Barlow HB (1990) A theory about the functional role and synaptic mechanisms of visual after-effects. In Vision: Coding and Efficiency, C. Blakemore, ed. (New York: Cambridge University Press).
    Bear MF, Press WA, Connors BW (1992) Long-term potentiation in slices of kitten visual cortex and the effects of NMDA receptor blockade. J Neurophysiol 67:841-851.
    Beauchamp MS, Cox RW, DeYoe EA (1997) Graded effects of spatial and featural attention on human area MT and associated motion processing areas. J Neurophysiol 78:516-520.
    Bennett PJ, Sekuler AB, Ozin L (1999) Effects of aging on calculation efficiency and equivalent noise. J Opt Soc Am A Opt Image Sci Vis 16:654-668.
    Bennett PJ, Sekuler R, Sekuler AB (2007) The effects of aging on motion detection and direction identification. Vision Res 47:799-809.
    Berry MJ, Warland DK, Meister M (1997) The structure and precision of retinal spike trains. Proc Natl Acad Sci U S A 94:5411-5416.
    Betts LR, Taylor CP, Sekuler AB, Bennett PJ (2005) Aging reduces center-surround antagonism in visual motion processing. Neuron 45:361-366.
    Blakemore MR, Snowden RJ (1999) The effect of contrast upon perceived speed: a general phenomenon? Perception 28:33-48.
    Blasdel GG, Fitzpatrick D (1984) Physiological organization of layer 4 in macaque striate cortex. J Neurosci 4:880-895.
    Bonds AB (1991) Temporal dynamics of contrast gain in single cells of the cat striate cortex. Vis Neurosci 6:239-255.
    Born RT (2000) Center-surround interactions in the middle temporal visual area of the owl monkey. J Neurophysiol 84:2658-2669.
    Born RT, Tootell RB (1992) Segregation of global and local motion processing in primate middle temporal visual area. Nature 357:497-499.
    Born RT, Bradley DC (2005) Structure and function of visual area MT. Annu Rev Neurosci 28:157-189.
    Born RT, Groh JM, Zhao R, Lukasewycz SJ (2000) Segregation of object and background motion in visual area MT: Effects of microstimulation on eye movements. Neuron 26:725-734.
    Bradley DC, Andersen RA (1998) Center-surround antagonism based on disparity in primate area MT. J Neurosci 18:7552-7565.
    Bradley DC, Qian N, Andersen RA (1995) Integration of motion and stereopsis in middle temporal cortical area of macaques. Nature 373:609-611.
    Brainard DH (1997) The Psychophysics Toolbox. Spat Vis 10:433-436.
    Braunstein ML (1962) Depth perception in rotating dot patterns: effects of numerosity and perspective. J Exp Psychol 64:415-420.
    Bremmer F, Duhamel JR, Ben Hamed S, Graf W (2002) Heading encoding in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16:1554-1568.
    Britten KH, Heuer HW (1999) Spatial summation in the receptive fields of MT neurons. J Neurosci 19:5074-5084.
    Britten KH, Shadlen MN, Newsome WT, Movshon JA (1992) The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neurosci 12:4745-4765.
    Britten KH, Shadlen MN, Newsome WT, Movshon JA (1993) Responses of neurons in macaque MT to stochastic motion signals. Vis Neurosci 10:1157-1169.
    Buracas GT, Albright TD (1996) Contribution of area MT to perception of three-dimensional shape: a computational study. Vision Res 36:869-887.
    Buracas GT, Zador AM, DeWeese MR, Albright TD (1998) Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron 20:959-969.
    Butterf ield DA, Pocernich CB (2003) The glutamatergic system and Alzheimer' s disease: therapeutic implications. CNS Drugs 17:641-652.
    Butts DA, Goldman MS (2006) Tuning curves, neuronal variability, and sensory coding. PLoS Biol 4:e92.
    
    Carandini M (2000) Visual cortex: Fatigue and adaptation. Curr Biol 10:R605-607.
    Carandini M (2004) Amplification of trial-to-trial response variability by neurons in visual cortex. PLoS Biol 2:E264.
    Carandini M, Ferster D (1997) A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. Science 276:949-952.
    Carandini M, Heeger DJ, Movshon JA (1997) Linearity and normalization in simple cells of the macaque primary visual cortex. J Neurosci 17:8621-8644.
    Carandini M, Heeger DJ, Senn W (2002) A synaptic explanation of suppression in visual cortex. J Neurosci 22:10053-10065.
    Caspary DM, Schatteman TA, Hughes LF (2005) Age-related changes in the inhibitory response properties of dorsal cochlear nucleus output neurons: role of inhibitory inputs. J Neurosci 25:10952-10959.
    Chance FS, Nelson SB, Abbott LF (1998) Synaptic depression and the temporal response characteristics of V1 cells. J Neurosci 18:4785-4799.
    Churchland MM, Lisberger SG (2001) Shifts in the population response in the middle temporal visual area parallel perceptual and motor illusions produced by apparent motion. J Neurosci 21:9387-9402.
    Cook EP, Maunsell JH (2002) Dynamics of neuronal responses in macaque MT and VIP during motion detection. Nat Neurosci 5:985-994.
    Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE (1991) Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci 11:2383-2402.
    Cossart R, Aronov D, Yuste R (2003) Attractor dynamics of network UP states in the neocortex. Nature 423:283-288.
    Crassini B, Brown B, Bowman K (1988) Age-related changes in contrast sensitivity in central and peripheral retina. Perception 17:315-332.
    Croner LJ, Albright TD (1997) Image segmentation enhances discrimination of motion in visual noise. Vision Res 37:1415-1427.
    Croner LJ, Albright TD (1999) Segmentation by color influences responses of motion-sensitive neurons in the cortical middle temporal visual area. J Neurosci 19:3935-3951.
    Crook JM, Kisvarday ZF, Eysel UT (1998) Evidence for a contribution of lateral inhibition to orientation tuning and direction selectivity in cat visual cortex: reversible inactivation of functionally characterized sites combined with neuroanatomical tracing techniques. Eur J Neurosci 10:2056-2075.
    Cumming BG, DeAngelis GC (2001) The physiology of stereopsis. Annu Rev Neurosci 24:203-238.
    De Valois RL, Yund EW, Hepler N (1982) The orientation and direction selectivity of cells in macaque visual cortex. Vision Res 22:531-544.
    Dealy RS, Tolhurst DJ (1974) Is spatial adaptation an after-effect of prolonged inhibition? J Physiol 241:261-270.
    DeAngelis GC, Newsome WT (1999) Organization of disparity-selective neurons in macaque area MT. J Neurosci 19:1398-1415.
    DeAngelis GC, Uka T (2003) Coding of horizontal disparity and velocity by MT neurons in the alert macaque. J Neurophysiol 89:1094-1111.
    DeAngelis GC, Cumming BG, Newsome WT (1998) Cortical area MT and the perception of stereoscopic depth. Nature 394:677-680.
    DeBruyn EJ, Bonds AB (1986) Contrast adaptation in cat visual cortex is not mediated by GABA. Brain Res 383:339-342.
    Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193-222.
    Dobkins KR, Albright TD (1994) What happens if it changes color when it moves?: the nature of chromatic input to macaque visual area MT. J Neurosci 14:4854-4870.
    Doble A (1999) The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 81:163-221.
    Dodd JV, Krug K, Cumming BG, Parker AJ (2001) Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT. J Neurosci 21:4809-4821.
    Domenici L, Trimarchi C, Piccolino M, Fiorentini A, Maffei L (1985) Dopaminergic drugs improve human visual contrast sensitivity. Hum Neurobiol 4:195-197.
    Droulez J, Cornilleau-Peres V (1990) Visual perception of surface curvature. The spin variation and its physiological implications. Biol Cybern 62:211-224.
    Duan H, Wearne SL, Rocher AB, Macedo A, Morrison JH, Hof PR (2003) Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cereb Cortex 13:950-961.
    Dubner R, Zeki SM (1971) Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Res 35:528-532.
    Dustman RE, Emmerson RY, Shearer DE (1996) Life span changes in electrophysiological measures of inhibition. Brain Cogn 30:109-126.
    Edwards M, Badcock DR, Nishida S (1996) Contrast sensitivity of the motion system. Vision Research 36:2411-2421.
    Elliott D, Whitaker D, MacVeigh D (1990) Neural contribution to spatiotemporal contrast sensitivity decline in healthy ageing eyes. Vision Res 30:541-547.
    Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1-47.
    Ferrera VP, Lisberger SG (1997) Neuronal responses in visual areas MT and MST during smooth pursuit target selection. J Neurophysiol 78:1433-1446.
    Finlayson PG, Cynader MS (1995) Synaptic depression in visual cortex tissue slices: an in vitro model for cortical neuron adaptation. Exp Brain Res 106:145-155.
    Francis PT (2003) Glutamatergic systems in Alzheimer's disease. Int J Geriatr Psychiatry 18:S15~21.
    Freeman TC, Durand S, Kiper DC, Carandini M (2002) Suppression without inhibition in visual cortex. Neuron 35:759-771.
    Geesaman BJ, Born RT, Andersen RA, Tootell RB (1997) Maps of complex motion selectivity in the superior temporal cortex of the alert macaque monkey: a double-label 2-deoxyglucose study. Cereb Cortex 7:749-757.
    Gegenfurtner KR, Kiper DC, Beusmans JM, Carandini M, Zaidi Q, Movshon JA (1994) Chromatic properties of neurons in macaque MT. Vis Neurosci 11:455-466.
    Geisler WS, Albrecht DG (1997) Visual cortex neurons in monkeys and cats: detection, discrimination, and identification. Vis Neurosci 14:897-919.
    Georgeson MA, Harris MG (1984) Spatial selectivity of contrast adaptation: models and data. Vision Res 24:729-741.
    Georgeson MA, Scott-Samuel NE (1999) Motion contrast: a new metric for direction discrimination. Vision Research 39:4393-4402.
    German DC, Yazdani U, Speciale SG, Pasbakhsh P, Games D, Liang CL (2003) Cholinergic neuropathology in a mouse model of Alzheimer's disease. J Comp Neurol 462:371-381.
    Giacobini E (2003) Cholinergic function and Alzheimer's disease. Int J Geriatr Psychiatry 18:S1-5.
    Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20-25.
    Gorrie CA, Rodriguez M, Sachdev P, Duflou J, Waite PM (2007) Mild neuritic changes are increased in the brains of fatally injured older motor vehicle drivers. Accid Anal Prev 39:1114-1120.
    Groh JM, Born RT, Newsome WT (1997) How is a sensory map read Out? Effects of microstimulation in visual area MT on saccades and smooth pursuit eye movements. J Neurosci 17:4312-4330.
    Grossberg s (1983) The quantized geometry of visual space: the coherent computation of depth, form, and lightness. Behav Brain Sci 10:625-657.
    Grzywacz NM, Merwine DK (2002) Directional selectivity. In: Arbib M (ed.) The handbook of Brain Theory and Neural Network. Cambridge, MA:MIT Press.
    Grzywacz NM, Merwine DK (2003) Neural Basis of Motion Perception. Encyclopedia of Cognitive Science 3:86-98.
    Gulyas B, Orban GA, Duysens J, Maes H (1987) The suppressive influence of moving textured backgrounds on responses of cat striate neurons to moving bars. J Neurophysiol 57:1767-1791.
    Gur M, Snodderly DM (2006) High response reliability of neurons in primary visual cortex (V1) of alert, trained monkeys. Cereb Cortex 16:888-895.
    Hasher L, Zacks, R. T., & May, C. P. (1999) Inhibitory control, circadian arousal, and age.
    Hawken MJ, Parker AJ, Lund JS (1988) Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey. J Neurosci 8:3541-3548.
    Heeger DJ (1992) Normalization of cell responses in cat striate cortex. Vis Neurosci 9:181-197.
    Hof PR, Duan H, Page TL, Einstein M, Wicinski B, He Y, Erwin JM, Morrison JH (2002) Age-related changes in GluR2 and NMDAR1 glutamate receptor subunit protein immunoreactivity in corticocortically projecting neurons in macaque and patas monkeys. Brain Res 928:175-186.
    Hoffman WE, Seals C, Miletich DJ, Albrecht RF (1985) Plasma and myocardial catecholamine levels in young and aged rats during halothane anesthesia. Neurobiol Aging 6:117-120.
    Hua T, Kao C, Sun Q, Li X, Zhou Y (2008) Decreased proportion of GABA neurons accompanies age-related degradation of neuronal function in cat striate cortex. Brain Res Bull 75:119-125.
    Hua T, Li X, He L, Zhou Y, Wang Y, Leventhal AG (2006) Functional degradation of visual cortical cells in old cats. Neurobiol Aging 27:155-162.
    Hubel DH, Livingstone MS (1987) Segregation of form, color, and stereopsis in primate area 18. J Neurosci 7:3378-3415.
    Huk AC, Heeger DJ (2000) Task-related modulation of visual cortex. J Neurophysiol 83:3525-3536.
    Huk AC, Heeger DJ (2002) Pattern-motion responses in human visual cortex. Nat Neurosci 5:72-75.
    Hupe JM, James AC, Payne BR, Lomber SG, Girard P, Bullier J (1998) Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394:784-787.
    Kara P, Reinagel P, Reid RC (2000) Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron 27:635-646.
    Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A (2003) Spontaneously emerging cortical representations of visual attributes. Nature 425:954-956.
    Kline DW, Schieber F, Abusamra LC, Coyne AC (1983) Age, the eye, and the visual channels: contrast sensitivity and response speed. J Gerontol 38:211-216.
    Kline DWS, F. (1985) Vision and aging. in Handbook of the psychology of aging (ed. J.E. Birren&K. W. Schaie). 396-331 (Van Nostrand, New York, 1985).
    Kohn A, Movshon JA (2003) Neuronal adaptation to visual motion in area MT of the macaque. Neuron 39:681-691.
    Kohn A, Movshon JA (2004) Adaptation changes the direction tuning of macaque MT neurons. Nat Neurosci 7:764-772.
    Krauzlis RJ, Lisberger SG (1994) Temporal properties of visual motion signals for the initiation of smooth pursuit eye movements in monkeys. J Neurophysiol 72:150-162.
    Kreiter AK, Singer W (1996) Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey. J Neurosci 16:2381-2396.
    Krekelberg B, Albright TD (2005) Motion mechanisms in macaque MT. J Neurophysiol 93:2908-2921.
    Krekelberg B, van Wezel RJ, Albright TD (2006a) Interactions between speed and contrast tuning in the middle temporal area: implications for the neural code for speed. J Neurosci 26:8988-8998.
    Krekelberg B, van Wezel RJ, Albright TD (2006b) Adaptation in macaque MT reduces perceived speed and improves speed discrimination. J Neurophysiol 95:255-270.
    Krubitzer LA, Kaas JH (1990) Cortical connections of MT in four species of primates: areal, modular, and retinotopic patterns. Vis Neurosci 5:165-204.
    Lagae L, Raiguel S, Orban GA (1993) Speed and direction selectivity of macaque middle temporal neurons. J Neurophysiol 69:19-39.
    Lagae L, Gulyas B, Raiguel S, Orban GA (1989) Laminar analysis of motion information processing in macaque V5. Brain Res 496:361-367.
    Lauwers K, Saunders R, Vogels R, Vandenbussche E, Orban GA (2000) Impairment in motion discrimination tasks is unrelated to amount of damage to superior temporal sulcus motion areas. J Comp Neurol 420:539-557.
    Lestienne R (2001) Spike timing, synchronization and information processing on the sensory side of the central nervous system. Prog Neurobiol 65:545-591.
    Leventhal AG, Thompson KG, Liu D, Zhou Y, Ault SJ (1995) Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex. J Neurosci 15:1808-1818.
    Leventhal AG, Wang YC, Pu ML, Zhou YF, Ma YY (2003) GABA and its agonists improved visual cortical function in senescent monkeys. Science 300:812-815.
    Levitt JB, Lund JS (1997) Contrast dependence of contextual effects in primate visual cortex. Nature 387:73-76.
    Lewis JW, Van Essen DC (2000) Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J Comp Neurol 428:112-137.
    Liang Z, Yang Y, Li G, Zhang J, Wang Y, Zhou Y, Leventhal AG (2008) Aging affects the direction selectivity of MT cells in rhesus monkeys. Neurobiol Aging.
    Lisberger SG, Movshon JA (1999) Visual motion analysis for pursuit eye movements in area MT of macaque monkeys. J Neurosci 19:2224-2246.
    Lisberger SG, Morris EJ, Tychsen L (1987) Visual motion processing and sensory-motor integration for smooth pursuit eye movements. Annu Rev Neurosci 10:97-129.
    Liu J, Newsome WT (2003a) Functional organization of speed tuned neurons in visual area MT. J Neurophysiol 89:246-256.
    Liu J, Newsome WT (2003b) Correlation between MT activity and perceptual judgments of speed. Soc Neurosci Abstr 29:438-434.
    Liu J, Newsome WT (2005) Correlation between speed perception and neural activity in the middle temporal visual area. J Neurosci 25:711-722.
    Livingstone MS, Hubel DH (1987) Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci 7:3416-3468.
    Lund JS (1987) Local circuit neurons of macaque monkey striate cortex: I. Neurons of laminae 4C and 5A. J Comp Neurol 257:60-92.
    Machens CK, Schutze H, Franz A, Kolesnikova O, Stemmler MB, Ronacher B, Herz AV (2003) Single auditory neurons rapidly discriminate conspecific communication signals. Nat Neurosci 6:341-342.
    Magnusson KR, Scanga C, Wagner AE, Dunlop C (2000) Changes in anesthetic sensitivity and glutamate receptors in the aging canine brain. J Gerontol A Biol Sci Med Sci 55:B448-454.
    Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268:1503-1506.
    Malach R, Schirman TD, Harel M, Tootell RB, Malonek D (1997) Organization of intrinsic connections in owl monkey area MT. Cereb Cortex 7:386-393.
    Marcar VL, Zihl J, Cowey A (1997) Comparing the visual deficits of a motion blind patient with the visual deficits of monkeys with area MT removed. Neuropsychologia 35:1459-1465.
    Markus EJ, Petit TL (1987) Neocortical synaptogenesis, aging, and behavior: lifespan development in the motor-sensory system of the rat. Exp Neurol 96:262-278.
    Masson GS, Mestre DR, Stone LS (1999) Speed tuning of motion segmentation and discrimination. Vision Res 39:4297-4308.
    Mather G, Verstraten F, Anstis S (1998) The motion aftereffect: a modern perspective. Cambridge, MA: MIT Press.
    Maunsell JH (1986) Physiological evidence for two visual systems, in Matters of Intelligence (L. Vaina ed.), Dordrecht: Reidel.
    
    Maunsell JH, van Essen DC (1983a) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3:2563-2586.
    Maunsell JH, Van Essen DC (1983b) Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol 49:1127-1147.
    Maunsell JH, Van Essen DC (1987) Topographic organization of the middle temporal visual area in the macaque monkey: representational biases and the relationship to callosal connections and myeloarchitectonic boundaries. J Comp Neurol 266:535-555.
    Maunsell JH, Nealey TA, DePriest DD (1990) Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J Neurosci 10:3323-3334.
    Mazurek ME, Shadlen MN (2002) Limits to the temporal fidelity of cortical spike rate signals. Nat Neurosci 5:463-471.
    McAdams CJ, Maunsell JHR (1999) Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron 23:765-773.
    McGeer E, McGeer P (1976) neurobiology of aging (Terry RD,Gershon S, eds). New York: Raven, 389-403.
    McLeod P, Heywood C, Driver J, Zihl J (1989) Selective deficit of visual search in moving displays after extrastriate damage. Nature 339:466-467.
    Mendelson JR, Wells EF (2002) Age-related changes in the visual cortex. Vision Res 42:695-703.
    Mikami A, Newsome WT, Wurtz RH (1986) Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT. J Neurophysiol 55:1308-1327.
    Morrison JH, Hof PR (1997) Life and death of neurons in the aging brain. Science 278:412-419.
    Morrison JH, Hof PR (2007) Life and death of neurons in the aging cerebral cortex. Int Rev Neurobiol 81:41-57.
    Moschner C, Baloh RW (1994) Age-related changes in visual tracking. J Gerontol 49:M235-238.
    Movshon JA (1975) The velocity tuning of single units in cat striate cortex. J Physiol 249:445-468.
    Movshon JA, Lennie P (1979) Pattern-selective adaptation in visual cortical neurones. Nature 278:850-852.
    Movshon JA, Newsome WT (1984) Functional characteristics of functional cortical neurons projecting to MT in the macaque. Soc Neurosci Abstr 10:933.
    Movshon JA, Newsome WT (1996) Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J Neurosci 16:7733-7741.
    Movshon JA, Thompson ID, Tolhurst DJ (1978) Spatial summation in the receptive fields of simple cells in the cat's striate cortex. J Physiol 283:53-77.
    Movshon JA, Adelson EH, Gizzi MS, Newsome WT (1986) The analysis of moving visual patterns. Exp Brain Res (Suppl 2):117 - 151.
    Mullen KT, Boulton JC (1992a) Absence of smooth motion perception in color vision. Vision Res 32:483-488.
    Mullen KT, Boulton JC (1992b) Interactions between colour and luminance contrast in the perception of motion. Ophthalmic Physiol Opt 12:201-205.
    Muller JR, Metha AB, Krauskopf J, Lennie P (1999) Rapid adaptation in visual cortex to the structure of images. Science 285:1405-1408.
    Muller R, Greenlee MW (1994) Effect of Contrast and Adaptation on the Perception of the Direction and Speed of Drifting Gratings. Vision Research 34:2071-2092.
    Murasugi CM, Salzman CD, Newsome WT (1993) Microstimulation in visual area MT: effects of varying pulse amplitude and frequency. J Neurosci 13:1719-1729.
    Nakayama K, Loomis JM (1974) Optical velocity patterns, velocity-sensitive neurons, and space perception: a hypothesis. Perception 3:63-80.
    Nealey TA, Maunsell JH (1994) Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex. J Neurosci 14:2069-2079.
    Newsome WT, Pare EB (1986) lesions impair discrimination of direction in a stochastic motion display. Soc Neurosci Abstr 12:1183.
    Newsome WT, Pare EB (1988) A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J Neurosci 8:2201-2211.
    Newsome WT, Britten KH, Movshon JA (1989) Neuronal correlates of a perceptual decision. Nature 341:52-54.
    Newsome WT, Wurtz RH, Dursteler MR, Mikami A (1985) Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. J Neurosci 5:825-840.
    Nguyenkim JD, DeAngelis GC (2003) Disparity-based coding of three-dimensional surface orientation by macaque middle temporal neurons. J Neurosci 23:7117-7128.
    NHTSA (2004) Traffic Safety facts 2004 data—Older population. National Highway Traffic Safety Administration, US Dept of Transport, Washington, DC, DOT HS 809 - 910.
    Nichols MJ, Newsome WT (2002) Middle temporal visual area microstimulation influences veridical judgments of motion direction. J Neurosci 22:9530-9540.
    Norman JF, Lappin JS (1992) The detection of surface curvatures defined by optical motion. Percept Psychophys 51:386-396.
    Norman JF, Ross HE, Hawkes LM, Long JR (2003) Aging and the perception of speed. Perception 32:85-96.
    Norman JF, Payton SM, Long JR, Hawkes LM (2004) Aging and the perception of biological motion. Psychol Aging 19:219-225.
    Norman JF, Crabtree CE, Herrmann M, Thompson SR, Shular CF, Clayton AM (2006) Aging and the perception of 3-D shape from dynamic patterns of binocular disparity. Percept Psychophys 68:94-101.
    Nover H, Anderson CH, DeAngelis GC (2005) A logarithmic, scale-invariant representation of speed in macaque middle temporal area accounts for speed discrimination performance. J Neurosci 25:10049-10060.
    
    OECD (2001) Ageing and transport. Mobility needs and safety issues. OECD, Paris.
    Ohzawa I, Sclar G, Freeman RD (1982) Contrast gain control in the cat visual cortex. Nature 298:266-268.
    Ohzawa I, Sclar G, Freeman RD (1985) Contrast gain control in the cat' s visual system. J Neurophysiol 54:651-667.
    Orban GA, Saunders RC, Vandenbussche E (1995) Lesions of the superior temporal cortical motion areas impair speed discrimination in the macaque monkey. Eur J Neurosci 7:2261-2276.
    Pack CC, Hunter JN, Born RT (2005) Contrast dependence of suppressive influences in cortical area MT of alert macaque. J Neurophysiol 93:1809-1815.
    Pardhan S, Gilchrist J, Elliott DB, BehGK (1996) A comparison of sampling efficiency and internal noise level in young and old subjects. Vision Res 36:1641-1648.
    Parker AJ, Newsome WT (1998) Sense and the single neuron: probing the physiology of perception. Annu Rev Neurosci 21:227-277.
    Pasternak T, Merigan WH (1994) Motion perception following lesions of the superior temporal sulcus in the monkey. Cereb Cortex 4:247-259.
    Pelli DG (1997) The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10:437-442.
    Perrone JA (2004) A visual motion sensor based on the properties of V1 and MT neurons. Vision Res 44:1733-1755.
    Perrone JA (2005) Economy of scale: a motion sensor with variable speed tuning. J Vis 5:28-33.
    Perrone JA (2006) A single mechanism can explain the speed tuning properties of MT and V1 complex neurons. J Neurosci 26:11987-11991.
    Perrone JA, Stone LS (1994) A model of self-motion estimation within primate extrastriate visual cortex. Vision Res 34:2917-2938.
    Perrone JA, Stone LS (1998) Emulating the visual receptive-field properties of MST neurons with a template model of heading estimation. J Neurosci 18:5958-5975.
    Perrone JA, Thiele A (2001) Speed skills: measuring the visual speed analyzing properties of primate MT neurons. Nat Neurosci 4:526-532.
    Perrone JA, Thiele A (2002) A model of speed tuning in MT neurons. Vision Res 42:1035-1051.
    Perutz MF, Windle AH (2001) Cause of neural death in neurodegenerative diseases attributable to expansion of glutamine repeats. Nature 412:143-144.
    Peterhans E, von der Heydt R (1993) Functional organization of area V2 in the alert macaque. Eur J Neurosci 5:509-524.
    Peters A, Morrison JH, Rosene DL, Hyman BT (1998) Feature article: are neurons lost from the primate cerebral cortex during normal aging? Cereb Cortex 8:295-300.
    Petersen RC (1995) Normal aging, mild cognitive impairment, and early Alzheimer' s disease. The Neurologist 1:326-344.
    Petersen SE, Baker JF, Allman JM (1985) Direction-specific adaptation in area MT of the owl monkey. Brain Res 346:146-150.
    Polat U, Mizobe K, Pettet MW, Kasamatsu T, Norcia AM (1998) Collinear stimuli regulate visual responses depending on cell's contrast threshold. Nature 391:580-584.
    Post-Munson DJ, Lum-Ragan JT, Mahle CD, Gribkoff VK (1994) Reduced bicuculline response and GABAA agonist binding in aged rat hippocampus. Neurobiol Aging 15:629-633.
    Price NS, Ono S, Mustari MJ, Ibbotson MR (2005) Comparing acceleration and speed tuning in macaque MT: physiology and modeling. J Neurophysiol 94:3451-3464.
    Priebe NJ, Lisberger SG (2004) Estimating target speed from the population response in visual area MT. J Neurosci 24:1907-1916.
    Priebe NJ, Ferster D (2005) Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex. Neuron 45:133-145.
    Priebe NJ, Ferster D (2006) Mechanisms underlying cross-orientation suppression in cat visual cortex. Nat Neurosci 9:552-561.
    Priebe NJ, Cassanello CR, Lisberger SG (2003) The neural representation of speed in macaque area MT/V5. J Neurosci 23:5650-5661.
    Priebe NJ, Lisberger SG, Movshon JA (2006) Tuning for spatiotemporal frequency and speed in directionally selective neurons of macaque striate cortex. J Neurosci 26:2941-2950.
    Prince SJ, Pointon AD, Cumming BG, Parker AJ (2002) Quantitative analysis of the responses of V1 neurons to horizontal disparity in dynamic random-dot stereograms. J Neurophysiol 87:191-208.
    Purushothaman G, Bradley DC (2005) Neural population code for fine perceptual decisions in area MT. Nat Neurosci 8:99-106.
    Qian N, Andersen RA (1994) Transparent motion perception as detection of unbalanced motion signals. II. Physiology. J Neurosci 14:7367-7380.
    Raiguel S, Van Hulle MM, Xiao DK, Marcar VL, Orban GA (1995) Shape and spatial distribution of receptive fields and antagonistic motion surrounds in the middle temporal area (V5) of the macaque. Eur J Neurosci 7:2064-2082.
    Raiguel SE, Xiao DK, Marcar VL, Orban GA (1999) Response latency of macaque area MT/V5 neurons and its relationship to stimulus parameters. J Neurophysiol 82:1944-1956.
    Recanzone GH, Wurtz RH (2000) Effects of attention on MT and MST neuronal activity during pursuit initiation. J Neurophysiol 83:777-790.
    Regan D, Beverley KI (1984) Figure-ground segregation by motion contrast and by luminance contrast. J Opt Soc Am A 1:433-442.
    Ringach DL, Bredfeldt CE, Shapley RM, Hawken MJ (2002) Suppression of neural responses to nonoptimal stimuli correlates with tuning selectivity in macaque V1. Journal of Neurophysiology 87:1018-1027.
    Roddey JC, Girish B, Miller JP (2000) Assessing the performance of neural encoding models in the presence of noise. J Comput Neurosci 8:95-112.
    Roe AW, Parker AJ, Born RT, DeAngelis GC (2007) Disparity channels in early vision. J Neurosci 27:11820-11831.
    Ross RG, Olincy A, Harris JG, Radant A, Adler LE, Compagnon N, Freedman R (1999) The effects of age on a smooth pursuit tracking task in adults with schizophrenia and normal subjects. Biological Psychiatry 46:383-391.
    Rudolph K, Pasternak T (1999) Transient and permanent deficits in motion perception after lesions of cortical areas MT and MST in the macaque monkey. Cereb Cortex 9:90-100.
    Rust NC, Mante V, Simoncelli EP, Movshon JA (2006) How MT cells analyze the motion of visual patterns. Nat Neurosci 9:1421-1431.
    Sadeghi SG, Chacron MJ, Taylor MC, Cullen KE (2007) Neural variability, detection thresholds, and information transmission in the vestibular system. J Neurosci 27:771-781.
    Salthouse TA (1996) The processing-speed theory of adult age differences in cognition. Psychol Rev 103:403-428.
    Salthouse TA (2000) Aging and measures of processing speed. Biological Psychology 54:35-54.
    Salzman CD, Murasugi CM, Britten KH, Newsome WT (1992) Microstimulation in visual area MT: effects on direction discrimination performance. J Neurosci 12:2331-2355.
    Sanchez-Vives MV, Nowak LG, McCormick DA (2000) Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro. J Neurosci 20:4286-4299.
    Sceniak MP, Hawken MJ, Shapley R (2002) Contrast-dependent changes in spatial frequency tuning of macaque V1 neurons: effects of a changing receptive field size. J Neurophysiol 88:1363-1373.
    Sceniak MP, Ringach DL, Hawken MJ, Shapley R (1999) Contrast's effect on spatial summation by macaque V1 neurons. Nat Neurosci 2:733-739.
    Schiller PH (1993) The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey. Vis Neurosci 10:717-746.
    Schlack A, Krekelberg B, Albright TD (2007a) Recent history of stimulus speeds affects the speed tuning of neurons in area MT. J Neurosci 27:11009-11018.
    Schmolesky MT, Wang Y, Pu M, Leventhal AG (2000) Degradation of stimulus selectivity of visual cortical cells in senescent rhesus monkeys. Nat Neurosci 3:384-390.
    Schwartz AE, Tuttle RH, Poppers PJ (1989) Electroencephalographic burst suppression in elderly and young patients anesthetized with isoflurane. Anesth Analg 68:9-12.
    Sclar G, Maunsell JH, Lennie P (1990) Coding of image contrast in central visual pathways of the macaque monkey. Vision Res 30:1-10.
    Seidemann E, Newsome WT (1999) Effect of spatial attention on the responses of area MT neurons. J Neurophysiol 81:1783-1794.
    Seidemann E, Poirson AB, Wandell BA, Newsome WT (1999) Color signals in area MT of the macaque monkey. Neuron 24:911-917.
    Shadlen MN, Newsome WT (1995) Is there a signal in the noise? Curr Opin Neurobiol 5:248-250.
    Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18:3870-3896.
    Shadlen MN, Britten KH, Newsome WT, Movshon JA (1996) A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J Neurosci 16:1486-1510.
    Shipp S, Zeki S (1985) Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex. Nature 315:322-325.
    Shu Y, Hasenstaub A, Badoual M, Bal T, McCormick DA (2003) Barrages of synaptic activity control the gain and sensitivity of cortical neurons. J Neurosci 23:10388-10401.
    Simoncelli EP, Heeger DJ (1998) A model of neuronal responses in visual area MT. Vision Res 38:743-761.
    Sincich LC, Park KF, Wohlgemuth MJ, Horton JC (2004) Bypassing V1: a direct geniculate input to area MT. Nat Neurosci 7:1123-1128.
    Sloane ME, Owsley C, Alvarez SL (1988) Aging, senile miosis and spatial contrast sensitivity at low luminance. Vision Res 28:1235-1246.
    Snowden RJ, Kavanagh E (2006) Motion perception in the ageing visual system: minimum motion, motion coherence, and speed discrimination thresholds. Perception 35:9-24.
    Snowden RJ, Treue S, Andersen RA (1992) The response of neurons in areas V1 and MT of the alert rhesus monkey to moving random dot patterns. Exp Brain Res 88:389-400.
    Snowden RJ, Treue S, Erickson RG, Andersen RA (1991) The response of area MT and V1 neurons to transparent motion. J Neurosci 11:2768-2785.
    Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci 13:334-350.
    Solomon SG, White AJ, Martin PR (2002) Extraclassical receptive field properties of parvocellular, magnocellular, and koniocellular cells in the primate lateral geniculate nucleus. J Neurosci 22:338-349.
    Spear PD (1993) Neural bases of visual deficits during aging. Vision Res 33:2589-2609.
    Spear PD, Moore RJ, Kim CB, Xue JT, Tumosa N (1994) Effects of aging on the primate visual system: spatial and temporal processing by lateral geniculate neurons in young adult and old rhesus monkeys. J Neurophysiol 72:402-420.
    Stanford T, Pollack RH (1984) Configuration color vision tests: the interaction between aging and the complexity of figure-ground segregation. J Gerontol 39:568-571.
    Stein RB, Gossen ER, Jones KE (2005) Neuronal variability: noise or part of the signal? Nat Rev Neurosci 6:389-397.
    Stone LS, Thompson P (1992) Human speed perception is contrast dependent. Vision Res 32:1535-1549.
    Swift DJ, Smith RA (1982) An action spectrum for spatial-frequency adaptation. Vision Res 22:235-246.
    Tadin D, Lappin JS, Gilroy LA, Blake R (2003) Perceptual consequences of centre-surround antagonism in visual motion processing. Nature 424:312-315.
    Tanaka K, Hikosaka K, Saito H, Yukie M, Fukada Y, Iwai E (1986) Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. J Neurosci 6:134-144.
    Terry AV, Jr., Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer' s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306:821-827.
    Thiele A, Distler C, Korbmacher H, Hoffmann KP (2004) Contribution of inhibitory mechanisms to direction selectivity and response normalization in macaque middle temporal area. Proc Natl Acad Sci U S A 101:9810-9815.
    Thomas OM, Cumming BG, Parker AJ (2002) A specialization for relative disparity in V2. Nat Neurosci 5:472-478.
    Tigges J, Gordon T, McClure H, Hall E, Peters A (1988) Survival rate and life span of rhesus monkeys at the Yerkes Regional Primate Research Center. Am J Primatol 15:263-273.
    Todd JT, Akerstrom RA, Reichel FD, Hayes W (1988) Apparent rotation in three-dimensional space: effects of temporal, spatial, and structural factors. Percept Psychophys 43:179-188.
    Tolhurst DJ, Movshon JA (1975) Spatial and temporal contrast sensitivity of striate cortical neurones. Nature 257:674-675.
    Tolhurst DJ, Heeger DJ (1997) Comparison of contrast-normalization and threshold models of the responses of simple cells in cat striate cortex. Vis Neurosci 14:293-309.
    Tolhurst DJ, Movshon JA, Thompson ID (1981) The dependence of response amplitude and variance of cat visual cortical neurones on stimulus contrast. Exp Brain Res 41:414-419.
    Tolhurst DJ, Movshon JA, Dean AF (1983) The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res 23:775-785.
    Tran DB, Silverman SE, Zimmerman K, Feldon SE (1998) Age-related deterioration of motion perception and detection. Graefes Arch Clin Exp Ophthalmol 236:269-273.
    Treue S (2001) Neural correlates of attention in primate visual cortex. Trends Neurosci 24:295-300.
    Treue S, Maunsell JH (1996) Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382:539-541.
    Treue S, Maunsell JH (1999) Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. J Neurosci 19:7591-7602.
    Trick GL, Steinman SB, Amyot M (1995) Motion perception deficits in glaucomatous optic neuropathy. Vision Res 35:2225-2233.
    Tsodyks M, Kenet T, Grinvald A, Arieli A (1999) Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286:1943-1946.
    Uka T, DeAngelis GC (2003) Contribution of middle temporal area to coarse depth discrimination: comparison of neuronal and psychophysical sensitivity. J Neurosci 23:3515-3530.
    Uka T, DeAngelis GC (2004) Contribution of area MT to stereoscopic depth perception: choice-related response modulations reflect task strategy. Neuron 42:297-310.
    Uka T, DeAngelis GC (2006) Linking neural representation to function in stereoscopic depth perception: roles of the middle temporal area in coarse versus fine disparity discrimination. J Neurosci 26:6791-6802.
    lingerieider LG, Mishkin M (1979) The striate projection zone in the superior temporal sulcus of Macaca mulatta: location and topographic organization. J Comp Neurol 188:347-366.
    Ungerleider LG, MischkinM (1982) Two cortical visual systems. In: Analysis of visual behavior (Ingle DJ, Goodale MA, Mansf ield RJW, eds), pp 549 - 589. Cambridge, MA: MIT.
    Van Essen DC, Maunsell JH, Bixby JL (1981) The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. J Comp Neurol 199:293-326.
    Van Wezel RJ, Britten KH (2002) Motion adaptation in area MT. J Neurophysiol 88:3469-3476.
    Vandenberghe R, Tournoy J (2002) Cognitive aging and Alzheimer' s disease. Postgraduate Medical Journal 81:343-352.
    Vogel A, Hennig RM, Ronacher B (2005) Increase of neuronal response variability at higher processing levels as revealed by simultaneous recordings. J Neurophysiol 93:3548-3559.
    Vreeswijk Cv, Sompolinsky H (1997) Irregular fring in cortical circuits with inhibition/excitation balance. In J. Bower, editor, Computational Neuroscience Trends in Reserach, 1997 209-213.
    Wang H, Xie X, Li X, Chen B, Zhou Y (2006) Functional degradation of visual cortical cells in aged rats. Brain Res 1122:93-98.
    Wang Y, Zhou Y, Ma Y, Leventhal AG (2005) Degradation of signal timing in cortical areas V1 and V2 of senescent monkeys. Cereb Cortex 15:403-408.
    Ward LM (2003) Synchronous neural oscillations and cognitive processes. Trends Cogn Sci 7:553-559.
    Weiss Y, Simoncelli EP, Adelson EH (2002) Motion illusions as optimal percepts. Nat Neurosci 5:598-604.
    Welford AT (1984) Between bodily changes and performance: Some possible reasons for slowing with age. Experimental Aging Research 10:73 - 88.
    Whitaker D, Elliott DB, MacVeigh D (1992) Variations in hyperacuity performance with age. Ophthalmic Physiol Opt 12:29-32.
    Williford T, Maunsell JH (2006) Effects of spatial attention on contrast response functions in macaque area V4. J Neurophysiol 96:40-54.
    Wilson HR, Humanski R (1993) Spatial frequency adaptation and contrast gain control. Vision Res 33:1133-1149.
    Wong TP, Marchese G, Casu MA, Ribeiro-da-Silva A, Cuello AC, De Koninck Y (2000) Loss of presynaptic and postsynaptic structures is accompanied by compensatory increase in action potential-dependent synaptic input to layer V neocortical pyramidal neurons in aged rats. J Neurosci 20:8596-8606.
    Xiao DK, Raiguel S, Marcar V, Orban GA (1997a) The spatial distribution of the antagonistic surround of MT/V5 neurons. Cereb Cortex 7:662-677.
    Xiao DK, Marcar VL, Raiguel SE, Orban GA (1997b) Selectivity of macaque MT/V5 neurons for surface orientation in depth specified by motion. Eur J Neurosci 9:956-964.
    Yamasaki DS, Wurtz RH (1991) Recovery of function after lesions in the superior temporal sulcus in the monkey. J Neurophysiol 66:651-673.
    Yang T, Maunsell JH (2004) The effect of perceptual learning on neuronal responses in monkey visual area V4. J Neurosci 24:1617-1626.
    Yang Y, Jin J, Zhou Y, Shou T (2003) GABA(A) and GABA(B) receptors mediated inhibition affect the pattern adaptation of relay cells in the dorsal lateral geniculate nucleus (LGNd) of cats. Brain Res 959:295-303.
    Yang Y, Liang Z, Li G, Wang Y, Zhou Y, Leventhal AG (2008) Aging affects contrast response functions and adaptation of middle temporal visual area neurons in rhesus monkeys. Neuroscience.
    YuS, Wang Y, Li X, Zhou Y, Leventhal AG (2006) Functional degradation of extrastriate visual cortex in senescent rhesus monkeys. Neuroscience 140:1023-1029.
    Yu S, WANG XS, Fu Y, Zhang J, Ma YY, Wang YC, Zhou YF (2005) Effects of age on latency and variability of visual response in monkeys. Chinese Science Bulletin 50:1163-1165.
    Zeki SM (1974) Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J Physiol 236:549-573.
    Zihl J, von Cramon D, Mai N (1983) Selective disturbance of movement vision after bilateral brain damage. Brain 106 (Pt 2):313-340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700