携带HGF基因骨髓间充质干细胞移植对大鼠心力衰竭的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题研究分为三个部分。第一部分:绿色荧光蛋白示踪技术在大鼠骨髓间充质干细胞心脏移植中的应用研究,对本研究的方法学进行了探讨,研究了本实验所采用的干细胞示踪方法的安全性和可靠性;第二部分探讨了携带HGF基因的腺病毒转染骨髓间充质干细胞对大鼠心力衰竭的疗效和安全性以及作用机制;在第二部分研究结果的基础上,为了探讨更有效的心力衰竭治疗方法,进行了第三部分的研究,联合应用细胞因子G-CSF和携带HGF基因的骨髓间充质细胞治疗大鼠心力衰竭,阐明这两种细胞因子联用具有协同作用。
     第一部分:绿色荧光蛋白示踪技术在大鼠骨髓间充质干细胞心脏移植中的应用研究
     目的:
     骨髓间充质干细胞(mesenchymal stem cells,MSCs)在心肌组织再生和修复方面的应用取得了较多的进展。然而目前对移植到缺血心肌后的干细胞进行体内示踪的方法十分有限。本研究通过探讨绿色荧光蛋白(GFP)标记识别和示踪大鼠骨髓间充质干细胞的(MSCs)的可靠性,为MSCs移植到缺血心肌后体内示踪技术的应用提供实验依据。
     方法:
     从大鼠骨髓中分离骨髓间充质干细胞后进行培养和扩增,用携带GFP的腺病毒感染MSC,植入心肌梗死后的大鼠心脏梗死边缘区,观察细胞移植后3天、7天、14天、21天、28天标记细胞存活、迁移和分布情况。
     结果:
     骨髓间充质干细胞在体内、体外均可成功能表达GFP。携带GFP的腺病毒感染MSC的感染效率达到98%,并且基本没有毒性作用。激光共聚焦显微镜可观察到GFP可成功示踪移植的MSCs 28天。
     结论:
     GFP可以有效地示踪骨髓MSCs移植入心肌梗死大鼠心脏后在体内的分布和转归情况。
     第二部分:携带HGF基因骨髓间充质细胞移植治疗大鼠心力衰竭的研究
     目的:
     缺血性心肌病是引起心力衰竭的主要病因,并且这类患者生存时间比非缺血性心力衰竭短,治疗效果差,急需寻找新的治疗策路。本研究的目的就是研究携带HGF基因的骨髓间充质干细胞心脏移植后,对大鼠心力衰竭的治疗作用,并初步探讨其作用机制。
     方法:
     通过结扎左冠状动脉的方法建立大鼠心肌梗死模型。4周后根据心脏超声检查结果,将FS≤30%的大鼠随机分为4组,观察时程为4周:①对照组(n=6):心梗边缘注射生理盐水;②MSC组(n=6):心梗边缘注射GFP-Ad感染的MSCs;③HGF组(n=6):心梗边缘注射HGF-Ad感染的MSCs;④HGF+CsA组(n=6):心梗边缘注射HGF-Ad感染的MSCs,并于细胞移植次日腹腔内注射环孢A25mg/kg.d 14天。所有动物腹腔注射BrdU标记新生细胞。心肌梗死8周后,行心脏超声和血流动力学检查检测心功能,将动物处死取材。Western-Blot方法检测HGF在心肌内的表达。用HE染色,免疫荧光染色,TUNEL等方法评价各种干预对心脏形态,血管生成和内皮细胞增殖情况的影响,检测心肌内凋亡相关的蛋白表达,探讨HGF的作用机制。
     结果:
     携带HGF的骨髓间充质细胞可以在体内成功表达HGF蛋白。
     心肌梗死8周后,MSC组与对照组相比,LVEDP(9.76±0.54 vs.10.09±0.68kPa)、LVSP(15.98±0.81vs.15.08±0.88 kPa)、dp/dtmax(362.15±14.00 vs.347.34±19.16 kPa/s)和FS(23.83±2.37 vs.21.33±1.76%)几项指标差别无统计学意义(p>0.05);HGF组与MSC组相比,LVEDP(7.65±0.52 vs.9.76±0.54 kPa)、(19.76±0.73 vs.15.98±0.81 kPa)、dp/dtmax(503.48±16.97 vs.362.15±14.00 kPa/s)和FS(29.63±2.88 vs.23.83±2.37%)几项指标差别均有统计学意义(p<0.05)。HGF组的LVEDP显著降低、LVSP和dp/dtmax升高和FS显著增加。
     MSC组和对照组相比,心室壁厚度(1.56±0.34 vs.1.53±0.41mm)和血管密度(81.67±6.32 vs.82.00±8.68mm)差别无统计学意义(p>0.05)。HGF组与MSC组相比,心室壁厚度(1.98±0.50 vs.1.56±0.34 mm)显著增加,存活的心肌也较多(p<0.05),心梗交界区的血管密度(137.67±15.42 vs.81.67±6.32mm)显著也增加,差别皆具有有计学意义(p<0.05)。
     采用了白细胞标记物CD45、内皮细胞标记物CD34和vWF、心肌细胞标记物心肌肌球蛋白重链蛋白的抗体和BrdU抗体作免疫荧光双染,鉴定新生细胞类型。结果显示几乎所有的BrdU阳性的细胞都是CD34或vWF阳性而MHC、CD45是阴性的,说明绝大多数增生的细胞是内皮细胞,没有发现白细胞和心肌细胞的增生。MSC组与对照组相比,增生的CD34阳性细胞数量(13±2.72vs.10.01±2.10 per mm~2)和vWF阳性的细胞数量(14.17±1.74 vs.11.33±1.97 permm~2)差别无统计学意义(p>0.05)。HGF组与MSC组相比,增生的CD34阳性细胞数量(27±4.66 vs.13±2.72 per mm~2)和vWF阳性的细胞数量(30.33±2.65vs.14.17±1.74 per mm~2)差别具有统计学意义(p<0.05),HGF组CD34阳性和vWF阳性的细胞数目明显增加。
     通过末端标记脱氧核苷酸转移酶介导的缺口末端标记(TUNEL)法标记凋亡心肌细胞,结果显示MSC组与对照组相比,凋亡指数(2.26±0.45 vs.3.01±0.72)降低,差异具有统计学意义(p<0.05);HGF组与MSC组相比,凋亡指数(0.90±0.46 vs.2.26±0.45)显著降低,差异具有统计学意义(p<0.05);CsA组与HGF组相比,凋亡指数(2.06±0.66 vs.0.90±0.46)明显升高,差异具有统计学意义(p<0.05),但仍较对照组(2.06±0.66 vs.3.01±0.72)低,差异具有统计学意义(p<0.05)。
     细胞凋亡相关蛋白的表达检测结果显示,MSC组与对照组比较,CaN、磷酸化的Akt、Bcl-2、NFAT4的表达没有明显差别(p>0.05)。HGF组与MSC组比较,CaN、磷酸化的Akt和Bcl-2的表达水平明显增加,差别具有统计学意义(p<0.05),但是NFAT4的水平没有明显改变(p>0.05)。CsA组给予CaN的抑制剂CsA处理后,结果发现CsA部分抑制大鼠心肌组织中的CaN蛋白的表达,CsA组与HGF组比较,CaN表达显著降低(p<0.05),伴随着Akt和Bcl-2的蛋白表达也相应减少(p<0.05),但NFAT4蛋白的表达无改变(p>0.05)。
     结论:本研究证实了在心梗4周时移植腺病毒介导的过表达HGF的MSCs,可以通过促进血管生成和抑制心肌细胞凋亡,明显延缓心功能的恶化,HGF部分抑制心肌细胞凋亡的保护作用是通过上调CaN的表达来发挥作用的,Bcl-2和Akt是参与了其抗凋亡作用的下游通路的信号分子。
     第三部分:G-CSF联合携带HGF基因骨髓间充质干细胞治疗大鼠心力衰竭的研究
     目的:
     在第二部分研究结果的基础上,为寻找到更有效的心力衰竭的治疗方法,研究联合应用细胞因子HGF和G-CSF对大鼠心力衰竭的治疗效果,并初步探讨其作用机制。
     方法:
     通过结扎左冠状动脉的方法建立大鼠心肌梗死模型。4周后根据心脏超声检查结果,将FS≤30%的大鼠随机分为4组,观察时程4周:①对照组(n=11)给予心梗边缘注射0.1ml生理盐水;②G-CSF组(n=11)心梗边缘注射0.1ml生理盐水,细胞移植当日起开始腹腔注射G-CSF,100μg/kg.d共5天;③HGF组(n=11)心梗边缘注射0.1ml Ad-HGF感染的MSCs;④HGF+G-CSF组(n=11)心梗边缘注射0.1ml Ad-HGF感染的MSCs,并于同时腹腔内注射G-CSF,100μg/kg.d 5天。心肌梗死8周,心脏超声和血流动力学检查检测心功能后,将动物处死取材。用组织学检查,免疫荧光染色,Western-Blot等方法评价各种干预对心脏形态,血管生成以及VCAM-1、MMP-9蛋白表达的影响。
     结果:
     心肌梗8周后,评价各组大鼠心功能,G-CSF组和对照组相比,左室舒张末期压力(LVEDP)(10.44±0.46 vs.10.65±0.62 kPa)、左室收缩末期压力(LVSP)(16.31±0.66 vs.15.25±0.90 kPa)、dP/dtmax(368.50±7.72 vs.357.83±10.76 kPa/s)、左室缩短率(FS)(23.83±2.52 vs.21.33±1.76%)指标的差别均没有统计学意义(p>0.05)。HGF组与G-CSF组相比,的LVEDP(8.55±0.20 vs.10.44±0.46 kPa)、LVSP(19.09±0.67 vs.16.31±0.66 kPa)、dP/dtmax(493.48±10.99 vs.368.50±7.72 kPa/s)和FS(28.63±2.88 vs.23.83±2.52%)指标的差别均具有统计学意义(p<0.05),HGF组的LVEDP显著降低,而LVSP、dP/dtmax和FS显著升高。HGF+G-CSF组与HGF组相比,LVEDP(6.70±0.36 vs.8.55±0.20 kPa)、LVSP(21.83±1.16 vs.19.09±0.67kPa)、dP/dtmax(527.22±10.24 vs.493.48±10.99 kPa/s)和FS(29.99±2.79 vs.28.63±2.88%)指标的差别均亦具有统计学意义(p<0.05),HGF+G-CSF组的LVEDP显著降低,LVSP、dP/dtmax和FS显著升高。4组中,HGF+G-CSF组收缩功能和舒张功能都改善最明显。
     心梗8周后,心梗面积都在40%左右,组间比较没有统计学差异。G-CSF组和对照组相比,左室内径(6.78±0.36 vs.6.86±0.36 mm)和心梗交界区室壁厚度(1.48±0.14 vs.1.46±0.13mm)差别都没有统计学意义(p>0.05)。HGF组与G-CSF相比,HGF组左室内径(5.72±0.30 vs.6.78±0.36 mm)和心梗交界区室壁厚度(1.85±0.09 vs.1.48±0.14 mm)差别具有统计学意义,HGF组左室内径较小(p<0.05),心梗交界区室壁厚度较厚(p<0.05)。HGF+G-CSF与HGF组相比,左室内径(4.7±0.34 vs.5.72±0.30 mm)和心梗交界区室壁厚度(2.22±0.13 vs.1.85±0.09 mm)差别具有统计学意义(p<0.05),HGF+G-CSF组左室内径较小,梗死交界区室壁厚度较大(p<0.05)。HGF+G-CSF组在4组中,左室内径最小,梗死交界区室壁厚度最大。
     用掺入假核苷酸BrdU的方法标记心肌内增殖的细胞,细胞移植4周后,用白细胞标记物CD45、内皮细胞标记物CD34和vWF、心肌细胞标记物心肌肌球蛋白重链蛋白的抗体和BrdU抗体作免疫荧光双染,结果显示几乎所有的BrdU阳性的细胞都是CD34或vWF阳性而MHC、CD45是阴性的,说明绝大多数增生的细胞是内皮细胞,仍然没有发现白细胞和心肌细胞的增生。G-CSF组与对照组相比,增生的CD34阳性细胞数(6.83±1.13vs.8.83±1.30 per mm~2)和vWF阳性细胞数量(14.00±1.63 vs.11.00±1.82 per mm~2)差别无统计学意义(p>0.05),vWF染色计数<20μm血管密度(93.33±5.7vs.80±6.36 per mm~2)差别也无统计学意义(p>0.05)。HGF组与G-CSF组相比,增生的CD34阳性细胞数(14.00±1.83vs.6.83±1.13 per mm~2)、vWF阳性细胞数(26.01±2.44 vs.14.00±1.63permm~2)差别都具有统计学意义(p<0.05),血管密度(111.67±9.54 vs.93.33±5.7per mm~2)差别也具有统计学意义(p<0.05),HGF组CD34阳性细胞数和vWF阳性细胞数显著增加,血管密度也显著增加。HGF+G-CSF组与HGF组相比,CD34阳性细胞数(20.67±1.82 vs.14.00±1.83 per mm~2)、vWF阳性细胞数(33.00±2.87 vs.26.01±2.44 per mm~2)差别都具有统计学意义(p<0.05),血管密度(133.67±7.04 vs.111.67±9.54 per mm~2)差别皆具有统计学意义(p<0.05)。较HGF组,HGF+G-CSF组CD34阳性细胞数和vWF阳性细胞数、血管密度皆显著增加。4组中,HGF+G-CSF组CD34阳性的细胞数、vWF阳性细胞数和血管密度明显较其它3组为多。
     为了探索HGF-MSC和G-CSF对心梗交界区心肌组织内环境的影响,检测相关的蛋白的表达。发现HGF组和G-CSF+HGF组的VCAM-1的表达较对照组和G-CSF组明显增加(p<0.05),但是HGF组和G-CSF+HGF组两组之间相比没有明显差异(p>0.05),证明VCAM-1的表达增加与HGF的治疗有关,与G-CSF无关。HGF组和G-CSF组MMP-9的表达都较对照组增加(p<0.05),而HGF+G-CSF组MMP-9蛋白的表达最多,表明HGF和G-CSF都可以促进MMP-9蛋白的表达。
     结论:
     在心梗4周时给予G-CSF和携带HGF基因的MSCs治疗,可以明显改善大鼠的心功能,促进心梗边界缺血区域的血管生成,其作用机制之一可能是HGF和G-CSF可以通过增加缺血心肌VCAM-1和MMP-9蛋白的表达,改善缺血心肌的内环境。
In this study,we investigated the effectiveness of cytokines on post-ischemic heart failure and the mechanisms underlying the effect.This study was divided into 3 parts.
     Part 1:In vivo tracking of green fluorescent protein labeled mesenchymal stem cells in hearts of rats with myocardial infarction
     Objective:There are rapid advances in the use of mesenchymal stem cells for tissue regeneration and repair in the heart in recent years.However,there is limited ability to identify and "track" transplanted or migrating stem cells in vivo.In this study,we transplanted bone marrow derived mesenchymal stem cells infected with the recombinant replication-defective adenovirus vector carrying green fluorescent protein into rat heats,to evaluate the effectiveness of green fluorescent protein identifying and tracking implanted cells in vivo in order to provide a effective way to track the delivered mesenchymal stem cells in vivo.
     Methods:Mesenchymal stem cells isolated from rat femur marrow were cultured and expanded,then infected by recombinant retrovirus containing green fluorescent protein.Transplant the green fluorescent protein labeled mesenchymal stem cells into rat heart infarct zone.The survival,distribution and migration of labeled mesenchymal stem cells were analyzed at 3 days,7 days,14 days,21 days,28 days after transplantation.
     Results:Green fluorescent protein was successfully expressed by mesenchymal stem cells in vitro and in vivo.The adenoviral vectors' infection of mesenchymal stem cells had high efficiency(98%) and low toxicity,green fluorescent protein positive cells were detected by confocal microscope during the initial 28 days after transplantation.Green fluorescent protein labeled mesenchymal stem cells were gradually retained into host tissue and migrated.
     Conclusions:Green fluorescent protein can be used to track mesenchymal stem cell location and fate after delivery in the rat heats with myocardial infarction.
     Part 2:Locally Overexpressing Hepatocyte Growth Factor Prevents Post-ischemic Heart Failure by Inhibition of Apoptosis via Calcineurin-Mediated Pathway and Angiogenesis
     Objective:Myocardial infarction is a significant cause of heart failure.Currently, therapies are limited,and novel revascularization methods might have a role.We investigated the effects of hepatocyte growth factor expressing by bone marrow-derived mesenchymal stem cells(MSCs) on post-ischemic heart failure.
     Methods:4 weeks after MI,SD rats(F≤30%) were randomly divided into 1.control group:injection of saline into the infarct zone,n=6;2.MSC group:transplantation of bone marrow derived MSCs transfected with Ad-GFP into the infarct zone,n=11;3, HGF group:transplantation of MSCs transfected with Ad-HGF into the infarct zone, n=6;4.HGF+CsA group:transplantation of MSCs transfected with Ad-HGF into the infarct zone and intraperitoneal injection of cyclosporine A,25mg/kg daily for 14 days,n=6.After another 4 weeks,hearts were analyzed for ventficular geometry, myocardial function,angiogenesis and endothelial cell density,apoptosis and the expression of HGF,calcineurin,Akt and Bcl-2 protein.
     Results:we detected the expression of HGF protein at 2days,7days of transplantation in HGF group.We found a significant improvement in left ventricular function in the HGF-MSC group compared with GFP-MSC group.The difference in LVFS,LVEDP, LVSPand dp/dtmax in the MSC-HGF group compared to the saline control group and MSC-GFP group(p<0.05).Overexpression of HGF was associated with a greater number of CD34and von vWF positive cells proliferated in the infarct zone (27.00±4.66 vs.13.00±2.72,30.33±2.65 vs.14.17±1.74 per mm2,respectively). There were no difference in the number of cardiac myosin heavy chain positive cells between HGF and MSC group.TUNEL assays results showed that about 0.90±0.46‰nuclei were TUNEL-positive in HGF group,whereas 2.26±0.45‰nuclei were TUNEL-positive staining,in MSC group(p<0.05).However,the antiapoptotic effect of HGF decreased when HGF and cyclosporine A were given to rats simultaneously and 2.06±0.66‰in CsA group(p<0.05).The effects of HGF on apoptosis were associated with the expression level of calcineurin Akt and Bcl-2 protein.
     Conclusion:Our findings suggest that overexpression of HGF improved ischemic cardiac function through angiogenesis and reduction of apoptosis partly mediated by up-regulation of calcineurin.
     Part 3:Hepatoeyte growth factor and granulocyte colony-stimulating factor form a combined neovasculogenic therapy for ischemic cardiomyopathy
     Objective:Myocardial infarction(MI) is a significant cause of heart failure. Currently,therapies are limited,and novel revascularization methods might have a role.The present study was to investigated whether hepatocyte growth factor(HGF) expressed by genetically modified mesenchymal stem cells(MSCs) combined with granulocyte colony-stimulating factor(G-CSF) 8 weeks from myocardial infarction can offer synergistic therapeutic benefit and the mechanisms underlying the synergistic effect.
     Methods:4 weeks after MI,SD(FS<30%) rats were randomly divided into control group(n=11);HGF group(transplantation MSCs transfected with Ad-HGF into the infarct zone,n=11);G-CSF group(intraperitoneal injection G-CSF,n=11); HGF+G-CSF group(transplantation MSCs transfected with Ad-HGF into the infarct zone and intraperitoneal injection G-CSF,n=11).After another 4 weeks,hearts were analyzed for endothelial cell density and angiogenesis,ventricular geometry, myocardial function and the expression of VCAM-1 and MMP-9 protein.
     Results:The rats in HGF+G-CSF group exhibited better LV systolic and diastolic function(p<0.05),experienced less adverse ventricular remodeling,as manifested by less left ventricular dilatation(4.7±0.34mm vs.6.86±0.36mm in control group, 6.78±0.36mm in G-CSF group,5.72±0.3mm in HGF group,p<0.05) and increased border-zone wall thickness(2.22±0.13mm vs.1.46±0.13mm in control group, 1.48±0.14mm in G-CSF group,1.85±0.09mm in HGF group p<0.05) after 8 weeks of MI.Angiogenesis was significantly enhanced in HGF+G-CSF group by inducing proliferation of CD34 positive(20.67±1.82 per mm~2 vs.8.83±1.30 per mm~2 in control group,6.83±1.13 per mm~2 in G-CSF group,14.00±1.83,per mm~2 in HGF group, p<0.05) and vWF positive(33.00±2.87 per mm~2 vs.11.00±1.82 per mm~2 in control group,14.00±1.63 per mm~2 in G-CSF group,26.01±2.44 per mm~2 in HGF group,p<0.05) endothelial cells.HGF induced the expression of VCAM-1 and HGF together with G-CSF treatment synergistically stimulated MMP-9 expression in ischemic heart.
     Conclusion:The combination of G-CSF and HGF had a significant synergistic effect and enhanced myocardial endothelial density,angiogenesis,geometric preservation, and heart function in the model of ischemic cardiomyopathy.
引文
1.Mukherjee D,Bhatt DL,Roe MT,et al.Direct myocardial revescularization and angiogenesis-How many patients might be eligible? Am J Cardiol 1999;84:598-600.
    2.Wollert KC,Meyer GP,Lotz J,et al.Intracoronary autologous bone-marrow cell transfer after myocardial infarction:The BOOST randomised controlled clinical trial.Lancet 2004;364:141-148.
    3.Meyer GP,Wollert KC,Lotz J,et al Intracoronary bone marrow cell transfer after myocardial infarction:Eighteen months' follow-up data from the randomized,controlled BOOST(BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial.Circulation 2006;113:1287-1294.
    4.Rappolee DA,Iyer A,Patel Y,Hepatocyte growth factor and its receptor are expressed in cardiac myocytes during early cardiogenesis Circ.Res.1996;78:1028-1036.
    5.H.Ueda,T.Nakamura,K.Matsumoto,et al.A potential cardioprotective role of hepatocyte growth factor in myocardial infarction in rats,Cardiovasc Res.2001;51:41-50.
    6.T.Nakamura,S.Mizuno,K.Matsumoto,et al.Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF,J Clin Invest.2000;106:1511-1519.
    7.H.F.Duan,C.T.Wu,D.L.Wu,et al.Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor, Mol.Ther.2003;8:467-474.
    8.Walter DH,Rittig K,Bahlmann FH et al.Statin therapy accelerates reendothelialization:a novel effect involving mobilization and incorporation of bone marrow derived endothelial progenitor cells.Circulation 2002;105:3017-3024.
    9.Ieda Y,Fujita J,Ieda M,et al.G-CSF and HGF:combination of vasculogenesis and angiogenesis synergistically improves recovery in murine hind limb ischemia.J Mol Cell Cardiol 2007;42:540-548.
    1.Kruglyakov PV,Sokolova IB,Zin'kova NN,Viide SK,Aleksandrov GV,Petrov NS,et al.In vitro and in vivo differentiation of mesenchymal stem cells in the cardiomyocyte direction.Bull Exp Biol Med 2006;142:503-506.
    2.Ohnishi S,Yanagawa B,Tanaka K,Miyahara Y,Obata H,Kataoka M,et al.Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis.J Mol Cell Cardiol 2007;42:88-97.
    3.Amado LC,Saliaris AP,Schuleri KH,St John M,Xie JS,Cattaneo S,et al.Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction.Proc Natl Acad Sci 2005;102:11474-11479.
    4.Mangi AA,Noiseux N,Kong D et al.Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts.Nat Med 2003;9:1195-1201.
    5.Mangi AA,Noiseux N,Kong D,He H,Rezvani M,Ingwall JS,et al.Bone marrow cells regenerate infarcted myocardium.Nature 2001;410:701-705.
    6.Guarita-Souza LC,Carvalho KA,Rebelatto C,Senegaglia A,Hansen P,Furuta M,et al.Cell transplantation:differential effects of myoblasts and mesenchymal stem cells.INT J CARDIOL 2006;111(3):423-429.
    7.Conget PA,Minguell JJ.Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells.J Cell physiol 1999;181:67-73.
    8.Duan HF,Wu CT,Wu DL,Lu Y,Liu HJ,Ha XQ,et al.Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor.Mol Ther 2003;8:467-474
    9.Wollert KC,Meyer GP,Lotz J,Ringes-Lichtenberg S,Lippolt P,Breidenbach C,et al.Intracoronary autologous bone-marrow cell transfer after myocardial infarction:The BOOST randomised controlled clinical trial.Lancet 2004;364:141-148.
    10. Meyer GP, Wollert KC, Lotz J, Steffens J, Lippolt P, Fichtner S,et al Intracoronary bone marrow cell transfer after myocardial infarction: Eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 2006;113:1287-1294.
    
    11. Potapova I, Plotnikov A, Lu Z, Danilo P Jr, Valiunas V, Qu J, et al. Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers.Circ Res 2004;94: 952-959.
    
    12. Jackson KA, Majka SM, Wang H et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001;107:1395-1402.
    
    13. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW,et al. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res 2005;96:127-137.
    
    14. Terry NH, White RA. Flow cytometry after bromodeoxyuridine labeling to measure S and G2+M phase durations plus doubling times in vitro and in vivo.Nat Protoc2006;1:859-869.
    
    15.Fang NT, Xie SZ, Wang SM, Gao HY, Wu CG, Pan LF. Construction of tissue-engineered heart valves by using decellularized scaffolds and endothelial progenitor cells. Chin Med J 2007;120:696-702.
    
    16. Kraitchman DL, Tatsumi M, Gilson WD, Ishimori T, Kedziorek D, Walczak P,et al. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 2003;107:2290-2293.
    
    17. Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, et al.Monitoring of bone marrow cell homing into the infarcted human myocardium.Circulation 2005;111:2198 -2202.
    
    18. Lippincott-Schwarhz J, Patterson GH. Development and use of fluorescent protein markers in living cells. Science 2003;300:87-91.
    
    19. Stephen DJ, Allan VJ. Light microscopy techniques for live cell imaging. Science 2003;300:82-86.
    
    20. Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal Stem Cells Enhance Wound Healing Through Differentiation and Angiogenesis. Stem Cells. 2007 Jul 5; [Epub ahead of print]
    21.Duan XJ,Yang U,Zhou Y,Xin R,Li QH.Transplantation of allogeneic mesenchymal stem cells into rabbit subcutaneous tissue Chin J Trauma 2005;21:512-516.
    22.Isner JM,Vale PR,Symes JF,Losordo DW.Assessment of risks associated with cardiovascular gene therapy in human subjects.Circ Res 2001;89:389-400.
    1.Pfeffer MA,Braunwald E.Ventricular remodeling after myocardial infarction:experimental observations and clinical implications.Circulation.1990;81:1161-72.
    2.Heuser R,Houser F,Culler SD,Becker ER,Battaglia SL,Tarkington L,et al.A retrospective study of 6,671 patients comparing coronary stenting and balloon angioplasty.J.Invasive Cardiol 2000;12:354-362
    3.Karolak W,Hirsch G,Buth K,Legate JF.Medium-term outcomes of coronary artery bypass graft surgery on pump versus off pump:results from a randomized controlled trial.Am Heart J 2007;153:689-95
    4.Malekan R,Reynolds C,Narula N,Kelley ST,Suzuki Y,Bridges CR.Angiogenesis in transmyocardial laser revascularization.A nonspecific response to injury.Circulation.1998;98:Ⅱ62-66
    5.Salam AM.Selective aldosterone blockade with eplerenone in patients with congestive heart failure.Expert Opin Invest Drugs 2003;12:1423-1427
    6.Hochman JS,Lamas GA,Buller CE,et al.Coronary intervention for persistent occlusion after myocardial infarction.N Engl J Med.2006 Dec 7;355(23):2395-2407
    7.Ma J,Ge J,Zhang S,Sun A,Shen J,Chen L,et al.Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction.Basic Res Cardiol.2005;100:217-23
    8.Orlic D,Kajstura J,Chimenti S,Jakoniuk I,Anderson SM,Li B,et al.Bone marrow cells regenerate infarcted myocardium.Nature 2001:410:701-705
    9.Yau TM,Kim C,Li G,Zhang Y,Fazel S,Spiegelstein D,et al.Enhanced angiogenesis with multimodal cell-based gene therapy.Ann Thorac Surg 2007;83:1110-1119
    10.Silva GV,Litovsky S,Assad JA,Sousa AL,Martin BJ,Vela D,et al.Mesenchymal stem cells differentiate into an endothelial phenotype,enhance vascular density,and improve heart function in a canine chronic ischemia model.Circulation 2005;111:150-156
    11.Toma C,Pittenger MF,Cahill KS,Byrne BJ,Kessler PD.Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart.Circulation 2002;105:93-98
    12.段海峰,吴祖泽,陆颖等.腺病毒介导的人HGF转染大鼠骨髓间充质干细胞及其作用研究 军事医学科学院院刊 2003;27(4):244-247
    13.许立龙,李国杰 大鼠部分心脏疾患模型建立与超声评价心功能进展 心血管病学进展2005;26(4):439-443
    14.Conget PA,Minguell JJ.Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells.J Cell physiol 1999;181:67-73.
    15.Zarnegar R,Michalopoulos GK.Themany faces of hepatocyte growth factor:from hepatopoiesis to hematopoiesis.J Cell Biol 1995;129:1177-1180.
    16.Rappolee DA,Iyer A,Patel Y.Hepatocyte growth factor and its receptor are expressed in cardiac myocytes during early cardiogenesis.Circ Res 1996;78:1028-36.
    17.Ueda H,Nakamura T,Matsumoto K,Sawa Y,Matsuda H,Nakamura T.A potential cardioprotective role of hepatocyte growth factor in myocardial infarction in rats.Cardiovasc Res 2001;51:41-50.
    18.Nakamura T,Mizuno S,Matsumoto K,Sawa Y,Matsuda H,Nakamura T.Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF.J Clin Invest 2000;106:1511-9.
    19.Kruglyakov PV,Sokolova IB,Zin'kova NN,Viide SK,Aleksandrov GV,Petrov NS,et al.In vitro and in vivo differentiation of mesenchymal stem cells in the cardiomyocyte direction.Bull Exp Biol Med 2006;142:503-506.
    20.Ohnishi S,Yanagawa B,Tanaka K,Miyahara Y,Obata H,Kataoka M,et al.Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis.J Mol Cell Cardiol 2007;42:88-97.
    21.Amado LC,Saliaris AP,Schuleri KH,St John M,Xie JS,Cattaneo S,et al.Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction.Proc Natl Acad Sci 2005;102:11474-11479.
    22.Mangi AA,Noiseux N,Kong D et al.Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts.Nat Med 2003;9:1195-1201.
    23.王振河,王挹青 骨髓间充质干细胞移植治疗心肌梗死时机再探讨,中华医学研究杂志 2007;7(4):327-331
    24.Rappolee DA,Iyer A,Patel Y.Hepatocyte growth factor and its receptor are expressed in cardiac myocytes during early cardiogenesis.Circ Res.1996;78:1028-1036.5Birchmeier C,Brohmann H.Genes that control the development of migrating muscle precursor cells.Curr Opin Cell Biol.2000;12:725-730.
    25.Bussolino F,Di Renzo MF,Ziche M,Bocchietto E,Olivero M,Naldini L,et al.Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth.J Cell Biol 1992;119:629-641
    26.Jayasankar V,Woo YJ,Bish LT,Pirolli TJ,Chatterjee S,Berry MF,et al.Gene transfer of hepatocyte growth factor attenuates postinfarction heart failure.Circulation 2003;108:11230-236
    27.Ueda H,Nakamura T,Matsumoto K,Sawa Y,Matsuda H,Nakamura T.A potential cardioprotective role of hepatocyte growth factor in myocardial infarction in rats.Cardiovasc Res 2001;51:41-50
    28.Jayasankar V,Woo YJ,Pirolli TJ,Bish LT,Berry MF,Burdick J,et al.Induction of angiogenesis and inhibition of apoptosis by hepatocyte growth factor effectively treats postischemic heart failure.J Card Surg 2005;20:93-101
    29.Kitta K,Day RM,Kim Y,Torregroza I,Evans T,Suzuki YJ.Hepatocyte growth factor induces GATA-4 phosphorylation and cell survival in cardiac muscle cells.J Biol Chem 2003;278:4705-4712
    30.Ohno M,Takemura G,Ohno A,Misao J,Hayakawa Y,Minatoguchi S,et al."Apoptotic" myocytes in infarct area in rabbit hearts may be oncotic myocytes with DNA fragmentation: analysis by immunogold electron microscopy combined with In situ nick end-labeling. Circulation 1998;98:1422-1430
    
    31. Nakamura T, Mizuno S, Matsumoto K, Sawa Y, Matsuda H, Nakamura T.Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J Clin Invest. 2000;106:1511-9
    
    32. Kanbe T, Murai R, Mukoyama T, Murawaki Y, Hashiguchi K, Yoshida Y, et al.Naked gene therapy of hepatocyte growth factor for dextran sulfate sodium-induced colitis in mice. Biochem Biophys Res Commun 2006;345:1517-1525
    
    33. Wang Y, Ahmad N, Wani MA, Ashraf M. Hepatocyte growth factor prevents ventricular remodeling and dysfunction in mice via Akt pathway and angiogenesis. J Mol Cell Cardiol 2004;37:1041-1052
    
    34. Chakraborti S, Das S, Kar P, Ghosh B, Samanta K, Kolley S, et al. Calcium signaling phenomena in heart diseases: a perspective. Mol Cell Biochem 2007;298:1-40
    
    35. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, et al. Acalcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 1998;93:215-228
    
    36. Wilkins BJ, Molkentin JD. Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem Biophys Res Commun 2004;322:1178-1191
    
    37. Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R, Hill JA, et al.TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest 2006;116:3114-3126
    
    38. Fiedler B, Wollert KC. Targeting calcineurin and associated pathways in cardiac hypertrophy and failure. Expert Opin Ther Targets 2005;9:963-973
    
    39. ZhaoY, TozawaY, Iseki R, Mukai M, Iwata M. Calcineurin activation protects T cells from glucocorticoid-induced apoptosis. J Immunol 1995;154:6346-6354
    40. Jayaraman T, Marks AR. Calcineurin is downstream of the inositoll,4,5-trisphosphate receptor in the apoptotic and cell growth pathways. J Biol Chem 2000;275:6417-6420
    
    41. De Windt LJ, Lim HW, Taigen T, Wencker D, Condorelli G, Dorn GW 2nd, et al.Calcineurin-mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo: An apoptosis-independent model of dilated heart failure. Circ Res 2000;86:255-263
    1.Minamino K,Adachi Y,Okigaki M,et al.Macmphage colonystimulating factor(GM-CSF) as well as granulocyte colony stimulating factor(G-CSF)acceleratea neovascularization.Stem Cells 2005;23:347-354.
    2.Sugimura K,Kim T,Goto T,et al.Serum hepatocyte growth factor levels in patients with chronic renal failure.Nephron 1995;70:324-328.
    3. Sugimura K, Lee CC, Kim T, et al. Production of hepatocyte growth factor is increased in chronic renal failure. Nephron 1997;75:7-12.
    
    4. Rappolee DA, Iyer A, Patel Y. Hepatocyte growth factor and its receptor are expressed in cardiac myocytes during early cardiogenesis. Circ Res. 1996;78:1028-1036.
    
    5. Birchmeier C, Brohmann H. Genes that control the development of migrating muscle precursor cells. Curr Opin Cell Biol. 2000;12:725-730.
    
    6. Weimar IS, Miranda N, Muller EJ et al. Hepatocyte growth factor/scatter factor (HGF/SF) is produced by human bone marrow stromal cells and promotes proliferation, adhesion and survival of human hematopoietic progenitor cells (CD34+). Exp Hematol 1998;26:885-94.
    
    7. Bussolino F, Di Renzo MF, Ziche M, Bocchietto E, Olivero M, Naldini L, et al.Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol 1992;119:629-641
    
    8. Vandervelde S, van Luyn MJ, Tio RA et al. Signaling factors in stem cell-mediated repair of infarcted myocardium. J Mol Cell Cardiol 2005;39:363-376.
    
    9. Fu P, Bagai RK, Meyerson H, et al.Pre-mobilization therapy blood CD34+ cell count predicts the likelihood of successful hematopoietic stem cell mobilization.Bone Marrow Transplant. 2006;38(3):189-196.
    
    10. Gordon MY, Levicar N, Pai M, et al.Characterization and clinical application of human CD34+ stem/progenitor cell populations mobilized into the blood by granulocyte colony-stimulating factor.Stem Cells. 2006;24:1822-1830.
    
    11. Askari AT, Unzek S, Popovic ZB et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 2003;362:697-703.
    
    12. Zohlnhofer D, Ott I, Mehilli J, et al.Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled triaUAMA. 2006;295(9):1003-1010.
    
    13. Ripa RS, Jorgensen E, Wang Y, et al.Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial.Circulation. 2006;113:1983-1992
    
    14. Ieda Y, Fujita J, Ieda M et al. G-CSF and HGF: combination of vasculogenesis and angiogenesis synergistically improves recovery in murine hind limb ischemia.J Mol Cell Cardiol 2007;42:540-548.
    
    15. Papayannopoulou T. Bone marrow homing: the players, the playfield, and their evolving roles.Curr Opin Hematol. 2003;10:214-219.
    
    16. Nilsson SK, Simmons PJ. Transplantable stem cells: home to specific niches. Curr Opin Hematol. 2004;11:102-106.
    
    17. Kollet O, Shivtiel S, Chen YQ, et al. HGF, SDF-l,and MMP-9 are involved in stress-induced human CD34_ stem cell recruitment to the liver. J Clin Invest.2003;112:160-169.
    
    18. Kortesidis A, Zannettino A, Isenmann S, Shi S,Lapidot T, Gronthos S. Stromal derived factor-1 promotes the growth, survival and development of human bone marrow stromal stem cells. Blood.2005;105:3793-3801.
    
    19. Van den Steen PE, Dubois B, Nelissen I et al. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 2002;37:375-536.
    
    20. Bergers G, Brekken R, McMahon G et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000;2:737-744.
    
    21. Schnaper HW, Grant DS, Stetler-Stevenson WG et al. Type IV collagenase(s) and TIMPs modulate endothelial cell morphogenesis in vitro. J Cell Physiol 1993;156:235-246.
    
    22. Jodele S, Chantrain CF, Blavier L et al.The contribution of bone marrow-derived cells to the tumor vasculature in neuroblastoma is matrix metalloproteinase-9 dependent. Cancer Res 2005;65:3200-3208.
    1.Angelini P,Markwald RR.Stem cell treatment of the heart:a review of its current status on the brink of clinical experimentation.Tex Heart Inst J 2005;32:479-488.
    2.Orlic D,Hill JM,Arai AE.Stem cells for myocardial regeneration.Circ Res 2002;91:1092-1102.
    3.Quaini F,Urbanek K,Beltrami AP,et al.Chimerism of the transplanted heart.N Engl J Med 2002;346:5-15.
    4.Muller P,Pfeiffer P,Koglin J,et al.Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts.Circulation 2002;106:31-35.
    5.Glaser R,Lu MM,Neural N,et al.Smooth muscle cells,but not myocytes,of host origin in transplanted human hearts.Circulation 2002;106:17-19.
    6.Deb A,Wang S,Skelding KA,et al.Bone marrow-derived cardiomyocytes are present in adult human heart:a study of gender-mismatched bone marrow transplantation patients.Circulation 2003;107:1247-1249.
    7.Beltrami AP,Urbanek K,Kajstura J,et al.Evidence that human cardiac myocytes divide after myocardial infarction.N Engl J Med 2001;344:1750-1757.
    8.Fukada K,Yuasa S.Stem cells as a source of regenerative cardiomyocytes.Circ Res 2006;98:1002-1013.
    9.Beltrami AP,Barlucchi L,Torella D,et al.Adult cardiac stem cells are multipotent and support myocardial regeneration.Cell 2003;114:763-776.
    10.Rosenthal N.Prometheus's vulture and the stem-cell promise.N Engl J Med 2003; 349:267-274.
    
    11. Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998; 279:1528-1530.
    
    12. Condorelli G, Borello U, De Angelis L, et al. Cardiomyocytes induced endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration. Proc Natl Acad Sci U S A 2001; 98:10733-10738.
    
    13. Takahashi T, Kalka C, Masuda H, et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999; 5:434-438.
    
    14. Eglitis MA, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci U S A 1997;94:4080-4085.
    
    15. Alison MR, Poulsom R, Jeffery R, et al. Hepatocytes from nonhepatic adult stem cells. Nature 2000; 406:257.
    
    16. Gussoni E, Soneoka Y, Strickland CD, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999; 401:390-394.
    
    17. Cogle CR, Wainman DA, Jorgensen ML, et al. Adult human hematopoietic cells provide functional hemangioblast activity. Blood 2004; 103:133-135.
    
    18. Grant MB, Caballero S, Brown GA, et al. The contribution of adult hematopoietic stem cells to retinal neovascularization. Adv Exp Med Biol 2003; 522:37-45.
    
    19. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410:701-705.
    
    20. Balsam LB, Wagers AJ, Christensen JL, et al. Haematopoietic stem cells adopt mature hematopoietic fates in ischaemic myocardium. Nature 2004;428:668-673.
    
    21. Murray CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004;428:664-668.
    22. Murry CE, Reinecke H, Pabon LM. Regeneration gaps: observations on stem cells and cardiac repair. J Am Coll Cardiol 2006; 47:1777-1785.
    
    23. Wollert KC, Drexler H. Clinical applications of stem cells for the heart. Circ Res 2005; 96:151-163.
    
    24. Uemura R, Xu M, Ahmad N, et al. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res 2006; 98:1414-1421.
    
    25. Crosby JR, Kaminski WE, Schatteman G, et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res 2000; 87:728-730.
    
    26. Dimmeler S, Zeiher AM, Schneider MD. Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest 2005; 115:572-583.
    
    27. Wang Q, Sjoquist P. Myocardial regeneration with stem cells: pharmacological possibilities for efficacy enhancement. Pharmacol Res 2006; 53:331-340.
    
    28. Hagege A, Carrion C, Menasche P, et al. Viability and differentiation of autologous skeletal myoblast grafts in ischemic cardiomyopathy. Lancet 2003;361:491-492.
    
    29. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001; 7:430-436.
    
    30. Min J, Huang X, Xiang M, et al. Homing of intravenously infused embryonic stem cell-derived cells to injured hearts after myocardial infarction. J Thorac Cardiovasc Surg 2006; 131:889-897.
    
    31. Menard C, Hagege AA, Agbulut O, et al. Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study.Lancet 2005; 366:1005-1012.
    32. Tse H, Kwong Y, Chan JKF, et al. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 2003; 361:47-49.
    
    33. Fuchs S, Satler LF, Kornowski R, et al. Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease.J Am Coll Cardiol 2003; 41:1721-1724.
    
    34. Perin EC, Dohmann HFR, Borojevic R, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003; 107:2294-2302.
    
    35. Beeres SL, Bax JJ, Dibbets P, et al. Effect of intramyocardial injection of autologous bone marrow-derived mononuclear cells on perfusion, function, and viability in patients with drug-refractory chronic ischemia. J Nucl Med 2006;47:574-580.
    
    36. Briguori C, Reimers B, Sarais C, et al. Direct intramyocardial percutaneous delivery of autologous bone marrow in patients with refractory myocardial angina. Am Heart J 2006; 151:674-680.
    
    37. Strauer BE, Brehm M, Zeus T, et al. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT study. J Am Coll Cardiol 2005; 46:1651-1658.
    
    38. Assmus B, Honold J, Lehmann, et al. Transcoronary transplantation of progenitor cells and recovery of left ventricular function in patients with chronic ischemic heart disease: results of a randomized, controlled trial [abstract]. Circulation 2004;110:111-238.
    
    39. Assmus B, Honold J, Schachinger V, et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 2006; 355:1222-1232.
    
    40. Menasche P, Hagege AA, Vilquin J, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 2003; 41:1078-1083.
    
    41. Herreros J, Prosper F, Perez A, et al. Autologous intramyocardial injection of cultured skeletal muscle derived stem cells in patients with nonacute myocardial infarction. Eur Heart J 2003; 24:2012-2020.
    
    42. Dib N, Michler RE, Pagani FD, et al. Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up. Circulation 2005; 112:1748-1755.
    
    43. Patel AN, Geffner L, Vina RF, et al. Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: a prospective randomized study. J Thorac Cardiovasc Surg 2005; 130:1631-1638.
    
    44. Steendijk P, Smits P, Valgimigli M, et al. Intramyocardial injection of skeletal myoblasts: long term follow-up with pressure-volume loops. Nat Clin Pract 2006;3:S94-S100.
    
    45. Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 2003; 362:697-703.
    
    46. Takahashi T, Lord B, Schulze PC, et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 2003; 107:1912-1916.
    
    47. Abbot JD, Huang Y, Liu D, et al. Stromal cell-derived factor-1a plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 2004;110:3300-3305.
    
    48. Lu L, Zhang JQ, Ramires FJ, et al. Molecular and cellular events at the site of myocardial infarction: from the perspective of rebuilding myocardial tissue.Biochem Biophys Res Commun 2004; 320:907-913.
    
    49. Nadal-Ginard B, Kajstura J, Leri A, et al. Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res 2003; 92:139-150.
    
    50. Heeschen C, Lehmann R, Honold J, et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 2004; 109:1615-1622.
    
    51. Spyridopoulos I, Haendeler J, Urbich C, et al. Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation 2004; 110:3136-3142.
    
    52. Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 2003; 9:1195-1201.
    
    53. Martin CM, Meeson AP, Robertson SM, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac CP cells in the developing and adult heart. Dev Biol 2004; 265:262-275.
    1.Alvarez-Dolado M,Pardal R,Garcia-Verdugo JM,et al.Fusion of bone-marrow-derived cells with Purkinje neurons,cardiomyocytes and hepatocytes.Nature 2003;425:968-973.
    2.Uemura R,Xu M,Ahmad N,et al.Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling.Circ Res 2006;98:1414-1421.
    3.Murry CE,Soonpaa MH,Reinecke H,et al.Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004;428:664-668.
    
    4. Murry CE, Reinecke H, Pabon LM. Regeneration gaps: observations on stem cells and cardiac repair. J Am Coll Cardiol 2006; 47:1777-1785.
    
    5. Wollert KC, Drexler H. Clinical applications of stem cells for the heart. Circ Res 2005; 96:151-163.
    
    6. Blankesteijn WM, Creemers E, Lutgens E, et al. Dynamics of cardiac wound healing following myocardial infarction: observations in genetically altered mice.Acta Physiol Scand 2001; 173:75-82.
    
    7. Dewald O, Ren G, Duerr GD, et al. Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am J Pathol 2004;164: 665-677.
    
    8. Kaminski KA, Bonda TA, Korecki J,et al. Oxidative stress and neutrophil activation-the two keystones of ischemia/reperfusion injury. Int J Cardiol 2002;86:41-59.
    
    9. Frangogiannis NG, Lindsey ML, Michael LH, et al. Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation 1998;98:699-710.
    
    10. Kubota T, McTiernan CF, Frye CS, et al. Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 1997;81:627-635.
    
    11. Mosmann TR. Properties and functions of interleukin-10. Adv Immunol 1994;56:l-26.
    
    12. Folkman J, ShingY. Angiogenesis. J Biol Chem 1992;267:10931-10934.
    
    13. Shi Q, Rafii S, Wu MH, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998;92:362-367.
    14. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275:964-967.
    
    15. Weihrauch D, Arras M, Zimmermann R,et al. Importance of monocytes/macrophages and fibroblasts for healing of micronecroses in porcine myocardium. Mol Cell Biochem 1995;147:13.
    
    16. Jacobs M, Staufenberger S, Gergs U, et al. Tumor necrosis factor-alpha at acute myocardial infarction in rats and effects on cardiac fibroblasts. JMol Cell Cardiol 1999;31:1949.
    
    17. Kapadia S, Lee J, Torre-Amione G,et al. Tumor necrosis factor-alpha gene and protein expression in adult feline myocardium after endotoxin administration. J Clin Invest 1995; 96:1042-1052.
    
    18. Frangogiannis NG, Lindsey ML, et al. Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation 1998;98:699-710.
    
    19. Bryant D, Becker L, Richardson J,et al. Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation 1998;97:1375-1381.
    
    20. Mann DL, McMurray JJ, Packer M, et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 2004;109:1594.
    
    21. Nakano M, KnowltonAA, Dibbs Z,et al. Tumor necrosis factoralpha confers resistance to hypoxic injury in the adult mammalian cardiac myocyte. Circulation 1998;97:1392-1400.
    
    22. Zhang Y, Harada A, Bluethmann H, et al. Tumor necrosis factor (TNF) is a physiologic regulator of hematopoietic progenitor cells: increase of early hematopoietic progenitor cells in TNF receptor p55-deficient mice in vivo and potent inhibition of progenitor cell proliferation by TNF alpha in vitro. Blood 1995;86:2930-2937.
    
    23. Valgimigli M, Rigolin GM, Fucili A, et al. CD34+ and endothelial progenitor cells in patients with various degrees of congestive heart failure. Circulation 2004;110:1209-1212.
    
    24. Kukielka GL, Smith CW, LaRosa GJ, Manning AM, Mendoza LH, Daly TJ, et al.Interleukin-8 gene induction in the myocardium after ischemia and reperfusion in vivo. J Clin Invest 1995;95:89-103.
    
    25. Fibbe WE, Pruijt JF, van Kooyk Y,et al. The role of metalloproteinases and adhesion molecules in interleukin-8-induced stem-cell mobilization. Semin Hematol 2000;37:19-24.
    
    26. Laterveer L, Lindley D, Heemskerk DP, et al. Rapid mobilization of hematopoietic progenitor cells in rhesus monkeys by a single intravenous injection of interleukin-8. Blood 1996;87:781-788.
    
    27. Pruijt JF, Verzaal P, van Os R, et al. Neutrophils are indispensable for hematopoietic stem cell mobilization induced by interleukin-8 in mice. Proc NatlAcad Sci USA 2002;99:6228-6233.
    
    28. Kohtani T, AbeY, Sato M,et al. Protective effects of anti-neutrophil antibody against myocardial ischemia/reperfusion injury in rats. Eur Surg Res 2002;34:313-320.
    
    29. Anderson DM, Lyman SD, et al. Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. Cell 1990;63:235-243.
    
    30. Ulich TR, del Castillo J, Yi ES, et al. Hematologic effects of stem cell factor in vivo and in vitro in rodents. Blood 1991;78:645-650.
    
    31. Kim CH, Broxmeyer HE. In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor,and the bone marrow environment. Blood 1998; 91:100-110.
    32. Gersch C, Dewald 0, Zoerlein M,et al. Mast cells and macrophages in normal C57/BL/6 mice. Histochem Cell Biol 2002;118:41-9.
    
    33. Woldbaek PR, Hoen IB, Christensen G,et al. Gene expression of colony-stimulating factors and stem cell factor after myocardial infarction in the mouse. Acta Physiol Scand 2002;175:173-181.
    
    34. Verfaillie CM. Hematopoietic stem cells for transplantation. Nat Immunol 2002;3:314.
    
    35. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701-705.
    
    36. Norol F, Merlet P, Isnard R, et al.Influence of mobilized stem cells on myocardial infarct repair in a non human primate model. Blood 2003;102:4361.
    
    37. Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 2003;362:697-703.
    
    38. Ohtsuka M, Takano H, Zou Y, et al.Cytokine therapy prevents left ventricular remodeling and dysfunction after myocardial infarction through neovascularization. FASEB J 2004;18:851
    
    39. Ince H, Petsch M, Kleine HD, et al. Prevention of LV remodeling with G-CSF in acute myocardial infarction: insights from FIRSTLINE-AMI (front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by granulocyte colony-stimulating factor) (abstract). Annual Scientific Sessions of the American Heart Association 2004.20041680/C72.
    
    40. Zohlnhofer D, Ott I, Mehilli J, et al.Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial.JAMA. 2006;295(9):1003-1010.
    
    41. Ripa RS, Haack-S0rensen M, Wang Y, et al. Bone marrow derived mesenchymal cell mobilization by granulocyte-colony stimulating factor after acute myocardial infarction: results from the Stem Cells in Myocardial Infarction (STEMMI) trial.Circulation. 2007;116:I24-30.
    
    42. Frangogiannis NG, Perrard JL,Mendoza LH, et al. Stem cell factor induction is associated with mast cell accumulation after canine myocardial ischemia and reperfusion. Circulation 1998;98:687-98.
    
    43. Suda T, Suda J, Kajigaya S, et al. Effects of recombinant murine granulocyte colony-stimulating factor on granulocyte-macrophage and blast colony formation.Exp Hematol 1987;15:958-65.
    
    44. Minatoguchi S, Takemura G, Chen XH, et al. Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation 2004;109:2572-80.
    
    45. Kang HJ, Kim HS, Zhang SY, et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 2004;363:751-6.
    
    46. Petzsch M, Ince H, Kleine HD, et al. No restenosis after G-CSF in acute myocardial infarction: insights from FIRSTLINE-AMI (front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by granulocyte colony-stimulating factor) (abstract). Annual Scientific Sessions of the American Heart Association 2004.20041140.
    
    47. Honold J, Lehmann R,Assmus B,et al. Granulocyte colony stimulating factor (G-CSF)-induced mobilization profoundly impairs functional activities of circulating endothelial progenitor cells in patients with chronic ischemic heart disease. Annual Scientific Sessions of the American Heart Association 2005.2004 240.
    48. Yamaguchi J, Kusano KF, Masuo O, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 2003;107:1322-1328.
    
    49. Hattori K, Heissig B, Tashiro K, et al.Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 2001;97:3354-3360.
    
    50. Petit I, Szyper-Kravitz M, Nagler A, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 2002;3:687-694
    
    51. Kahn J, Byk T, Jansson-Sjostrand L, et al.Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration, and NOD/SCID repopulation. Blood 2004;103:2942-2949.
    
    52. Kucia M, Dawn B, Hunt G, et al. Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res 2004;95:1191-1199.
    
    53. Heissig B, Hattori K, Dias S, et al.Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002;109:625-637.
    
    54. ZouYR, Kottmann AH, Kuroda M,et al. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998;393:595-9.
    
    55. Pillarisetti K, Gupta SK. Cloning and relative expression analysis of rat stromal cell derived factor-1 (SDF-l)l: SDF-1 alpha mRNA is selectively induced in rat model of myocardial infarction. Inflammation 2001;25:293-300.
    
    56. Askari AT, Unzek S, Popovic ZB,et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 2003;362:697-703.
    57. Heeschen C, Lehmann R, Honold J, et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 2004;109:1615-1622.
    
    58. Zarnegar R, Michalopoulos GK. Themany faces of hepatocyte growth factor: from hepatopoiesis to hematopoiesis. J Cell Biol 1995;129:1177-80.
    
    59. Fujii K, Ishimaru F, Kozuka T, et al.Elevation of serum hepatocyte growth factor during granulocyte colony-stimulating factor-induced peripheral blood stem cell mobilization. Br J Haematol 2004;124:190-194.
    
    60. Ueda H, Nakamura T, Matsumoto K, et al. A potential cardioprotective role of hepatocyte growth factor in myocardial infarction in rats. Cardiovasc Res 2001;51:41-50.
    
    61. Urbanek K, Rota M, Cascapera S, Bearzi C, Nascimbene A, De Angelis A,Hosoda T, Chimenti S, Baker M, Limana F, Nurzynska D, et al.Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival.Circ Res. 2005 ;97:663-673.
    
    62. Guo Y, He J, Wu J, et al.Locally overexpressing hepatocyte growth factor prevents post-ischemic heart failure by inhibition of apoptosis via calcineurin-mediated pathway and angiogenesis.Arch Med Res.2008;39:179-188.
    
    63. Li Z, Gu TX, Zhang YH. Hepatocyte growth factor combined with insulin like growth factor-1 improves expression of in mesenchymal stem cells cocultured with cardiomyocytes.Chin Med J (Engl). 2008;121:336-340.
    
    64. Duan HF, Wu CT, Wu DL, Lu Y, Liu HJ, Ha XQ, et al. Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor. Mol Ther 2003;8:467-S74.
    
    65. Rappolee DA, Iyer A, Patel Y. Hepatocyte growth factor and its receptor are expressed in cardiac myocytes during early cardiogenesis. Circ Res. 1996;78:1028-1036. 5Birchmeier C, Brohmann H. Genes that control the development of migrating muscle precursor cells. Curr Opin Cell Biol. 2000;12:725-730.
    
    66. Bussolino F, Di Renzo MF, Ziche M, Bocchietto E, Olivero M, Naldini L, et al.Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol 1992;119:629-641
    
    67. Weimar IS,Miranda N, Muller EJ, et al. Hepatocyte growth factor/scatter factor (HGF/SF) is produced by human bone marrow stromal cells and promotes proliferation, adhesion and survival of human hematopoietic progenitor cells (CD34+). Exp Hematol 1998;26:885-94.
    
    68. Fujii K, Ishimaru F, Kozuka T, et al.Elevation of serum hepatocyte growth factor during granulocyte colony-stimulating factor-induced peripheral blood stem cell mobilization. Br J Haematol 2004;124:190-194.
    
    69. KakinumaY, Miyauchi T,Yuki K,et al. Novel molecular mechanism of increased myocardial endothelin-1 expression in the failing heart involving the transcriptional factor hypoxia-inducible factor-1 alpha induced for impaired myocardial energy metabolism. Circulation 2001;103:2387.
    
    70. Cai Z, Manalo DJ, Wei G, et al.Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury.Circulation 2003; 108:79.
    
    71. Compernolle V, Brusselmans K, Franco D,et al. Cardia bifida, defective heart development and abnormal neural crest migration in embryos lacking hypoxiainducible factor-1alpha. Cardiovasc Res 2003;60:569.
    
    72. Huang Y, Hickey RP, Yeh JL, et al.Cardiac myocyte-specific HIF-1alpha deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. FASEB J 2004;18:1415.
    
    73. Jurgensen JS, Rosenberger C, Wiesener MS,et al. Persistent induction of HIF-1 alpha and-2alpha in cardiomyocytes and stromal cells of ischemic myocardium. FASEB J 2004.
    
    74. Shyu K, Wang MT, Wang BW, et al. Intramyocardial injection of naked DNA encoding HIF-lalpha/VP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat. Cardiovasc Res 2002;54:576.
    
    75. Xiao Q, Shi HJ, Lu ML, et al.Down-regulation of vascular endothelial growth factor in human retinal pigment epithelial cells by small hairpin loop RNA targeting hypoxia inducible factor-lalpha under hypoxia condition. Zhonghua Yan Ke Za Zhi. 2007;43:1022-1027.
    
    76. Deudero JJ, Caramelo C, Castellanos MC, et al.Induction of hypoxia-inducible factor 1alpha gene expression by vascular endothelial growth factor. Role of a superoxide-mediated mechanism. J Biol Chem. 2008 Feb 27;[Epub ahead of print]
    
    77. Elson DA, Thurston G, Huang LE, et al. Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-lalpha. Genes Dev 2001;15:2520-2532.
    
    78. Leung DW, Cachianes G, Kuang WJ,et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989;246:1306-1309.
    
    79. Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996;380:435-439.
    
    80. Fong GH, Rossant J, Gertsenstein M,et al. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995;376:66-70.
    
    81. Zhang S, Chen S, Shen Y,et al.Puerarin induces angiogenesis in myocardium of rat with myocardial infarction.Biol Pharm Bull. 2006;29:945-950.
    
    82. Sarkar N, Ruck A, Kallner G, et al. Effects of intramyocardial injection of phVEGF-A165 as sole therapy in patients with refractory coronary artery disease-12-month followup: angiogenic gene therapy. J Intern Med 2001;250:373-381.
    
    83. Hattori K, Dias S, Heissig B, et al.Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 2001;193:1005-1014.
    
    84. Hiasa K, Egashira K, Kitamoto S, Ishibashi M, Inoue S, Ni W, et al. Bone marrow mononuclear cell therapy limits myocardial infarct size through vascular endothelial growth factor. Basic Res Cardiol 2004; 99:165-172.
    
    85. TangYL, Zhao Q, ZhangYC, Cheng L, LiuM, Shi J, et al. Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regul Pept 2004;117:3-10.
    
    86. Koury ST, Bondurant MC, Koury MJ. Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. Blood 1988;71:524-527.
    
    87. Vogt C, Pentz S, Rich IN. A role for the macrophage in normal hemopoiesis: III.In vitro and in vivo erythropoietin gene expression in macrophages detected by in situ hybridization. Exp Hematol 1989; 17:391-397.
    
    88. Wu H, Lee SH, Gao J,et al. Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development 1999;126:3597-3605.
    
    89. Suzuki N, Ohneda O, Takahashi S,et al. Erythroid-specific expression of the erythropoietin receptor rescued its null mutant mice from lethality. Blood 2002;100:2279-2288.
    
    90. Wald MR, Borda ES, Sterin-Borda L. Mitogenic effect of erythropoietin on neonatal rat cardiomyocytes: signal transduction pathways. J Cell Physiol 1996;167:461-468.
    
    91. Calvillo L, Latini R, Kajstura J, et al.Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling.Proc Natl Acad Sci USA 2003;100:4802-4806.
    92.BriestW,Homagk L,Baba HA,DetenA,Rassler B,TannapfelA,et al.Cardiac remodeling in erythropoietin-transgenic mice.Cell Physiol Biochem 2004;14:277-284.
    93.Heeschen C,Aicher A,Lehmann R,et al.Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization.Blood 2003;102:1340-1346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700