新型光纤光栅技术及其在光通信与光纤传感方面应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤光栅已经成为当前最具发展前途,最具代表性的光无源器件之一,在光通信与光传感领域都得到了广泛的应用。D形光纤光栅与基于光纤光栅的法珀结构是其中两种比较新型的技术,它们各自具有独特的性质,可以实际应用在许多场合,因此,研究它们具有重要的理论和实际意义。
     本文主要的研究工作体现在三个方面:
     一、光纤光栅波长解调技术及其应用的研究。研究了基于边沿滤波器及可调谐法珀滤波器的两种光栅波长解调技术,实验得到的波长分辨率分别为3.1pm和3pm。并且将这两种解调技术相结合,实际应用于桥梁结构健康监测。
     二、D形光纤光栅的弯曲敏感特性及其应用的研究。用材料力学理论详细分析了D形光纤光栅的弯曲敏感机理。实验测得其弯曲灵敏度比圆对称的常规光栅分别高78倍(压缩光栅)及86倍(拉伸光栅)之多。将其应用在线位移及加速度的测量中,实验获得的灵敏度分别为-0.27nm/mm及0.191nm·s~2/m。提出了将D形光纤光栅弯曲成‘Ω'形状,使其啁啾化,实现了光栅色散值的可调谐;并且将其中点设置在零应变点的位置,能够保持中心波长不发生漂移。实验获得的反射谱带宽由0.299nm调谐到2.057nm,同时中心波长漂移小于17pm。
     三、基于光纤光栅的法珀结构的原理及应用的研究。提出了光纤光栅法珀滤波器具体的设计和制作方法。并将这种滤波器应用在光纤激光器以及微波信号的光子学生成技术中。实验分别获得了波长可调谐的19个单波长激光和18对双波长激光,以及9.4885~10.0712GHz一系列频率的微波信号。提出了基于光纤光栅法珀结构的可调谐相移光栅。建立了理想模型及实际模型两种仿真模型,详细的分析讨论了各个参数对相移光栅透射谱的影响。与传统的腐蚀光栅法相比,这种新型的可调谐相移光栅在折射率传感中能够大幅提高灵敏度。
Fiber Bragg gratings have become one of the most promising and representative optical passive devices at present,and have been broadly applied in optical fiber communications and sensors.The D-shaped fiber Bragg grating(D-FBG) and FBG based Fabry-Perot structure are two novel techniques,which can be applied in many areas for their special properties.So it is really important for theory and practical applications to study them.
     In this dissertation,the author investigates some problems in FBG techniques as follows:
     1.Investigation on the wavelength demodulation techniques of FBG and the applications.Two techniques of wavelength demodulation based on the linear edge filter and the tunable Fabry-Perot filter(FPF) are investigated.The experimental wavelength resolutions are 3.1pm,and 3pm,respectively.Then,both of them are cooperated and applied in the health monitoring of bridge structure.
     2.Study on the bending sensitivity of the D-FBG and its applications.The bending sensitivity of the D-FBG is analyzed with mechanics of material in detail.The experimental results are 78 times(compression) and 86 times(stretch) as high as the uniform FBG's,respectively.Then the D-FBGs are applied in sensors of linear displacement and acceleration,and the sensitivity of-0.27nm/mm and 0.191nm·s~2/m are obtained,respectively,in experiment.A novel method is proposed for tuning the grating's dispersion through bending the D-FBG into theΩ-shape in order to chirp it. The central wavelength of the D-FBG can be kept no shift by locating its center at the zero strain point.The bandwidth of the reflection spectrum is significantly tuned from 0.299nm to 2.057nm,while the central wavelength shift is within 17pm.
     3.Research work on the FBG based Fabry-Perot structure and its applications.The method for designing and fabricating the FBG based FPF is demonstrated concretely. Thus,such FPFs are applied in optical fiber ring laser and photonic generation of microwave.Nineteen single-wavelength lasings,eighteen pairs of dual-wavelength lasings,and a series of microwave signals with frequency from 9.4885GHz to 10.0712GHz are experimentally obtained,respectively.A novel tunable phase-shift FBG(PS-FBG) based on such Fabry-Perot structures is proposed.Two modes, including the 'ideal mode' and the 'practical mode',are created for simulation.The influence on the PS-FBG's transmission spectrum induced by the parameters is discussed.Compared with the traditional FBG-etching method,the sensitivity of such PS-FBG is much higher when it is applied in refractive index sensing.
引文
[1] K. C. Kao, and G. A. Hockham. Dielectric-fibre surface waveguides for optical frequencies [J]. Proc. IEEE, 1966, 113: 1151-1158.
    [2] K. O. Hill, Y. Fujii, D. C. Johnson et al. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication [J]. Appl. Phys. Lett., 1978, 32(10): 647-649.
    [3] G. Meltz, W. W. Morey, and W. H. Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method [J]. Opt. Lett., 1989, 14 (5): 823-825.
    [4] P. J. Lemaire, R. M. Atkins, V. Mizrahi et al. High pressure H~2 loading as a technique for achieving ultrahigh UV photosensitivity in GeO2 doped optical fibres [J]. Electronics Lett., 1993, 29(13): 1191-1193.
    [5] K. O. Hill, B. Malo, F. Bilodeau et al. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask [J]. Appl. Phys. Lett., 1993, 62(10): 1035-1037.
    [6] A. Yariv. Coupled-mode theory for guided-wave optics [J]. IEEE Journal of quantum electronics, 1973, QE9(9): 919-933.
    [7] H. Kogelnik. Filter response of nonuniform almost-periodic structures [J]. Bell Syst.Tech., 1976, 55(1): 109-126.
    [8] L. A. Weller-Brophy, and D. G. Hall. Analysis of waveguide gratings: application of Rouard's method [J]. J. Opt. Soc. Am. A, 1985, 2(6): 863-871..
    [9] L. A. Weller-Brophy, and D. G. Hall. Analysis of waveguide gratings: a comparison of the results of Rouard's method and coupled-mode theory [J]. J. Opt. Soc. Am. A, 1987, 4(1): 60-65.
    [10] M. Yamada, and K. Sakuda. Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach [J]. Applied Optics, 1987, 26(16): 3474-3478.
    [11] K. A. Winick. Effective-index method and coupled-mode theory for almost-periodic waveguide gratings: a comparison [J]. Applied Optics, 1992, 31(6): 757-764.
    [12] T. Erdogan. Fiber grating spectra [J]. Journal of lightwve tech., 1997, 15(8): 1277-1294.
    [13] P. S. J. Russell. Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures [J]. Journal of modern optics, 1991, 38(8): 1599-1619.
    [14] J. L. Frolik, and A. E. Yagle. An Asymmetric Discrete-Time Approach for the Design and Analysis of Periodic Waveguide Gratings [J]. Journal of lightwave tech., 1995, 13(2): 175-185.
    [15] L. Poladian. Graphical and WKB analysis of nonuniform Bragg gratings [J]. Physical Review E, 1993, 48(6): 4758-4767.
    [16] T. Hirono, Y. Yoshikuni. A Hamiltonian Formulation for Coupled-Wave Equations [J]. IEEE Journal of quantum electronics, 1994, 30(8): 1751-1755.
    [17] L. Poladian. Variational technique for nonuniform gratings and distributed feedback lasers [J]. J. Opt. Soc. Am. A, 1994, 11(6): 1846-1853.
    [18] M. Born, and E. Wolf. Principles of Optics (7th edition) [M]. Cambridge: Cambridge University Press, 1997.
    [19] B. Bovard. Fourier transform technique applied to quarterwave optical coatings [J]. J. Appl. Opt., 1988, 27(15): 3062-3063.
    [20] G. H. Song, and S. Y. Shin. Design of corrugated waveguide filters by the Gel' Fand - Levitan-Marchenko inverse-scattering method [J]. J. Opt. Soc. Amer., 1985, 2(11): 1905-1915.
    [21] K. A. Winick, and J. E. Roman. Design of corrugated waveguide filters by Fourier transform techniques [J]. IEEE J. Quantum Electron., 1990, 26(11): 1918-1929.
    [22] E. Peral, J. Capmany, and J. Marti. Iterative solution to the Gel' Fand - Levitan - Marchenko coupled equations and application to synthesis of fiber gratings [J]. IEEE J. Quantum Electron., 1996, 32(12): 2078-2084.
    [23] J. Skaar, and K. M. Risvik. A Genetic Algorithm for the Inverse Problem in Synthesis of Fiber Gratings [J]. Journal of Lightwave Technology, 1998, 16(10): 1928-1932.
    [24] R. Feced, M. N. Zervas, M. A. Muriel et al. An efficient inverse scattering algorithm for the design o nonuniform fiber Bragg gratings [J]. IEEE J. Quantum. Electron., 1999, 35(8): 1105-1115.
    [25] V. Mizrahi, J. E. Sipe. Optical properties of photosensitive fiber phase gratings [J]. Journal of lightwave tech., 1993, 11(10): 1513-1517.
    [26] K. P. Chuang, Y. Lai, and L. Sheu. Complex fiber grating structures fabricated by sequential writing with polarization control [J]. Optics letters, 2004, 29(4): 340-342.
    [27] C. R. Giles. Lightwave applications of fiber Bragg gratings [J]. Journal of lightwave technology, 1997, 15(8): 1391-1404.
    [28] F. Ouellette. Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides [J]. Optics letters, 1987, 12(10): 847-849.
    [29] G. P. Agrawal, and S. Radic. Phase-Shifted Fiber Bragg Gratings and their Application for Wavelength Demultiplexing [J]. IEEE Photonics Technology Letters, 1994, 6(8): 995-997.
    [30] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins et al. Long-period fiber gratings as band-rejection filters [J]. Journal of lightwave technology, 1996, 14(1): 58-65.
    [31] T. Erdogan, and J. E. Sipe. Tilted fiber phase gratings [J]. J. Opt. Soc. Am. A, 1996, 13(2): 296-313.
    [32] B. J. Eggleton, P. A. Krug, L. Poladian et al. Long periodic superstructure Bragg gratings in optical fibers [J]. Electronics Letters, 1994, 30(19): 1620-1622.
    [33] K. O. Hill, B. Malo, F. Bilodeau et al. Photosensitivity in optical fibres [J]. Annu. Rev. Mater. SCI., 1993, 23: 125-157.
    [34] D. L. Williams, B. J. Ainslie, J. T. Armitage et al. Enhanced UV Photosensitivity In Boron Co-Doped Germanosilicate Fibres [J]. Electronics Letters, 1993, 29(1): 45-47.
    [35] R. M. Atkins, P. J. Lemaire, T. Erdogan et al. Mechanisms of Enhanced UV Photosensitivity Via Hydrogen Loading in Germanosilicate Glasses [J]. Electronics Letters, 1993, 29(14): 1234-1235.
    [36] F. Bilodeau, B. Malo, J. Albert et al. Photosensitivity of Optical Fiber and Silica-On-Silicon/Silica Waveguides [J]. Optics Letters, 1993, 18(12): 953-955.
    [37] W. H. Loh, M. J. Cole, M. N. Zervas et al. Complex grating structures with uniform phase masks based on the moving fiber - scanning beam technique [J]. Optics Letters, 1995, 20(20): 2051-2053.
    [38] B. S. Kawasaki, K.O. Hill, D. C. Johnson et al. Narrow-band Bragg reflectors in optical fibers [J]. Optics Letters, 1978, 3(2): 66-68.
    [39] M. L. Dockney, S. W. James, and R. P. Tatam. Fiber Bragg grating fabricated using a wavelength tunable source and a phase-mask based interferometer[J].Measurements Science and Technology,1996,7:445.
    [40]R.Kashyap,J.R.Armitage,R.Wyatt et al.All-fiber narrow band reflection grating at 1500nm[J].Electronics Letters,1990,26(11):730-732.
    [41]B.J.Eggleton,P.A.Krug,L.Poladian et al.Experimental demonstration of compression of dispersed optical pulses by reflection from self-chirped optical fiber Bragg gratings[J].Optics Letters,1994,19(12):877-880.
    [42]A.Othonos,and X.Lee.Novel and improved methods of writing Bragg gratings with phase-masks[J].IEEE Photonics Technology Letters,1995,7(10):1183-1185.
    [43]L.Dong,J.L.Archambault,L.Reekie et al.Single pulse Bragg gratings written during fiber drawing[J].Electronics Letters,1993,29(17):1577-1578.
    [44]C.G.Askins,M.A.Putnam,G.M.Williams et al.Stepped-wavelengh optical-fiber Bragg grating arraya fabricated in line on a draw tower[J].Optics Letters,1994,19(2):147-149.
    [45]R.P.Espindola,R.M.Atkins,N.P.Wang et al.Highly reflective fiber Bragg gratings written through a vinylether fiber coating[J].IEEE Photonics Letters,1999,11(7):833-835.
    [46]L.Reekie.Fiber Bragg gratings written through the coating[C].APCC/OECC99,Beijing,1999.1:390-393.
    [47]T.L.Lowder,K.H.Smith,B.L.Ipson et al.High-Temperature Sensing Using Surface Relief Fiber Bragg Gratings[J].IEEE Photonics Technology Letters,2005,17(9):1926-1928.
    [48]K.H.Smith,B.L.Ipson,T.L.Lowder et al.Surface-relief fiber Bragg gratings for sensing applications[J].Applied Optics,2006,45(8):1669-1675.
    [49]A.Othonos,and X.Lee.Spectrally broadband Bragg grating mirror for an erbium-doped fiber laser[J].Optical Engineering,1996,35(4):1088-1092.
    [50]M.Sejka,P.Varming,B.Hubner et al.Distributed feedback Er~(3+)-doped fibre laser[J].Electronics Letters,1995,31(17):1445-1446.
    [51]R.Kashyap,R.Wyatt,and P.F.McKee.Wavelength flattened saturated erbium amplifier using multiple side tap Bragg gratings[J].Electronic Letter,1993,29(11):1025-1026.
    [52]李彬,魏淮,简水生.基于长周期光纤光栅的动态增益平坦滤波器[J].光电子·激光,2006,17(3):274-279.
    [53]M.Guy,and F.Trepanier.Chirped fiber Bragg gratings equalize gain[J].WDM Solutions,2001,3(3):77-82.
    [54]M.Wilkinson,A.Bebbington,S.A.Cassidy et al.D-fibre filter for erbium gain spectrum flattening[J].Electronics Letters,1992,28(2):131-132.
    [55]TeraXion Inc..Redefining Gain Flatness[Z].http://www.teraxion.com/
    [56]F.Bilodeau,D.C.Jahnson,and S.Theriault.An all-fiber dense wavelength division multiplexer/demultiplexer using photo-imprinted Bragg grating[J].IEEE Photonics Technology Letters,1995,7(4):388-390.
    [57]L.Quetel,L.Rivoallan,E.Delevaque et al.Programmable fiber grating based wavelength demultiplexer[C].Proc.Inter.Conf.on OFC 1996,1996,WF6:120-121.
    [58]廖延彪.光纤光学[M].北京:清华大学出版社,2000.198-204.
    [59]M.Volanthen,H.Geiger,M.J.Cole.Measurement of arbitrary strain profiles within fibre gratings[J].Electronics Letters,1996,32(11):1028-1029.
    [60]M.G.Xu,H.Geiger,and J.P.Dakin.Fibre grating pressure sensor with enhanced sensitivity using a glass-bubble housing[J].Electronics Letters,1996,32(2):128-129.
    [61]M.D.Todd,G.A.Johnson,B.A.Althouse et al.Flexural beam-based fiber Bragg grating accelerometer [J]. Photonic Technology Letters, 1998, 10(11): 1605-1607.
    [62] Y. J. Rao, et al. In-situ temperature monitoring in NMR machines with a prototype in-fibre Bragg grating sensors system [C]. Proc. OFS-12, 1997, 646-649.
    [63] 董小鹏,李杰,戎华北等.少模光纤Bragg光栅及其在折射率测量中的应用[C].OFCIO 2005,广州.782—786.
    
    [64] A. D. Kersey, and M. J. Marrone. Fibre Bragg grating high-magnetic-field Probe [C]. Proc. 10th Inter. Conf. on Optical Fibre Sensors, 1994, 53~56.
    [65] M. A. Davis, A. D. Kersey, T. A. Berkoff et al. Dynamic strain monitoring of an in-use interstate bridge using fiber Bragg grating sensors [J]. Proc.SPIE, 1997, 3043: 87-95.
    [66] P. Ferdinand, O. Ferragu, J. L. Lechien et al. Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EURAM STABILOS [J]. J. Lightwave Technol., 1995, 13(7): 1303-1313.
    [67] P. M. Nellen, P. Mauron, A. Frank et al. Reliability of fiber Bragg grating based sensors for downhole applications [J]. Sensors and Actuators A, 2003, 103(3): 364-376.
    [68] P. D. Foote. Fibre Bragg grating strain sensors for aerospace smart structures [J]. Proc. SPIE, 1994, 2361: 162-166.
    [69] D. R. Hjelme, L. Bjerkan, S. Neegard et al. Applications of Bragg grating sensors in the characterization of scaled marine vehicle modes [J]. Applied Optics, 1997, 36(1): 328-336.
    [70] Y. Ogawa, J. I. Iwasaki, and K. Nakamura. A multiplexing load monitoring system of power transmission lines using fiber Bragg grating [C]. Proc. 12th Inter. Conf. on OFS 1997, 1997. 468-471.
    [71] Y. J. Rao, D. J. Webb, D. A. Jackson et al. In-fibre Bragg grating flow-directed thermodilution catheter for cardiac monitoring [C]. Proc. 12th Inter. Conf. on OFS 1997, 1997. 354-357.
    [72] X. J. Guo, Z. M. Yin, and N. Song. Measuring vibration by using fiber Bragg grating and demodulating it by blazed grating [J]. Chinese optics letters, 2004, 2(7): 393-395.
    [73] D. F. Murphy, D. A. Flavin, R. McBride et al. Interferometric Interrogation of In-fiber Bragg grating sensors without mechanical path length scanning [J]. Journal of lightwave technology, 2001, 19(7): 1004-1009.
    [74] K. Zhou, A. G. Simpson, X. Chen et al. Fiber Bragg grating Sensor Interrogation System Using a CCD Side Detection Method With Superimposed Blazed Gratings [J]. IEEE Photonics Technology Letters, 2004, 16(6): 1549-1551.
    [75] A. D. Kersey, T. A. Berkoff, and W. W. Morey. High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection [J]. Electronics Letters, 1992, 28(3): 236-238.
    [76] Y. J. Rao, D. A. Jackson, L. Zhang et al. Dual-cavity interferometric wavelength-shift detection for in-fiber Bragg grating sensors [J]. Optics Letters, 1996, 21(19): 1556-1558.
    [77] S. W. Chung, J. Kim, B. Yu et al. A Fiber Bragg Grating Sensor Demodulation Technique Using a Polarization Maintaining Fiber Loop Mirror [J]. IEEE Photonics Technology Letters, 2001, 13(12): 1343-1345.
    [78] S. M. Melle, K. Liu, and R. M. Measures. A passive wavelength demodulation system for Guided-Wave Bragg Grating Sensors [J]. IEEE Photonics Technology Letters, 1992, 4(5): 516-518.
    [79] M. A. Davis, and A. D. Kersey. All-fibre Bragg grating strain-sensor demodulation technique using a wavelength division coupler [J]. Electronics Letters,1994,30(1):75-77.
    [80]R.W.Fallon,L.Zhang,L.A.Everall et al.All-fibre optical sensing system:Bragg grating sensor interrogated by a long-period grating[J].Meas.Sci.Technol.,1998,9:1969-1973.
    [81]X.P.Dong,B.C.B.Chu,B.Yi et al.Novel Method for the Demodulation of Wavelength Shift of Fiber Bragg Gratings[C].Proc.of SPIE.4579:184-187.
    [82]邹毅,董小鹏,李伟文等.采用可调双芯光纤解调的光纤光栅温度传感研究[C].OFCI02007,南京.301-304.
    [83]D.A.Jackson,A.B.L.Ribeiro,L.Reekie et al.Simple multiplexing scheme for a fibre-optic grating sensor network[J].Optics Letters,1993,18(14):1192-1194.
    [84]A.D.Kersey.Interrogation and multiplexing techniques for fiber Bragg grating strain sensors[J].Proc.SPIE,1993,2071:30-48.
    [85]M.G.Xu,J.L.Archambault,L.Reekie et al.Novel interrogating system for fibre Bragg grating sensors using anacousto-optic tunable filter[J].Electronics Letters,1993,29(17):1510-1511.
    [86]M.A.Davis,D.G.Bellemore,M.A.Putnam et al.Interrogation of 60 fibre Bragggrating sensors with microstrain resolution capability[J].Electronics Letters,1996,32(15):1393-1394.
    [87]G.A.Ball,W.W.Morey,and P.K.Cheo.Fiber laser source/analyzer for Bragg grating sensor array interrogation[J].Journal of Lightwave Techonology,1994,12(4):700-703.
    [88]S.H.Yun,D.J.Richardson,and B.Y.Kim.Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser[J].Optics Letters,1998,23(11):843-845.
    [89]希伯勒,汪越胜等.材料力学[M].北京:电子工业出版社,2006.
    [90]张键,刘波,开桂云等.实现高精度、高稳定性的工程化光纤光栅解调系统的研究[J].光子技术,2006,12(2):88-91.
    [91]M.A.Davis,A.D.Kersey,T.A.Berkoff et al.Dynamic strain monitoring of an in-use interstate bridge using fiber Bragg grating sensors[J].Proc.SPIE,1997,3043:87-95.
    [92]J.Seim,E.Udd,W.Schulz et al.Health monitoring of an Oregon Historical bridge with fiber grating strain sensors[J].Proc.SPIE,1999,3671:123-134.
    [93]S.Calvert,J.P.Conte,B.Moaveni et al.Full-scale testing results of structural damage detection using long-gage fiber Bragg gratings and modal analysis[J].Proc.SPIE,2003,5057:467-477.
    [94]欧进萍。周智,武湛君等.黑龙江呼兰河大桥的光纤光栅智能监测技术[J].土木工程学报,2004,37(1):45-49.
    [95]姜德生,郝义昶,刘胜春.光纤Bragg光栅测力环在系杆拱桥中的应用[J].仪表技术与传感器,2006,2:43-44.
    [96]T.H.T.Chan,L.Yu,H.Y.Tam et al.Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge:Background and experimental observation [J].Engineering Structures,2006,28(5):648-659.
    [97]M.G.Xu,J.L.Archambault,L.Reekie et al.Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors[J].Electronics Letters,1994,30(13):1085-1087.
    [98]R.B.Dyott,and J.Bello.Polarisation-holding directional coupler made from elliptically cored fibre having a D section[J].Electronics Letters,1983,19(16):601.
    [99]C.Y.H.Tsao,D.N.Payne,and L.Li.Modal propagation characteristics of radially stratified and D-shaped metallic optical fibers[J].Applied Optics, 1989,28(3):588-594.
    [100]T.S.Barry,D.L.Rode,and R.R.Krchnavek.Highly efficient coupling between single-mode fiber and polymer optical waveguides[J].IEEE Transactions on components,packing,and manufacturing technology-Part B,1997,20(3):225-228.
    [101]F.A.Muhammad,H.S.Al-Raweshidy,and J.M.Seniro.Analysis of curved D-fiber for methane gas sensing[J].IEEE Photonics Technology Letters,1995,1(5):538-539.
    [102]X.Chen,K.Zhou,L.Zhang et al.Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching[J].IEEE Photonics Technology Letters,2004,16(5):1352-1354.
    [103]X.Chen,K.Zhou,L.Zhang et al.Simultaneous measurement of temperature and external refractive index by use of a hybrid grating in D fiber with enhanced sensitivity by HF etching[J].Applied Optics,2005,44(2):178-182.
    [104]陈哲,沈丽达,江沛凡等.光纤侧边抛磨装置及其工艺方法[P].专利公开号:CN1631616.2005.
    [105]石志东,董小鹏,唐明珏等.D形光纤样品制备及其Bragg光栅的实验测量[J].上海大学学报(自然科学版),2007,13(4):415-420.
    [106]A.D.Yablon.Optical fiber fusion splicing[M].Berlin Heidelberg:Springer-Verlag,2005.
    [107]T.Conese,G.Barbarossa,and M.N.Armenise.Accurate Loss Analysis of Single-Mode Fiber/D-Fiber Splice by Vectorial Finite-Element Method[J].IEEE Photonics Technology Letters,1995,7(5):523-525.
    [108]R.Syms,and J.Cozens.Optical Guided Waves and Devices[M].London:McGraw-Hill,1992.
    [109]H.Dong,P.Shum,M.Yan et al.Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain[J].Optics Comunications,2007,274(1):116-123.
    [110]X.Y.Dong,H.Y.Meng,B.O.Guan et al.Experimental study of fiber grating curvature sensor[J].Proc.SPIE,2001,4603:252-255.
    [111]F.M.Araujo,L.A.Ferreira,J.L.Santos et al.Temperature and strain insensitive bending measurements with D-type fibre Bragg gratings[J].Measurement Science and Technology,2001,12(7):829-833.
    [112]T.Allsop,A.Gillooly,V.Mezentsev et al.Bending and orientational characteristics of long period gratings written in D-shaped optical fiber[J].IEEE Transactions on Instrumentation and Measurement,2004,53(1):130-135.
    [113]D.H.Zhao,X.F.Chen,K.Zhou et al.Bend sensors with direction recognition based on long-period gratings written in D-shaped fiber[J].Applied Optics,2004,43(29):5425-5428.
    [114]T.L.Lowder,B.R.Tebbs,S.M.Schultz et al.Multi-axis bend sensing using a single surface relief fiber Bragg grating[C].18th International Conference on Optical Fiber Sensors.Cancun.2006.TuB4.
    [115]周金龙,董小鹏,石志东.D形光纤Bragg光栅弯曲灵敏度的理论和实验研究[J].光子学报,2006,35(11):1734-1737.
    [116]周金龙,董小鹏,李杰等.D形光纤Bragg光栅及其位移传感的实验研究[C].光电子.激光,2006,17(增刊,第三届中国光纤器件发展研讨会论文集):65-68.
    [117]郑承沛.材料力学[M].北京:北京工业大学出版社,1994.179-181;128-129;233.
    [118]H.Iwaki,and H.Yamakawa.Health monitoring system using FBG-based sensors for a 12-story building with column dampers[C].Smart structures and materials:smart systems for bridge,structures and highways,Proc.of SPIE,Newport Beach,2001,4330:56.
    [119] M. P. Whelan, and D. Albrecht. Remote structural monitoring of the cathedral of como using an optical fiber Bragg sensor system [C]. Smart structures and materials: smart sensor technology and measurement systems, Proc. of SPIE, San Diego, 2002, 4694: 17.
    [120] A. Mita. Fiber Bragg grating-based acceleration sensors for civil and building structures [C]. International workshop on present and future health monitoring, Weimar: Bauhans University, 2000.
    [121] G. P. Agrawal, and M. J. Potasek. Effective of frequency chirping on the performance of optical communication systems [J]. Optics Letters, 1986, 11(5): 318-320.
    [122] R. M. Jopson, A. H. Ceiauck, and R. M. Dekosier. 10Gb/s 360km Transmission Over Normal-Dispersion Fiber Using Mid-system Spectral Inversion [C]. OFC/IOOC93, San Jose, California, 1993, PD3.
    [123] M. Shirasaki. Chromatic-Dispersion Compensator Using Virtually Imaged Phased Array [J]. IEEE Photon. Tech. Lett., 1997, 9(12): 1598-1600.
    [124] A. H. Gnauck, L. J. Cimini, J. Stone et al. Optical equalization of fiber chromatic dispersion in a 5-Gb/s transmission system [J]. IEEE Photon. Tech. Lett., 1990, 2(8): 585-587.
    [125] J. A. R. Williams, I. Bennion, K. Sugden et al. Fiber dispersion compensation using a chirped in-fiber Bragg grating [J]. Electronics Letters, 1994, 30(12): 985-987.
    [126] T. Komukai, and M. Nakazawa. Fabrication of non-linearly chirped fiber Bragg gratings for higher-order dispersion compensation [J]. Optics Communications, 1998, 154(1): 5-8.
    [127] H. Lee, and G. Agrawal. Bandwidth equalization of purely phase-sampled fiber Bragg gratings for broadband dispersion and dispersion slope compensation [J]. Optics Express, 2004, 12(23):5595-5602.
    [128] K. Kolossovski, R. Sammut, A. Buryak et al. Three-step design optimization for multi-channel fibre Bragg gratings [J]. Optics Express, 2003, 11(9): 1029-1038.
    [129] B. J. Eggleton, J. A. Rogers, P. S. Westbrook et al. Electrically tunable power efficient dispersion compensating fiber Bragg grating [J]. IEEE Photonics Technology Letters, 1999, 11(7): 854-856.
    [130] M. Le Blanc, S. Y. Huang, M. M. Ohn et al. Tunable chirping of a fiber Bragg grating using a tapered cantilever beam [J]. Elecronics Letters, 1994, 30(25): 2163-2165.
    [131] M. M. Ohn, A. T. Alavie, R. Maaskant et al. Dispersion variable fiber Bragg grating using a piezoelectric stack [J]. Electronics Letters, 1996, 32(21): 2000-2001.
    [132] T. Imai, T. Komukai, and M. Nakazawa. Dispersion Tuning of a Linearly Chirped Fiber Bragg Grating Without a Center Wavelength Shift by Applying a Strain Gradient [J]. IEEE Photon. Technol. Lett., 1998, 10(6): 845-847.
    [133] X. Y. Dong, B. O. Guan, S. Z. Yuan et al. Strain gradient chirp of uniform fiber Bragg grating without shift of central Bragg wavelength [J]. Optics Comm., 2002, 202(1): 91-95.
    
    [134] W. G. Zhang, Y. G. Liu, G. Y. Kai et al. A novel independent tuning technology of center wavelength and bandwidth of fiber Bragg grating [J]. Optics Comm., 2003, 216(4): 343-350.
    
    [135] J. Kim, J. Bae, Y. Han et al. Effectively Tunable Dispersion Compensation Based on Chirped Fiber Bragg Gratings Without Central Wavelength Shift [J]. IEEE Photon. Technol. Lett., 2004, 16(3): 849-851.
    [136]J.Kwon,and B.Lee.Dispersion Tuning of a Chirped Fiber Bragg Grating Using a Multisectional Bending Structure[J].IEEE Photon.Technol.Lett.,2005,17(2):408-410.
    [137]5.L.Zhou,X.P.Dong,and Z.D.Shi.Tunable chirped fiber Bragg grating based on the D-shaped fiber[J].Optics Communications,2008,281(8):2077-2082.
    [138]罗跃纲,高凌霞,刘贵立等.材料力学[M].北京:科学出版社,2004.186.
    [139]A.Othonos,R.Kalli,D.Pureur et al.Fiber Bragg Gratings(in Wavelength Filters in Fibre Optics)[M].Berlin Heidelberg:Springer-Verlag,2006.241.
    [140]孙杰.40-Gb/s系统中可调谐色散补偿器的研究[D].北京:清华大学,2005.(优秀本科毕业论文)
    [141]C.S.Cheung.An investigation of chirped fibre Bragg gratings Fabry-Perot interferometer for sensing applications[D].UK:Cranfield Universtiy,2004.(博士学位论文)
    [142]S.Legoubin,M.Douay,P.Bernage et al.Free spectral range variations of grating-based Fabry-Perot filters photowritten in optical fibers[J].J.Opt.Soc.Am.A,1995,12(8):1687-1694.
    [143]D.W.Huang,G.C.Lin,and C.C.Yang.Fiber-Grating-Based Self-Matched Additive-Pulse Mode-Locked Fiber Lasers[5].IEEE Journal of Quantum Electroaics,1999,35(2):138-146.
    [144]J.F.Lemieux,A.Bellemare,C.Latrasse et al.Step-tunable(100GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating[J].Electronics Letters,1999,35(11):904-906.
    [145]H.L.Liu,H.Y.Tam,W.H.Chung et al.Wavelength-switchable fiber ring laser [C].2005 Quantum Electronics and Laser Science Conference,2005.1292-1294.
    [146]Y.G.Han,F.Fresi,L.Poti et al.Continuously spacing-tunable multiwavelength semiconductor optical amplifier based fiber ring laser incorporating a superimposed chirped fiber Bragg grating[5].Optics Letters,2007,32(9):1032-1034.
    [147]L.Xia,P.Shum,M.Yan et al.Tunable and Switchable Fiber Ring Laser Among Four Wavelengths With Ultranarrow Wavelength Spacing Using a Quadruple Transmission Band Fiber Bragg Grating Filter[5].IEEE Photonics Technology Letters,2006,18(19):2038-2040.
    [148]D.Derickson.Fiber Optic Test and Measurement[M].New Jersey:Prentice Hall,1998.
    [149]H.Chi,F.Zeng,and J.Yao.Photonic Generation of Microwave Signals Based on Pulse Shaping[J].IEEE Photonics Technology Letters,2007,19(9):668-670.
    [150]X.F.Chen,Z.H.Deng,and 5.P.Yao.Photonic Generation of Microwave Signal Using a Dual-Wavelength Single-Longitudinal-Mode Fiber Ring Laser[J].IEEE Transactions on Microwave Theory and Techniques,2006,54(2):804-809.
    [151]J.Genest,M.Chamberland,P.Trembly et al.Microwave signals generated by optical heterodyne between injection-locked semiconductor lasers[J].IEEE Journal of Quantum Electronics,1997,33(6):989-998.
    [152]Z.F.Fan,and M.Dagenais.Optical Gerneration of a mHz-Linewidth Microwave Signal Using Semiconductor Lasers and a Discriminator-Aided Phase-Locked Loop [J].IEEE Transactions on Microwave Theory and Techiques,1997,45(8):1296-1300.
    [153]J.J.O' Reilly,P.M.Lane,R.Heidemann et al.Optical Generation of Very Narrow Linewidth Millimetre Wave Signals[J].Electronics Letters,1992,28(25):2309-2311.
    [154]T.Schneider,M.Junker,and D.Hannover.Generation of millimeter-wave signals by stimulated Brillouin scattering for radio over fibre systems[J]. Electronics Letters,2004,40(23):1500-1502.
    [155]L.Xia,P.Shum,and T.H.Cheng.Photonic generation of microwave signals using a dual-transmission-band FBG filter with controllable wavelength spacing [J].Applied Physics B:Lasers and Optics,2007,86(1):61-64.
    [156]J.Sun,Y.T.Dai,X.F.Chert et al.Stable Dual-Wavelength DFB Fiber Laser With Separate Resonant Cavities and Its Application in Tunable Microwave Generation[J].IEEE Photonics Technology Letters,2006,18(24):2587-2589.
    [157]W.Wang,M.Cada,J.Seregelyi et al.A Beat-Frequency Tunable Dual-Mode Fiber-Bragg-Grating External-Cavity Laser[J].IEEE Photonics Technology Letters,2005,17(11):2436-2438.
    [158]J.L.Zhou,L.Xia,X.P.Cheng et al.Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser [J].Applied Physics B:Lasers and Optics,2008,91(1):99-103.
    [159]M.J.Guy,J.R.Taylor,and R.Kashyap.Single-frequency erbium fibre ring laser with intracavity phase-shifted fibre Bragggrating narrowband filter[J].Electronics Letters,1995,31(22):1924-1925.
    [160]A.Melloni,M.Chinello,and M.Martinelli.All-optical Switching in Phase-shifted Fiber Bragg Grating[J].IEEE Photonics Technology Letters,2000,12(1):42-44.
    [161]R.Kashyap,P.F.Mckee,and D.Armes.UV written reflection grating structures in photosensitive optical fibres using phase-shifted phase masks[J].Electronics Letters,1994,30(23):1977-1978.
    [162]J.Canning,and M.G.Sceats.π-phase-shifted periodic distributed structures in optical fibres by UV post-processing[J].Electronics Letters,1994,30(16):1344-1345.
    [163]D.Uttamchandani,and A.Othonos.Phase shifted Bragg gratings formed in optical fibres by post-fabrication thermal processing[J].Optics Communications,1996,127(4):200-204.
    [164]M.Jauos,and J.Canning.Permanent and transient resonances thermally induced in optical fiber Bragg gratings[J].Electronics Letters,1995,31(12):1007-1009.
    [165]S.Gupta,T.Mizunami,and T.Shimomura.Computer Control of Fiber Bragg Grating Spectral Characteristics Using a Thermal Head[J].Journal of Lightwave Technology,1997,15(10):1925-1928.
    [166]Y.C.Lai,W.Zhang,L.Zhang et al.Optically tunable fiber grating transmission filters[J].Optics Letters,2003,28(24):2446-2448.
    [167]A.Jumpates,R.Leepila,A.Manyanon et al.The Analysis of Cause from Fusion Splice in Single Mode Optic Fiber for Reducing Splicing Loss Between Fusion Splicing[C].Proceedings of Student Conference oa Research and Development,Putrajaya,Malaysia,2003.330-333.
    [168]李杰.新型D型少模光纤Bragg光栅的特性及其在折射率测量中的应用[D].厦门:厦门大学,2005.(硕士学位论文)
    [169]关柏鸥,余有龙,葛春风等.光纤光栅法布里-珀罗腔透射特性的理论研究[J].2000,光学学报,20(1):34-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700