免疫性血小板减少症遗传易感性的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的:非受体型蛋白酪氨酸磷酸酶22(protein tyrosine phosphatase, non-receptor type22, PTPN22)基因编码产物为淋巴酪氨酸磷酸酶(Lymphoid tyrosine phosphatase, LYP),该酶能够对T细胞活化信号转导起负向调控作用。近年的研究表明PTPN22多态性和多种自身免疫性疾病患病风险有关。免疫性血小板减少症(Immune Thrombocytopenia, ITP)是一种获得性器官特异性自身免疫性疾病,本研究的目的是探讨PTPN22基因多态性与ITP遗传易感性的关系。
     研究方法:病例对照研究。采用聚合酶链反应-基质辅助激光解析电离飞行时间质谱技术(PCR-MALDI-TOF MS)对191例ITP患者和216例健康对照PTPN22基因-1123G>C(rs2488457)位点进行基因型鉴定分析。
     结果:PTPN22-1123G>C位点优势等位基因为C,健康对照人群中C、G等位基因频率比70.6%:29.4%。ITP组-1123G>C位点等位基因G及GG基因型频率分布显著高于正常对照组(P=0.034;P=0.038);G、GG、GC的优势比(OR)及95%置信区间(95%CI)分别为1.374(1.024~1.843),1.951(1.031-3.694),1.253(0.825~1.902)。分层分析结果:男性患者组G、GG频率显著高于同性别对照组(P=0.008, P=0.022), OR(95%CI)分别为1.849(1.174~2.911),3.152(1.143~8.692)。成人ITP组G、GG频率显著高于正常对照(P=0.042;P=0.048),OR(95%CI)分别为1.410(1.012-1.964),2.030(0.998~4.132)。慢性ITP组G、GG频率较对照组有升高趋势但无统计学意义(P=-0.082,P=0.081)。女性对照组-1123G的发生频率高于男性对照组,二者之间存在临界显著性差异(P=0.055)。
     结论:研究证实PTPN22-1123G>C多态性和ITP遗传易感性相关,G为ITP患病的风险等位基因,并且患病风险的高低和G等位基因携带率呈剂量依赖关系;-1123G在各组ITP中起到的作用可能不同,我们的结果提示女性人群PTPN22-1123G的高水平分布可能是ITP在女性总体发病率较高的遗传学基础之一;目前至少可以肯定-1123G是男性ITP、成人ITP风险预测因素;-1123G可能对ITP病程的慢性转归具有一定预测价值,但该结论尚需进一步扩大样本量证实
     研究背景和目的:干扰素(interferons, IFNs)是调节机体初始免疫应答和适应性免疫应答的重要因素,研究表明在系统性红斑狼疮、干燥综合症等自身免疫性疾病发病机制中,I型干扰素系统功能上调发挥至关重要的作用。干扰素调节因子5(interferon regulation factor5, IRF5)参与Ⅰ型干扰素分子的诱导生成及其效应阶段,是调控Ⅰ型干扰素分子和炎症因子表达的最重要的转录因子;信号转导子及转录激活子4(signal transducer and activator of transcription4, STAT4)介导淋巴细胞对Ⅰ型干扰素、白介素-12(IL-12)、白介素-23(IL-23)的信号转导过程,调控Th1、Th17分化;酪氨酸激酶2(tyrosine kinase2,TYK2)通过与JAK2(Janus kinase2)相互作用结合于Ⅰ型干扰素受体复合物,并启动JAK/STAT信号转导级联反应,调控干扰素相关基因的表达。IRF5、STAT4、TYK2三者均是!型干扰素系统的重要组分。免疫性血小板减少症(ITP)是一种器官特异性自身免疫性疾病,有报道指出,ITP患者IFN信号通路功能存在异常。本研究的目的是探讨IRF5、STAT4、TYK2基因多态性和ITP遗传易感性的关系。
     研究方法:病例对照研究。采用聚合酶链反应-琼脂糖凝胶电泳分离方法检测IRF5基因3*/4*CGGGG、30bpIn/Del序列长度多态性位点基因型;采用聚合酶链反应-限制性片段长度多态性(PCR-RFLP)方法检测rs3821236、rs2304256位点基因型;采用聚合酶链反应-基质辅助激光解析电离飞行时间质谱技术(PCR-MALDI-TOF MS)检测rs10954231、rs7574865位点基因型。受试者共包括ITP患者159名,健康对照196名。
     结果:1)30bpIn/De1、rs7574865、rs3821236及rs2304256位点的等位基因及基因型频率分布在ITP组和正常对照组之间存在显著性差异(P<0.05);2)rs7574865、rs3821236之间存在连锁不平衡关系,产生的两种主要单元型在ITP及对照组间频率分布存在显著性差异[P=0.04, OR=1.413(1.013-1.971); P=0.02, OR=0.707(0.525-0.951)];3)将患者依据性别、起病年龄及病程因素分组进行分层分析,结果表明各位点与ITP发病风险的关联性并不局限于特定的分组;4)协同分析表明,各位点之间存在协同作用,同时携带多位点风险等位基因将提高ITP发病风险
     结论:位于IRF5、STAT4、TYK2基因的多态性位点30bpIn/Del、rs7574865、 rs3821236及rs2304256和ITP的遗传易感性相关;且各位点之间能够以协同作用方式增加ITP的患病风险;IRF5、STAT4、TYK2基因是Ⅰ型干扰素系统的重要组分,推测Ⅰ型干扰素系统功能失调是ITP发病的重要机制
     研究背景及目的:凝血因子Ⅴ、Ⅷ (FⅤ、FⅧ)联合缺乏症(F5F8D)是一种罕见的常染色体隐性遗传性出血性疾病。近年的研究发现该病病因在于基因lman1或mcfd2的突变。本研究的目的是对一个F5F8D先证者及其家系成员的lman1、mcfd2基因进行扩增、测序,以查找潜在的致病突变。
     研究方法:我们采集了先证者及其父母的外周血样本,进行了凝血功能相关检查,包括活化部分凝血活酶时间(APTT)、凝血酶原时间(PT)、凝血酶时间(TT)、血浆纤维蛋白原(Fg)、FV促凝活性(FV:C)、FⅧ促凝活性(FVIII:C);并提取基因组DNA,通过PCR法对先证者lman1基因的13个外显子及侧翼序列、mcfd2基因的4个外显子及侧翼序列进行特异性扩增,产物经纯化后直接测序,以检测致病突变。根据先证者突变所在位点,选择性扩增其父、母的相应片段,纯化、测序,以便进行家系分析。
     结果:先证者APTT82.2S, PT19.6S, TT18.6S, Fg2.9g/1, FV:C7.1%, FⅧ:C18.7%;先证者及其母亲lman1基因第8外显子区出现杂合性单碱基插入c.912_913insA,导致蛋白序列改变p.Glu305fsX20;先证者及其父亲lmanl基因11外显子区出现杂合性无义突变c.1366C>T,导致p.Arg456X。
     结论:先证者lman1基因的复合杂合突变c.912_913insA、c.1366C>T是导致其发病的原因;前者继承自其母,后者继承自其父。这种复合杂合突变的组合方式尚未见报道。
Background and objective:Lymphoid tyrosine phosphatase (LYP) is a protein tyrosine phosphatase (PTP) encoded by the gene of protein tyrosine phosphatase nonreceptor22(PTPN22). LYP plays a negative role in T cell signaling. The polymorphisms of PTPN22gene have been reported to be associated with susceptibilities to numerous autoimmune diseases. Immune Thrombocytopenia (ITP) is an acquired organ-specific autoimmune disease. The purpose of this study was to investigate whether the PTPN22-1123C>G polymorphism contributes to risk of ITP.
     Method:Genotyping of PTPN22-1123G>C (rs2488457) polymorphism was performed using polymerase chain reaction-matrix assisted laser desorption/ionization time-of-flight mass spectrometry (PCR-MALDI-TOF MS). Total subjects of191ITP patients and216healthy controls were enrolled in the case-control study.
     Results:The major allele of the-1123site was C, with a frequency of70.6%vs.29.4%for allele G in normal controls. The allele and genotype distribution of-1123G>C was significantly skewed in ITP patients, who had significantly higher frequencies of G allele and GG genotype than normal control (P=0.034; P=0.038). Odds ratios (ORs) and95%confidence interval (95%CI) for G allele, GG and GC genotypes were1.374(1.024~1.843),1.951(1.031~3.694),1.253(0.825~1.902), respectively. Comparable observations were made in the stratified analysis. Both subgroups of male and adult-onset patients exhibited significantly elevated distribution of G allele and GG genotype accompanied with increased ORs for developing ITP when comparing with matched controls. Similar trend occurred in cohort of chronic patients, with a P value of almost0.08. The-1123G frequency is higher in female controls than in male ones, with a borderline P value of0.055.
     Conclusion:Our results demonstrate that PTPN22-1123G is a susceptibility factor to developing ITP. And it works in a dose-dependent manner.-1123G>C polymorphism might play different roles in distinct ITP cohorts. Higher frequency of-1123G might be an important genetic risk factor for the increased incidence of ITP in female. It is confirmed at least that-1123G can be used as an independent predictor for male ITP and adult-onset ITP. Whether or not does-1123G contribute to chronic ITP needs to be further studied by larger samples.
     Background and objective:Interferons (IFNs) are the most pleiotropic molecules which influence both the innate and adaptive immune responses. In the past decades, extensive studies revealed crucial roles for type Ⅰ IFN in pathogenesis of SLE and Sjogren's syndrome. Interferon regulatory factor5(IRF5) is a member of IRF family that plays an important role as a master transcription factor for genes of inflammatory cytokines and type Ⅰ interferon. The signal transducer and activator of transcription4(STAT4) could be activated by cytokines, including type Ⅰ IFN, interleukin-12and interleukin-23, then stimulates the differentiation of Thl and Th17. Tyrosine kinase2(TYK2) binds to the type Ⅰ IFN receptor complex with JAK1and initiates a JAK/STAT signaling cascade leading to the transcription of IFN signature genes. All of the three mentiend above are important components of the type Ⅰ IFN system. ITP is an organ-specific autoimmune disease. It was proposed that IFN system may involved in pathogenesis of ITP. The aim of the study was to determine the associations between polymorphisms of the three genes with ITP.
     Method:Genotyping of length polymorphisms3*/4*CGGGG and30bpIn/Del in IRF5was performed using polymerase chain reaction followed by agarose gels electrophoresis. rs3821236and rs2304256were detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay, while rs10954231and rs7574865by means of polymerase chain reaction-matrix assisted laser desorption/ionization time-of-flight mass spectrometry (PCR-MALDI-TOF MS). Total subjects of159ITP patients and196healthy controls were enrolled in the case-control study.
     Result:Polymorphisms of IRF530bpIn/Del, TYK2rs2304256, STAT4rs7574865and rs3821236were shown to be associated with ITP (P=0.024,0.036,0.029,0.019, respectively). These associations were not restricted to a particular phenotype after the stratified analysis. We also investigated an addictive effect of the four polymorphisms on the risk for developing ITP.
     Conclusion:Polymorphisms of30bpIn/Del, rs7574865, rs3821236and rs2304256correlated with susceptibility to Immune Thrombocytopenia. As all the polymorphisms located in genes related to type ⅠIFN system, we supposed that type Ⅰ IFN system dysfunction may be an important aspect of ITP pathogenesis.
     Combined factor Ⅴ-factor Ⅷ deficiency (F5F8D) is a rare, autosomal recessive disorder caused by mutations in genes of either lmanl or mcfd2. To identify mutations of these two genes in a Chinese F5F8D family, samples of peripheral blood were collected from the proband and her parents. Coagulation tests were carried out including activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT), fibrinogen(Fg) and coagulate activity of FⅤ, FⅧ (FⅤ:C, FⅧ:C). The genomic DNA was extracted, then, all the exons and intron/exon boundaries of these two genes were amplified by polymerase chain reaction (PCR). The products were finally analyzed by direct sequencing. According to the laboratory report, the proband's APTT, PT, TT, Fg, FⅤ:C and FⅧ:C were82.2S,19.6S,18.6S,2.9g/l,7.1%and18.7%respectively, while those of the parents' were all between the normal range. Two pathogenic mutations were identified in lmanl gene of the proband:one was the heterozygous c.912_913insA in exon8resulting in a frameshift of p.Glu305fsX20; the other was the heterozygous c.1366C>T in exon11resulting in p.Arg456X.The proband's father and mother were heterozygous for c.1366C>T and c.912_913insA respectively. So we drew a conclusion that F5F8D of the proband was caused by a novel compound heterozygosity of the lmanl gene, which had never been reported.
引文
1. Zhou B, Zhao H, Yang RC, Han ZC:Multi-dysfunctional pathophysiology in ITP. Crit Rev Oncol Hematol 2005,54(2):107-116.
    2. Andersson PO, Wadenvik H:Chronic idiopathic thrombocytopenic purpura (ITP):molecular mechanisms and implications for therapy. Expert Rev Mol Med 2004,6(24):1-17.
    3. Liu B, Zhao H, Poon MC, Han Z, Gu D, Xu M, Jia H, Yang R, Han ZC: Abnormality of CD4(+)CD25(+) regulatory T cells in idiopathic thrombocytopenic purpura. Eur JHaematol 2007,78(2):139-143.
    4. Stasi R, Evangelista ML, Stipa E, Buccisano F, Venditti A, Amadori S: Idiopathic thrombocytopenic purpura:current concepts in pathophysiology and management. Thromb Haemost 2008,99(1):4-13.
    5. Syvanen AC:Accessing genetic variation:genotyping single nucleotide polymorphisms. Nat Rev Genet 2001,2(12):930-942.
    6. Sakaguchi N, Takahashi T, Hata H, Nomura T, Tagami T, Yamazaki S, Sakihama T, Matsutani T, Negishi I, Nakatsuru S et al:Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 2003,426(6965):454-460.
    7. Sakaguchi S, Sakaguchi N, Yoshitomi H, Hata H, Takahashi T, Nomura T: Spontaneous development of autoimmune arthritis due to genetic anomaly of T cell signal transduction:Part 1. Semin Immunol 2006,18(4):199-206.
    8. Chang TT, Kuchroo VK, Sharpe AH:Role of the B7-CD28/CTLA-4 pathway in autoimmune disease. Curr Dir Autoimmun 2002,5:113-130.
    9. Lee YH, Rho YH, Choi SJ, Ji JD, Song GG, Nath SK, Harley JB:The PTPN22 C1858T functional polymorphism and autoimmune diseases--a meta-analysis. Rheumatology (Oxford) 2007,46(1):49-56.
    10. Nordmark G, Kristjansdottir G, Theander E, Eriksson P, Brun JG, Wang C, Padyukov L, Truedsson L, Alm G, Eloranta ML et al:Additive effects of the major risk alleles of IRF5 and STAT4 in primary Sjogren's syndrome. Genes Immun 2009,10(1):68-76.
    11. Gregersen PK, Olsson LM:Recent advances in the genetics of autoimmune disease. Annu Rev Immunol 2009,27:363-391.
    12. Wu J, Katrekar A, Honigberg LA, Smith AM, Conn MT, Tang J, Jeffery D, Mortara K, Sampang J, Williams SR et al:Identification of substrates of human protein-tyrosine phosphatase PTPN22. J Biol Chem 2006, 281(16):11002-11010.
    13. Palacios EH, Weiss A:Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene 2004,23(48):7990-8000.
    14. Cannons JL, Schwartzberg PL:Fine-tuning lymphocyte regulation:what's new with tyrosine kinases and phosphatases? Curr Opin Immunol 2004, 16(3):296-303.
    15. Samelson LE:Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu Rev Immunol 2002,20:371-394.
    16. Zhang W, Sloan-Lancaster J, Kitchen J, Trible RP, Samelson LE:LAT:the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 1998,92(1):83-92.
    17. Paz PE, Wang S, Clarke H, Lu X, Stokoe D, Abo A:Mapping the Zap-70 phosphorylation sites on LAT (linker for activation of T cells) required for recruitment and activation of signalling proteins in T cells. Biochem J 2001, 356(Pt 2):461-471.
    18. Mustelin T, Alonso A, Bottini N, Huynh H, Rahmouni S, Nika K, Louis-dit-Sully C, Tautz L, Togo SH, Bruckner S et al: Protein tyrosine phosphatases in T cell physiology. Mol Immunol 2004,41(6-7):687-700.
    19. Cloutier JF, Veillette A:Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J Exp Med 1999. 189(1):111-121.
    20. Hill RJ, Zozulya S, Lu YL, Ward K, Gishizky M, Jallal B:The lymphoid protein tyrosine phosphatase Lyp interacts with the adaptor molecule Grb2 and functions as a negative regulator of T-cell activation. Exp Hematol 2002, 30(3):237-244.
    21. Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M, MacMurray J, Meloni GF, Lucarelli P, Pellecchia M et al: A functional variant of lymphoid tyrosine phosphatase is associated with type Ⅰ diabetes. Nat Genet 2004,36(4):337-338.
    22. Vang T, Miletic AV, Arimura Y, Tautz L, Rickert RC, Mustelin T:Protein tyrosine phosphatases in autoimmunity. Annu Rev Immunol 2008,26:29-55.
    23. Kawasaki E, Awata T, Ikegami H, Kobayashi T, Maruyama T, Nakanishi K, Shimada A, Uga M, Kurihara S, Kawabata Y et al: Systematic search for single nucleotide polymorphisms in a lymphoid tyrosine phosphatase gene (PTPN22):association between a promoter polymorphism and type 1 diabetes in Asian populations. Am J Med Genet A 2006,140(6):586-593.
    24. Zhang ZH, Chen F, Zhang XL, Jin Y, Bai J, Fu SB:PTPN22 allele polymorphisms in 15 Chinese populations. Int J Immunogenet 2008, 35(6):433-437.
    25. Lee HS, Korman BD, Le JM, Kastner DL, Remmers EF, Gregersen PK, Bae SC: Genetic risk factors for rheumatoid arthritis differ in Caucasian and Korean populations. Arthritis Rheum 2009,60(2):364-371.
    26. Ichimura M, Kaku H, Fukutani T, Koga H, Mukai T, Miyake I, Yamada K, Koda Y, Hiromatsu Y:Associations of protein tyrosine phosphatase nonreceptor 22 (PTPN22) gene polymorphisms with susceptibility to Graves' disease in a Japanese population. Thyroid 2008,18(6):625-630.
    27. Viken MK, Olsson M, Flam ST, Forre O, Kvien TK, Thorsby E, Lie BA:The PTPN22 promoter polymorphism-1123G>C association cannot be distinguished from the 1858C>T association in a Norwegian rheumatoid arthritis material. Tissue Antigens 2007,70(3):190-197.
    28. Hinks A, Barton A, John S, Bruce I, Hawkins C, Griffiths CE, Donn R, Thomson W, Silman A, Worthington J:Association between the PTPN22 gene and rheumatoid arthritis and juvenile idiopathic arthritis in a UK population:further support that PTPN22 is an autoimmunity gene. Arthritis Rheum 2005,52(6):1694-1699.
    29. Reddy MV, Johansson M, Sturfelt G, Jonsen A, Gunnarsson I, Svenungsson E, Rantapaa-Dahlqvist S, Alarcon-Riquelme ME:The R620W C/T polymorphism of the gene PTPN22 is associated with SLE independently of the association of PDCD1. Genes Immun 2005,6(8):658-662.
    30. Nielsen C, Hansen D, Husby S, Lillevang ST:Sex-specific association of the human PTPN22 1858T-allele with type 1 diabetes. Int J Immunogenet 2007, 34(6):469-473.
    31. Skorka A, Bednarczuk T, Bar-Andziak E, Nauman J, Ploski R:Lymphoid tyrosine phosphatase (PTPN22/LYP) variant and Graves' disease in a Polish population:association and gene dose-dependent correlation with age of onset. Clin Endocrinol (Oxf) 2005,62(6):679-682.
    32. Gregersen PK, Lee HS, Batliwalla F, Begovich AB:PTPN22:setting thresholds for autoimmunity. Semin Immunol 2006,18(4):214-223.
    33. Vang T, Congia M, Macis MD, Musumeci L, Orru V, Zavattari P, Nika K, Tautz L, Tasken K, Cucca F et al: Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet 2005,37(12):1317-1319.
    34. Bassiri H, Carding SR:A requirement for IL-2/IL-2 receptor signaling in intrathymic negative selection. J Immunol 2001,166(10):5945-5954.
    1. Zhou B, Zhao H, Yang RC, Han ZC:Multi-dysfunctional pathophysiology in ITP. Crit Rev Oncol Hematol 2005,54(2):107-116.
    2. Andersson PO, Wadenvik H:Chronic idiopathic thrombocytopenic purpura (ITP):molecular mechanisms and implications for therapy. Expert Rev Mol Med 2004,6(24):1-17.
    3. Wang T, Zhao H, Ren H, Guo J, Xu M, Yang R, Han ZC:Type 1 and type 2 T-cell profiles in idiopathic thrombocytopenic purpura. Haematologica 2005,90(7):914-923.
    4. Gu D, Chen Z, Zhao H, Du W, Xue F, Ge J, Sui T, Wu H, Liu B, Lu S et al: Thl (CXCL10) and Th2 (CCL2) chemokine expression in patients with immune thrombocytopenia. Hum Immunol,71(6):586-591.
    5. Ronnblom L, Pascual V:The innate immune system in SLE:type I interferons and dendritic cells. Lupus 2008,17(5):394-399.
    6. Selmi C, Lleo A, Zuin M, Podda M, Rossaro L, Gershwin ME:Interferon alpha and its contribution to autoimiunity. Curr Opin Investig Drugs 2006, 7(5):451-456.
    7. Crow MK:Type I interferon in systemic lupus erythematosus. Curr Top Microbiol Immunol 2007,316:359-386.
    8. Banchereau J, Pascual V:Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 2006, 25(3):383-392.
    9. Stewart TA:Neutralizing interferon alpha as a therapeutic approach to autoimmune diseases. Cytokine Growth Factor Rev 2003,14(2):139-154.
    10. Korman BD, Alba MI, Le JM, Alevizos I, Smith JA, Nikolov NP, Kastner DL, Remmers EF, Illei GG:Variant form of STAT4 is associated with primary Sjogren's syndrome. Genes Immun 2008,9(3):267-270.
    11. Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Silvennoinen O:Signaling through the hematopoietic cytokine receptors. Annu Rev Immunol 1995, 13:369-398.
    12. Hardy MP, Owczarek CM, Jermiin LS, Ejdeback M, Hertzog PJ: Characterization of the type I interferon locus and identification of novel genes. Genomics 2004,84(2):331-345.
    13. Sood R, Wong W, Gotlib J, Jeng M, Zehnder JL:Gene expression and pathway analysis of immune thrombocytopenic purpura. Br J Haematol 2008,140(1):99-103.
    14. Hellquist A, Jarvinen TM, Koskenmies S, Zucchelli M, Orsmark-Pietras C, Berglind L, Panelius J, Hasan T, Julkunen H, D'Amato M et al: Evidence for genetic association and interaction between the TYK2 and IRF5 genes in systemic lupus erythematosus. J Rheumatol 2009,36(8):1631-1638.
    15. Dieude P, Guedj M, Wipff J, Ruiz B, Hachulla E, Diot E, Granel B, Sibilia J, Tiev K, Mouthon L et al: STAT4 is a genetic risk factor for systemic sclerosis having additive effects with IRF5 on disease susceptibility and related pulmonary fibrosis. Arthritis Rheum 2009,60(8):2472-2479.
    16. Abelson AK, Delgado-Vega AM, Kozyrev SV, Sanchez E, Velazquez-Cruz R, Eriksson N, Wojcik J, Linga Reddy MV, Lima G, D'Alfonso S et al: STAT4 associates with systemic lupus erythematosus through two independent effects that correlate with gene expression and act additively with IRF5 to increase risk. Ann Rheum Dis 2009,68(11):1746-1753.
    17. Zhao H, Li H, Zhang L, Wang T, Ji L, Yang R:Retrospective analysis of 472 Chinese children with chronic idiopathic thrombocytopenic purpura:a single center experience. Haematologica 2005,90(6):860-861.
    18. Nordmark G, Kristjansdottir G, Theander E, Eriksson P, Brun JG, Wang C, Padyukov L, Truedsson L, Alm G, Eloranta ML et al: Additive effects of the major risk alleles of IRF5 and STAT4 in primary Sjogren's syndrome. Genes Immun 2009,10(1):68-76.
    19. Sato K, Shiota M, Fukuda S, Iwamoto E, Machida H, Inamine T, Kondo S, Yanagihara K, Isomoto H, Mizuta Y et al: Strong evidence of a combination polymorphism of the tyrosine kinase 2 gene and the signal transducer and activator of transcription 3 gene as a DNA-based biomarker for susceptibility to Crohn's disease in the Japanese population. J Clin Immunol 2009,29(6):815-825.
    20. Shi YY, He L: SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 2005,15(2):97-98.
    21. Barnes BJ, Kellum MJ, Pinder KE, Frisancho JA, Pitha PM:Interferon regulatory factor 5, a novel mediator of cell cycle arrest and cell death. Cancer Res 2003,63(19):6424-6431.
    22. Ryan KR, Hong M, Arkwright PD, Gennery AR, Costigan C, Dominguez M, Denning D, McConnell V, Cant AJ, Abinun M et al: Impaired dendritic cell maturation and cytokine production in patients with chronic mucocutanous candidiasis with or without APECED. Clin Exp Immunol 2008,154(3):406-414.
    23. Sigurdsson S, Goring HH, Kristjansdottir G, Milani L, Nordmark G, Sandling JK, Eloranta ML, Feng D, Sangster-Guity N, Gunnarsson I et al: Comprehensive evaluation of the genetic variants of interferon regulatory factor 5 (IRF5) reveals a novel 5 bp length polymorphism as strong risk factor for systemic lupus erythematosus. Hum Mol Genet 2008, 17(6):872-881.
    24. Mendez R, Richter JD:Translational control by CPEB:a means to the end. Nat Rev Mol Cell Biol 2001,2(7):521-529.
    25. Das S, Ward SV, Tacke RS, Suske G, Samuel CE:Activation of the RNA-dependent protein kinase PKR promoter in the absence of interferon is dependent upon Sp proteins. J Biol Chem 2006, 281(6):3244-3253.
    26. Dideberg V, Kristjansdottir G, Milani L, Libioulle C, Sigurdsson S, Louis E, Wiman AC, Vermeire S, Rutgeerts P, Belaiche J et al: An insertion-deletion polymorphism in the interferon regulatory Factor 5 (IRF5) gene confers risk of inflammatory bowel diseases. Hum Mol Genet 2007, 16(24):3008-3016.
    27. Orozco G, Alizadeh BZ, Delgado-Vega AM, Gonzalez-Gay MA, Balsa A, Pascual-Salcedo D, Fernandez-Gutierrez B, Gonzalez-Escribano MF, Petersson IF, van Riel PL et al: Association of STAT4 with rheumatoid arthritis:a replication study in three European populations. Arthritis Rheum 2008,58(7):1974-1980.
    28. Remmers EF, Plenge RM, Lee AT, Graham RR, Horn G, Behrens TW, de Bakker PI, Le JM, Lee HS, Batliwalla F et al: STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med 2007,357(10):977-986.
    29. Yin H, Borghi MO, Delgado-Vega AM, Tincani A, Meroni PL, Alarcon-Riquelme ME:Association of STAT4 and BLK, but not BANK1 or IRF5, with primary antiphospholipid syndrome. Arthritis Rheum 2009, 60(8):2468-2471.
    30. Zhang J, Ma D, Zhu X, Qu X, Ji C, Hou M:Elevated profile of Th17, Thl and Te1 cells in patients with immune thrombocytopenic purpura. Haematologica 2009,94(9):1326-1329.
    31. Decker T, Stockinger S, Karaghiosoff M, Muller M, Kovarik P:IFNs and STATs in innate immunity to microorganisms.J Clin Invest 2002, 109(10):1271-1277.
    32. Richter MF, Dumenil G, Uze G, Fellous M, Pellegrini S:Specific contribution of Tyk2 JH regions to the binding and the expression of the interferon alpha/beta receptor component IFNAR1. J Biol Chem 1998, 273(38):24723-24729.
    33. Watford WT, Hissong BD, Bream JH, Kanno Y, Muul L, O'Shea JJ:Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol Rev 2004,202:139-156.
    34. Minegishi Y, Saito M, Morio T, Watanabe K, Agematsu K, Tsuchiya S, Takada H, Hara T, Kawamura N, Ariga T et al: Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 2006,25(5):745-755.
    35. Sigurdsson S, Nordmark G, Garnier S, Grundberg E, Kwan T, Nilsson O, Eloranta ML, Gunnarsson I, Svenungsson E, Sturfelt G et al: A risk haplotype of STAT4 for systemic lupus erythematosus is over-expressed, correlates with anti-dsDNA and shows additive effects with two risk alleles of IRF5. Hum Mol Genet 2008,17(18):2868-2876.
    [1]Mansouritorgabeh, H., Rezaieyazdi, Z., Pourfathollah, A, et al. Haemorrhagic symptoms in patients with combined factors V and VIII deficiency in north-eastern Iran. Haemophilia,2004;10,271-275.
    [2]Nichols, W.C., Seligsohn, U., Zivelin, A., et al. Mutations in the ERGolgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors Ⅴ and Ⅷ. Cell,1998;93,61-70.
    [3]Zhang, B., Cunningham, M.A., Nichols, W.C., et al. Bleeding due to disruption of a cargo specific ER-to-Golgi transport complex. Nature Genetics,2003;34, 220-225.
    [4]张广吉张磊杨仁池遗传性联合凝血因子缺乏症一例中华血液学杂志2007,12:817
    [5]Vytautas Ivaskevicius, Jerzy Windyga, Beata Baran, et al. The first case of combined coagulation factor V and coagulation factor VIII deficiency in Poland due to a novel p.Tyr135Asn missense mutation in the MCFD2 gene. Blood Coagulation and Fibrinolysis 2008, Vol 19 No 6
    [6]Oeri J, Matter M, Isenschmid H, et al. Angeborener mangel an faktor V (parahaemophilie) verbunden mit echter haemophilie A bein zwei brudern. Med Probl Paediatr.1954;1:575-588.
    [7]Nichols WC, Seligsohn U, Zivelin A et al. Linkage of combined factors V and VIII deficiency to chromosome 18q by homozygosity mapping. J Clin Invest 1997; 99:596-601.
    [8]Nichols WC, Seligsohn U, Zivelin A et al. Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 1998; 93:61-70.
    [9]Zhang B, Cunningham MA, Nichols WC et al. Bleeding due to disruption of a cargo-specific ER-to-Golgi transport complex. Nat Genet 2003; 34:220-5.
    [10]Kamiya, Y., Kamiya, D., Yamamoto, K., et al. Molecular basis of sugar recognition by the human L-type lectins ERGIC-53, VIPL, and VIP36. Journal of Biological Chemistry,2008;283,1857-1861.
    [11]Nufer, O., Guldbrandsen, S., Degen, M., et al. Role of cytoplasmic C-terminal amino acids of membrane proteins in ER export. Journal of Cell Sciences,2002; 115,619-628.
    [12]Nufer, O., Kappeler, F., Guldbrandsen, S. et al. ER export of ERGIC-53 is controlled by cooperation of targeting determinants in all three of its domains. Journal of Cell Sciences,2003; 116,4429-4440.
    [13]Neve, E.P., Lahtinen, U.& Pettersson, R.F. Oligomerization and interacellular localization of the glycoprotein receptor ERGIC-53 is independent of disulfide bonds. Journal of Molecular Biology,2005;354,556-568.
    [14]Zhang, B., Kaufman, R.J.& Ginsburg, D. LMAN1 and MCFD2 form a cargo receptor complex and interact with coagulation factor VIII in the early secretory pathway. Journal of Biological Chemistry,2005; 280,25881-25886.
    [15]Lee, M.C.& Miller, E.A. Molecular mechanisms of COPII vesicle formation. Seminars in Cell and Developmental Biololgy,2007; 18,424-434.
    [16]Appenzeller-Herzog, C.& Hauri, H.P. The ER-Golgi intermediate compartment (ERGIC):in search of its identity and function. Journal of Cell Sciences, 2006;119,2173-2183.
    [17]Lippincott-Schwartz, J.& Liu, W. Insights into COPI coat assembly and function in living cells. Trends in Cell Biology,2006;16, e1-e4.
    [18]Neerman-Arbez M, Johnson KM, Morris MA, et al:Molecular analysis of the ERGIC-53 gene in 35 families with combined factor Ⅴ-Factor Ⅷ deficiency. Blood,1999,93:2253.
    [1]Gershon RK, Cohen P, Hencin R, Liebhaber SA (1972) Suppressor T cells. J Immunol 108:586-590)
    [2]Elmets CA, Bergstresser PR, Tigelaar RE, WoodPJ, Streilein JW (1983) Analysis of themechanism of unresponsiveness produced by haptens painted on skin exposed to low dose ultraviolet radiation. JExp Med 158:781-794)
    [3]Bluestone JA, Abbas AK:Natural versus adaptive regulatory T cells. Nat Rev Immunol 2003,3:253-257
    [4]Asano, M., Toda, M., Sakaguchi, N., and Sakaguchi, S.1996. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med.184:387-396.
    [5]Fowell, D., and Mason, D.1993. Evidence that theT cell repertoire of normal rats contains cells with the potential to cause diabetes. Characterization of the CD4+ T cell subset that inhibits this autoimmune potential. J. Exp. Med.177:627-636.
    [6]Itoh, M., et al.1999. Thymus and autoimmunity:production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol.162:5317-5326.
    [7]Jordan, M.S., et al.2001. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol.2:301-306.22. Sakaguchi, S., et al.2003. Thymic generation and selection of CD25+CD4+ regulatory T cells: implications of their broad repertoire and high self-reactivity for the maintenance of immunological selftolerance. Novartis Found. Symp.252:6-16. 23. Hsieh, C.S., et al.2004. Recognition of the peripheral self by naturally arising CD25(+) CD4(+) T cell receptors. Immunity.21:267-277.
    [8]Watanabe, N. et al. Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 436,1181-1185 (2005).
    [9]McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, Collins Met al. (2002) CD4+CD25+ immunoregulatory T cells:gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16:311-323
    [10]Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G et al. (2004) Role of LAG-3 in regulatory T cells. Immunity21:503-513
    [11]Bruder D, Probst-Kepper M, Westendorf AM, Geffers R, Beissert S, Loser K, et al. (2004) Neuropilin-1:a surface marker of regulatory T cells. Eur J Immunol 34:623-630
    [12]Olivares-Villagomez D, Wensky AK, Wang Y, Lafaille JJ (2000) Repertoire requirements of CD4+T cells that prevent spontaneous autoimmune encephalomyelitis. J Immunol 164:5499-5507.
    [13]Malek, T.R., Yu, A., Vincek, V., Scibelli, P., and Kong, L.2002. CD4 regulatory T cells prevent lethal autoimmunity in IL-2R beta-deficient mice. Implications for the nonredundant function of IL-2. Immunity.17:167-178
    [14]Shimizu, J., Yamazaki, S., Takahashi, T., Ishida,Y, and Sakaguchi, S.2002. Stimulation of CD25(+)CD4(+) regulatory T cells through GITreg breaks immunological self-tolerance. Nat. Immunol.3:135-142 Kanamaru, F., et al.2004. Costimulation via glucocorticoid-induced TNF receptor in both conventional and CD25+ regulatory CD4+ T cells. J. Immunol. 172:7306-7314.
    [15]Stephens, G.L. et al.2004. Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells. J. Immunol.173:5008-5020.
    [16]Bruder D, Probst-Kepper M, Westendorf AM, et al. Neuropilin-1:a surface marker of regulatory T cells. Eur J Immunol.2004; 34:623-630
    [17]. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, et al. (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27:20-21
    [18]Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330-336
    [19]Khattri, R., Cox, T., Yasayko, S.A., and Ramsdell, F.2003. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol.4:337-342.
    [20]Fontenot, J.D., Gavin, M.A., and Rudensky, A.Y 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4:330-336.
    [21]Hori, S., Nomura, T., and Sakaguchi, S.2003. Control of regulatory T cell development by the transcription factor Foxp3. Science.299:1057-1061.
    [22]Thornton, A.M., Piccirillo, C.A., and Shevach, E.M.2004. Activation requirements for the induction of CD4+CD25+ T cell suppressor function. Eur. J. Immunol.34:366-376.
    [23]Gavin, M.A., Clarke, S.R., Negrou, E., Gallegos, A., and Rudensky, A.2002. Homeostasis and anergy of CD4(+)CD25(+) suppressor T cells in vivo. Nat. Immunol.3:33-41.
    [24]Thornton, A.M., and Shevach, E.M.1998.CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med.188:287-296.
    [25]Thornton AM, Shevach EM (2000) Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol 164:183-190
    [26]Asseman, C., Mauze, S., Leach, M.W., Coffman, R.L., and Powrie, F.1999. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med.190:995-1004.
    [27]Powrie, F., Carlino, J., Leach, M.W., Mauze, S., and Coffman, R.L.1996. A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J. Exp. Med.183:2669-2674.
    [28]Nakamura, K., Kitani, A., and Strober, W.2001. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J. Exp. Med.194:629-644.
    [29]Piccirillo, C.A., et al.2002. CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor betal production and responsiveness. J. Exp. Med. 196:237-246.
    [30]De La Rosa, M., Rutz, S., Dorninger, H., and Scheffold, A.2004. Interleukin-2 is essential for CD4(+)CD25(+) regulatory T cell function. Eur. J. Immunol. 34:2480-2488.
    [31]Cederbom, L., Hall, H., and Ivars, F.2000. CD4+CD25+ regulatory T cells down-regulate costimulatory molecules on antigen-presenting cells. Eur. J. Immunol.30:1538-1543.
    [32]Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, et al. (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4:1206-1212
    [33]Munn, D.H., Sharma, M.D., and Mellor, A.L.2004. Ligation of B7-1/B7-2 by human CD4(+) T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J. Immunol.172:4100-4110.
    [34]Piccirillo, C.A., and Shevach, E.M.2001. Cuttingedge:control of CD8+T cell activation by CD4+CD25+ immunoregulatory cells. J. Immunol.167:1137-1140.
    [35]Paust, S., Lu, L., McCarty, N., and Cantor, H.2004.Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc. Natl. Acad. Sci. U.S.A.101:10398-10403.
    [36]Taylor, P.A. et al. B7 expression on T cells down-regulates immune responses through CTLA-4 ligation via T-T interactions. J. Immunol.172,34-39 (2004).
    [37]Tarbell, K.V., Yamazaki, S., Olson, K., Toy, P.& Steinman, R.M. CD25+ CD4+T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J. Exp. Med.199,1467-1477 (2004).
    [38]Jonuleit H, Schmitt E, Kakirman H, Stassen M, Knop J, Enk AH (2002) Infectious tolerance:human CD25+ regulatory T cells convey suppressor activity to conventional CD4+ T helper cells. J Exp Med 196:255-260
    [39]Pasare, C.& Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+T cellmediated suppression by dendritic cells. Science 299,1033-1036 (2003).
    [40]Stephens, GL. et al. Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells. J. Immunol.173,5008-5020 (2004).
    [41]Viglietta V. Baeeher-Allan C, Welner HI. et al. Loss of functional suppression byD4+CD25+regulatory T cells in patients with multiple sclerosis[J]. J Exp Med,2004(199):971 979.
    [42]Cureil 13, CoukosG, ZouL, et al, Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival[J]. Nat Med,2004,10(9):942-949.
    [43]Shimizu, J., Yamazaki, S., and Sakaguchi, S.1999. Induction of tumor immunity by removing CD25+CD4+ T cells:a common basis between tumor immunity and autoimmunity. J. Immunol.163:5211-5218.
    [44]Nishimura, E., Sakihama, T., Setoguchi, R., Tanaka,K., and Sakaguchi, S.2004. Induction of antigen specific immunologic tolerance by in vivo and in vitro antigen-specific expansion of naturally arising Foxp3+CD25+CD4+ regulatory T cells. Int. Immunol.16:1189-1201.
    [1]Casciola-Rosen, L. A., Anhalt, G.& Rosen, A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med.179,1317-1330 (1994).
    [2]Casciola-Rosen, L. et al. Enhanced autoantigen expression in regenerating muscle cells in idiopathic inflammatory myopathy. J. Exp. Med.201,591-601 (2005).
    [3]Kotenko, S. v. et al. IFN-lambdas mediate antiviral protection through a distinct class Ⅱ cytokine receptor complex. Nat. Immunol.4,69-77 (2003).
    [4]Doyle, S. E. et al. Interleukin-29 uses a type 1 interferon-like program to promote antiviral responses in human hepatocytes. Hepatology 44,896-906 (2006).
    [5]Ank, N. et al. Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J. Virol.80,4501-4509 (2006).
    [6]Sommereyns, C., Paul, S., Staeheli, P.& Michiels, T. IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog.4, e1000017 (2008).
    [7]Der, S. D., Zhou, A., williams, B. R.& Silverman, R. H. Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc. Natl Acad. Sci. USA 95,15623-15628 (1998).
    [8]Boehm, U., Klamp, T., Groot, M.& Howard, J. C. Cellular responses to interferon-gamma. Annu. Rev. Immunol.15,749-795 (1997).
    [9]Pestka, S., Krause, C. D.& walter, M. R. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev.202,8-32 (2004).
    [10]Stetson, D. B.& Medzhitov, R. Type I interferons in host defense. Immunity 25,373-381 (2006).
    [11]van Boxel-Dezaire, A. H., Rani, M. R.& Stark, G R. Complex modulation of cell typespecific signaling in response to type I interferons. Immunity 25, 361-372 (2006).
    [12]Randall, R. E.& Goodbourn, S. Interferons and viruses:an interplay between induction, signalling, antiviral responses and virus countermeasures. J. Gen. Virol.89,1-47 (2008).
    [13]Minegishi, Y. et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25,745-755 (2006).
    [14]Dupuis, S. et al. Impaired response to interferonalpha/beta and lethal viral disease in human STAT1 deficiency. Nat. Genet.33,388-391 (2003).
    [15]Dunn, G. P. et al. A critical function for type I interferons in cancer immunoediting. Nat. Immunol.6,722-729 (2005).
    [16]Swann, J. B. et al. Type I IFN contributes to NK cell homeostasis, activation, and antitumor function. J. Immunol.178,7540-7549 (2007).
    [17]Curtsinger, J. M., valenzuela, J. O., Agarwal, P., Lins, D.& Mescher, M. F. Type I IFNs provide a third signal to CD 8 T cells to stimulate clonal expansion and differentiation. J. Immunol.174,4465-4469 (2005).
    [18]Ioannou, Y.& Isenberg, D. A. Current evidence for the induction of autoimmune rheumatic manifestations by cytokine therapy. Arthritis Rheum. 43,1431-1442(2000).
    [19]Okanoue, T. et al. Side effects of high-dose interferon therapy for chronic hepatitis C. J. Hepatol.25,283-291 (1996).
    [20]Vallin, H., Perers, A., Alm, G v.& Ronnblom, L. Anti-double-stranded DNA antibodies and immunostimulatory plasmid DNA in combination mimic the endogenous IFN-alpha inducer in systemic lupus erythematosus. J. Immunol. 163,6306-6313 (1999).
    [21]Bave, U., Alm, G. v.& Ronnblom, L. The combination of apoptotic U937 cells and lupus IgG is a potent IFN-alpha inducer. J. Immunol.165,3519-3526 (2000).
    [22]Blanco, P., Palucka, A. K., Gill, M., Pascual, v.& Banchereau, J. Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 294,1540-1543 (2001).
    [23]Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci.USA 100,2610-2615(2003).
    [24]Han, G. M. et al. Analysis of gene expression profiles in human systemic lupus erythematosus using oligonucleotide microarray. Genes Immun.4,177-186 (2003).
    [25]Kirou, K. A. et al. Activation of the interferonalpha pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum.52,1491-1503 (2005).
    [26]Baechler, E. C. et al. An interferon signature in the peripheral blood of dermatomyositis patients is associated with disease activity. Mol. Med.13, 59-68 (2007).
    [27]Walsh, R. J. et al. Type I interferon-inducible gene expression in blood is present and reflects disease activity in dermatomyositis and polymyositis. Arthritis Rheum.56,3784-3792 (2007).
    [28]Emamian, E. S. et al. Peripheral blood gene expression profiling in Sjogren's syndrome. Genes Immun.10,285-296 (2009).
    [29]Greenberg, S. A. et al. Interferon-alpha/betamediated innate immune mechanisms in dermatomyositis. Ann. Neurol.57,664-678 (2005).
    [30]Gottenberg, J. E. et al. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjogren's syndrome. Proc. Natl Acad. Sci. USA 103,2770-2775 (2006).
    [31]Sigurdsson, S. et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am. J. Hum. Genet.76,528-537 (2005).
    [32]Graham, R. R. et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat. Genet.38,550-555 (2006).
    [33]Graham, R. R. et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc. Natl Acad. Sci. USA 104,6758-6763 (2007).
    [34]Niewold, T. B. et al. Association of the IRF5 risk haplotype with high serum interferon-alpha activity in systemic lupus erythematosus patients. Arthritis Rheum.58,2481-2487 (2008).
    [35]Miceli-Richard, C. et al. The CGGGG insertion/deletion polymorphism of the IRF5 promoter is a strong risk factor for primary Sjogren's syndrome. Arthritis Rheum.60,1991-1997 (2009).
    [36]Dieude, P. et al. Association between the IRF5 rs2004640 functional polymorphism and systemic sclerosis:a new perspective for pulmonary fibrosis. Arthritis Rheum.60,225-233 (2009).
    [37]Nishikomori, R. et al. Activated STAT4 has an essential role in Thl differentiation and proliferation that is independent of its role in the maintenance of IL-12R beta 2 chain expression and signaling. J. Immunol.169, 4388-4398 (2002).
    [38]Nguyen, K. B. et al. Critical role for STAT4 activation by type 1 interferons in the interferongamma response to viral infection. Science 297,2063-2066 (2002).
    [39]Remmers, E. F. et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med.357,977-986 (2007).
    [40]Taylor, K. E. et al. Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus. PLoS Genet.4, e1000084 (2008).
    [41]Kariuki, S. N. et al. Cutting edge:autoimmune disease risk variant of STAT4 confers increased sensitivity to IFN-alpha in lupus patients in vivo. J. Immunol.182,34-38 (2009).
    [42]Sato, M. et al. Positive feedback regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7. FEBS Lett.441,106-110 (1998).
    [43]Hornung, v. et al.5'-Triphosphate RNA is the ligand for RIG-I. Science 314, 994-997 (2006).
    [44]Kato, H. et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med.205,1601-1610 (2008).
    [45]Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNAinduced innate antiviral responses. Nat. Immunol.5, 730-737 (2004).
    [46]Andrejeva, J. et al. The v proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc. Natl Acad. Sci. USA 101,17264-17269 (2004).
    [47]Yoneyama, M. et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 175,2851-2858 (2005).58. Hornung, v. et al.5'-Triphosphate RNA is the ligand for RIG-I. Science 314,994-997 (2006).
    [48]Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448,501-505 (2007).
    [49]Alexopoulou, L., Holt, A. C., Medzhitov, R.&Flavell, R. A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413,732-738 (2001).
    [50]Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S.& Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of singlestranded RNA. Science 303,1529-1531 (2004).
    [51]Heil, F. et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303,1526-1529 (2004).
    [52]Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740-745 (2000).
    [53]Bauer, S. et al. Human TLR9 confers responsiveness to bacterial DNA via speciesspecific CpG motif recognition. Proc. Natl Acad.Sci.USA 98, 9237-9242 (2001).
    [54]Gorden, K. B. et al. Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J. Immunol.174,1259-1268 (2005).
    [55]Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice:mutations in Tlr4 gene. Science 282,2085-2088 (1998).
    [56]Kadowaki, N. et al. Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J. Exp. Med.194,863-869(2001).
    [57]Hornung, v. et al. Quantitative expression of tolllike receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol.168,4531-4537 (2002).
    [58]Ito, T. et al. Interferon-alpha and interleukin-12 are induced differentially by Tolllike receptor 7 ligands in human blood dendritic cell subsets. J. Exp. Med. 195,1507-1512(2002).
    [59]Honda, K., Takaoka, A.& Taniguchi, T. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25,349-360 (2006).
    [60]Schafer, S. L., Lin, R., Moore, P. A., Hiscott, J.& Pitha, P. M. Regulation of type I interferon gene expression by interferon regulatory factor-3. J. Biol. Chem.273,2714-2720 (1998).
    [61]Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434,772-777 (2005).
    [62]Siegal, F. P. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 284,1835-1837 (1999).
    [63]Izaguirre, A. et al. Comparative analysis of IRF and IFN-alpha expression in human plasmacytoid and monocyte-derived dendritic cells. J. Leukoc. Biol.74, 1125-1138(2003).
    [64]Barnes, B. J. et al. Global and distinct targets of IRF-5 and IRF-7 during innate response to viral infection. J. Biol. Chem.279,45194-45207 (2004).
    [65]Platanias, L. C. Mechanisms of type-Ⅰ-and type-Ⅱ-interferon-mediated signalling. Nat. Rev. Immunol.5,375-386 (2005).
    [66]Biron, C. A. Interferons alpha and beta as immune regulators—a new look. Immunity 14,661-664 (2001).
    [67]Harris, R. S.& Liddament, M. T. Retroviral restriction by APOBEC proteins. Nat. Rev. Immunol.4,868-877 (2004).
    [68]Luft, T. et al. Type I IFNs enhance the terminal differentiation of dendritic cells. J. Immunol.161,1947-1953 (1998).
    [69]Gallucci, S., Lolkema, M.& Matzinger, P. Natural adjuvants:endogenous activators of dendritic cells. Nat. Med.5,1249-1255 (1999).
    [70]Parlato, S. et al. Expression of CCR-7, MIP-3beta, and Th-1 chemokines in type I IFN-induced monocyte-derived dendritic cells:importance for the rapid acquisition of potent migratory and functional activities. Blood 98,3022-3029 (2001).
    [71]Longhi, M. P. et al. Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Thl immunity with poly IC as adjuvant. J. Exp. Med.206,1589-1602 (2009).
    [72]Marrack, P., Kappler, J.& Mitchell, T. Type I interferons keep activated T cells alive. J. Exp. Med.189,521-530 (1999).
    [73]Kolumam, G. A., Thomas, S., Thompson, L. J., Sprent, J.& Murali-Krishna, K. Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. J. Exp. Med.202,637-650 (2005).
    [74]Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P.& Salazar-Mather, T. P. Natural killer cells in antiviral defense:function and regulation by innate cytokines. Annu. Rev. Immunol.17,189-220 (1999).
    [75]Goebels, N. et al. Differential expression of perform in muscle-infiltrating T cells in polymyositis and dermatomyositis. J. Clin. Invest.97,2905-2910 (1996).
    [76]Blanco, P. et al. Increase in activated CD8+ T lymphocytes expressing perforin and granzyme B correlates with disease activity in patients with systemic lupus erythematosus. Arthritis Rheum.52,201-211 (2005).
    [77]Casciola-Rosen, L., Andrade, F., Ulanet, D., wong, w. B.& Rosen, A. Cleavage by granzyme B is strongly predictive of autoantigen status: implications for initiation of autoimmunity. J. Exp. Med.190,815-826 (1999).
    [78]Le Bon, A. et al. Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14,461-470 (2001).
    [79]Jego, G et al. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 19,225-234 (2003).
    [80]Leadbetter, E. A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416,603-607 (2002)
    [81]Lau, C. M. et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med.202, 1171-1177(2005).
    [82]Means, T. K. et al. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J. Clin. Invest.115,407-417 (2005).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700