核心钢管外包钢骨混凝土短柱受压性能试验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在分析中外文献的基础上,针对目前钢-混凝土组合柱存在的缺点,提出一种新型的钢-混凝土组合构件,即核心钢管外包钢骨混凝土组合柱。它是钢管混凝土柱和外包钢混凝土柱的再组合。新型构件保留了二者的优点,克服了它们的缺点,特别是核心钢管和外置钢骨架在截面中的构造位置,与近年来兴起的核心钢管混凝土柱比较,该构件具有更好的受压、受弯、受剪以及受扭等承载能力和良好的抗震性能。为此,本文通过试验研究、数值模拟和理论分析,对该构件在轴心受压和单向小偏心受压情况下的基本力学性能进行了较为系统的研究。
     首先,设计并进行了3个该组合短柱轴心受压和3个单向小偏心受压的试验,观察并研究了该短柱在轴心压力和小偏心压力作用下轴向力与纵向应变(变形)关系、试件横向变形、宏观变形特征、破坏机理及破坏模式。考察了构件在两种不同的加载模式下,从加载到极限状态,钢管、角钢和混凝土共同变形协同工作情况;考察了小偏心受压构件截面应变分布规律以及两种加载模式下构件的延性。
     其次,利用有限元方法,分别建立了钢管混凝土短柱、外包钢混凝土短柱以及本课题的核心钢管外包钢骨混凝土短柱轴心受压和偏心受压的有限元模型,通过与试验结果的对比验证了有限元方法的有效性。然后,针对影响构件的各种几何物理参数进行系统的数值模拟,归纳总结了影响该构件力学性能的主要因素。并通过数值模拟的方法进一步考察了钢管、角钢和混凝土共同变形协同工作的情况。
     再次,在试验研究和数值模拟的基础上,考虑影响构件轴压承载力和截面组合变形模量的主要因素,并参照混凝土结构的习惯表达形式,研究并提出了核心钢管外包钢骨混凝土短柱轴压承载力计算的基本假定和基本计算公式以及构件组合刚度计算的基本假定和基本计算公式。考察了理论计算结果与试验结果的吻合程度。
     最后,在试验研究和有限元分析的基础上,结合核心钢管外包钢骨混凝土柱的特点,参照钢骨混凝土构件正截面承载力的计算理论,研究并提出了该新型构件的正截面承载力计算理论,包括基本计算假定和承载力基本计算公式。考察了理论计算结果与试验结果的吻合程度。
A new type of concrete-steel composite member is proposed in the paper, concretefilled steel tube with outer steel reinforced concrete column, based on reviewing plentifuldomestic and foreign researches on concrete-steel composite columns and analying theshortcomings of existing composite members. It is the evolution and development of thiscomposite column based on steel encased concrete column and core steel-tube reinforcedconcrete column developed in recent years. It has better properties than existing compositemembers. Especially, the locations of the tube and angle steel lead to effectively improvethe shearing, bending, torsion and bearing capacity of column components, improve theductility and tenacity and make it have good mechanical performance. Mechanicalperformances of the specimens proposed in present paper under axial load and eccentricload had systematically been studied by means of testing research, numerical caculationwith FEM and theoretical analysis.
     Firstly, 6 concrete filled steel tube with outer steel reinforced concrete stub columnshad been designed and tested, 3 under axial compressive loading and 3 under eccentriccompressive loading. Observation and research had been carried out for the specimens onvertical load-vertical strain relations, horizontal deformation, macroscopical deformationcharacteristics, failure mechanism and failure modes. Observation and research had beencarried out for the specimens on harmonization of steel tube, angle steel and concretetogether deforming during loading. Also, distribution of the longitudinal stain on thesection and ductility had been carried out for the specimens.
     Secondly, finite element analysis models were set up for concrete-filled steel tubularstub column subjected to axial load, steel encased concrete stub column subjected toeccentric load and the specimens tested in the paper. Nonlinear finite element method(FEM) was available by comparing testing results with numerical results. Diferentparameters influenting on the mechanical propertis of the columns were studiedsystermatically and primary parameters were draw out. Plane cross-section assumptionwas affirmed.
     Thirdly, the basic assumptions and calculation formula of load capacity andcomposite stiffness of the composite column in axial compression were presented, basedon testing research and numerical research and considerring the primary parametersinfluenting on the mechanical propertis of the column, which were expressed in formaccordant with reinforcement concrete structure code. The calculated results agree wellwith the experimental results.
     Finally, the basic assumptions and calculation formula of load capacity of thecomposite column in eccentric compression were presented, based on testing research andnumerical research and considerring the primary parameters influenting on the mechanicalpropertis of the column, which were expressed in form accordant with reinforcementconcrete structure code. The calculated results agree well with the experimental results.
引文
1谢涛,陈肇元.高强混凝土柱抗震性能的试验研究.建筑结构, 1998, 28(12):3-6,11
    2高强与高性能混凝土委员会.高强混凝土工程应用.北京:清华大学出版社, 1998:1-18
    3钟善桐.高层钢管混凝土结构.哈尔滨:黑龙江科学技术出版社, 1999:14-15, 44-89
    4汤关祚,招炳泉,竺惠仙,沈希明.钢管混凝土基本力学性能的研究.建筑结构学报, 1992,13(1):13-31
    5 L. H. Han, G. H. Yao, X. L. Zhao. Tests and Calculations for Hollow Structural Steel (HSS) StubColumns Filled with Self-consolidating Concrete (SCC). Journal of Constructional Steel Research,2006, 61(9):1241-1269
    6叶列平,方鄂华.钢骨混凝土构件的受力性能研究综述.土木工程学报, 2007, 33(5):1-12
    7 R. Shohara, Y. Sawamoto, et al. Strength and Ductility of Non-embedded Steel ReinforcedConcrete Column Base. Journal of Advanced Concrete Technology, 2007, 5(2):223-234
    8蔡绍怀.现代钢管混凝土结构.北京:人民交通出版社, 2003:102-148
    9韩林海.钢管混凝土结构-理论与实践.北京:科学出版社, 2006:125-146
    10贾金青,赵国藩.钢骨高强混凝土短柱力学性能.大连:大连理工大学出版社, 2006:5-10
    11 R. Naryanan. Steel-Concrete Composite Structure. Stability and Strength. Elsevier AppliedScience, 2006
    12 V. K. Kloppel, W.Goder. An Investigation of the Load Capacity of Concrete-Filled Steel Tubesand Development of Design Formula. Der Stahlbau, 1957, 26(1):1-10
    13 V. K. Kloppel, W.Goder. W. An Investigation of the Load Capacity of Concrete-Filled SteelTubes and Development of Desisign Formula. Der Stahlbau, 1957, 26(2):44-50
    14 R. F. Stevens. Encased Stanchions. Structural Engineering, 1965, 43(2):227-232
    15 A. K. Basu. Computation of Failure Loads of Coposite Columns. Proceedings, Institution of CivilEnginneers, March, 1967
    16 ECCS. Composite Structure. London and New York, The Construction Press, 1981
    17 K. S. Virdi, P. J. Dowling. A Unified Design Method for Composite Columns. CESUC ReportCCU, Imperial College, London, 1975
    18 P. K. Neogi, H. K. San and J. C. Chapman. Concrete Filled Tubular Steel Columns underEccentrical Loading. Journal of Structural Engineer, 1969, 47(5):187-195
    19 R. W. Furlong. Columns Rules of ACI, SSLC, and LRFD Compared. Journal of StructuralDivision, ASCE, 1983, 109(10):2375-2386
    20 M. Wakabayashi. Recent Development and Research in Composite and Mixed Building Structuresin Japan. Proceedings of the 4th ASCCS International Conference, Kosice, Slovakia, 1994:237-242
    21村魁,大泽监修.劲性钢筋混凝土结构抗震设计.中国建筑科学院译.北京:中国建筑工业出版社, 1988:36-70
    22张德娟.以钢管混凝土为核心的高强混凝土柱的试验研究. [大连理工大学博士学位论文].1995:15-26
    23赵国藩,张德娟,黄承适.钢管混凝土增强高强混凝土柱的抗震性能研究.大连理工大学学报, 1996, 36(6):759-766
    24陈周熠.钢管高强混凝土核心柱设计计算方法研究. [大连理工大学博士学位论文]. 2002
    25林立岩,岳丽中,宋绍红.钢管混凝土叠合柱理论及设计方法.工程力学, 2000(s):574-578
    26李惠,吴波,张洪涛,林立岩.钢管高强混凝土叠合节点中核心部分的静力承载力研究.哈尔滨建筑大学学报, 1998, 31(2):1-6
    27李惠,吴波,林立岩.钢管高强混凝土叠合的抗震性能研究.地震工程与工程振动, 1998,18(1):45-52
    28中国工程建设标准化协会标准.钢管混凝土叠合柱结构技术规程.北京:中国计划出版社,2006
    29 Katakalos, Konstantinos, Papakonstantinou, G. Christos. Fatigue of Reinforced Concrete BeamsStrengthened with Steel Reinforced Inorganic Polymers. Journal of Composits for Construction,2009, 13 (2):103-112
    30 Cheng-Cheng, Suswanto, Budi et al., Behavior and Strength of Steel Reinforced ConcreteBeam-Column Joints with Single-Side Force Inputs. Journal of Constructional Steel Research,2009: 65 (8-9):1569-1581
    31 H. C. Seol, S. H. Kwon, J. K. Yang, H. S. Kim, J. K. Kim. Effect of Differential MoistureDistribution on the Shortening of Steel-Reinforced Concrete Columns. Magazine of ConcreteResearch, 2008: 60 (5):313-322
    32聂建国,赵洁,柏宇等.钢管混凝土核心柱轴压极限承载力.清华大学学报(自然科学版),2006, 45(9):1153-1156
    33聂建国,柏宇,李盛勇等.钢管混凝土核心柱轴压组合性能研究.土木工程学报, 2006, 38(9):9-13
    34孙慧中,沈文都.劲性钢筋混凝土结构.建筑科学, 1992, 8(2):15-20
    35王连广,刘之洋.型钢混凝土结构在国内外应用和研究的进展.东北大学学报(自然科学版),1995, 16(3):238-242
    36 Zizinamimi, Atorod, S. K. Ghosh. Steel Reinforced Concrete Structures in 1995 HyogokenNanbu earthquake. Journal of Structural Engineering, 1997, 123(8):68-71
    37王连广.钢管高强混凝土边节点抗震性能试验研究.工程力学, 2006, 12(1):23-35
    38林立岩,李庆钢.钢管混凝土叠合柱的设计概念与技术经济分析.建筑结构, 2008, 38(3):17-21, 41
    39胡庆昌. 1995年日本阪神大地震中神户市房屋结构震害简介.建筑结构学报, 1996,17(3):10-12
    40胡庆昌.建筑结构抗震设计与研究.北京:中国建筑工业出版社, 1999
    41薛建阳.钢与混凝土组合结构.武汉:华中科技大学出版社, 2006
    42赵世春等.劲性钢筋混凝土柱基本抗震行为的试验研究.建筑结构学报, 1996, 17(3):43-51
    43赵世春等.劲性混凝土构件正截面强度的计算.西南交通大学学报, 1990(2):63-68
    44蒋东红,王连广,刘之洋.高强钢骨混凝土框架柱的抗震性能.东北大学学报(自然科学版),2006, 23(1):67-70
    45马怀忠,王天贤.钢-混凝土组合结构.北京:中国建材工业出版社, 2006
    46 R. Shohara, Y. Sawamoto, et al. Strength and Ductility of Non-embedded Steel ReinforcedConcrete Column Base. Journal of Advanced Concrete Technology, 2007, 5(2): 223-234
    47 British Standards Institutions. BS5400, Part 5, Concrete and Composite Bridges. London, UK,1979
    48 Eurocode 4. Design of Composite Steel and Concrete Structures, Part 1.1: General Rules andRules for Buildings (together with United Kingdom National Application Document). DD ENV1994-1-1:1994, British Standards Institution, London W1A2BS, 1994
    49 ACI 318-99. Building Code Requirements for Structural Concrete and Commentary. FarmingtonHills(MI), American Concrete Institute, Detroit, USA, 1999
    50 AISC. Load and Resistance Factor Design (LRFD) Specification for Structural Steel Buildings.Chicago American Institute of Steel Construction, Inc.; 1999
    51 ASCCS. Concrete Filled Steel Tubes—A Comparison of International Codes and Practices.ASCCS Seminar Report, Innsbruck, 1997
    52 Architechtural Institute of Japan(AIJ). Recommendations for Design and Construction of ConcreteFilled Steel Tubular Structures. 1997(in Japan)
    53 Architechtural Institute of Japan(AIJ). Standards for Structural Calculation of Steel ReinforcedConcrete Structures. 1987(in Japan)
    54冶金部建筑研究总院.苏联劲性钢筋混凝土结构设计指南(Cи3-78).北京:冶金工业部建筑研究总院技术情报室, 1983:18-35
    55受弯专题组.劲性钢筋混凝土受弯构件受力性能及计算方法-混凝土结构研究报告选集(3).北京:中国建筑工业出版社, 1994
    56短柱专题组.劲性钢筋混凝土短柱受力性能及计算方法-混凝土结构研究报告选集(3).北京:中国建筑工业出版社, 1994
    57受压专题组.劲性钢筋混凝土受压构件受力性能及计算方法研究-混凝土结构研究报告选集(3).北京:中国建筑工业出版社, 1994
    58梁柱节点专题组.劲性钢筋混凝土梁柱节点受力性能及受剪承载力-混凝土结构研究报告选集(3).北京:中国建筑工业出版社, 1994
    59劲性混凝土结构性能及设计方法课题组.劲性钢筋混凝土结构性能及设计方法综合报告.北京:劲性混凝土结构性能及设计方法课题组, 1991
    60中华人民共和国行业标准.钢骨混凝土结构设计规程(YB 9082-97).北京:冶金工业出版社,1998
    61中华人民共和国行业标准.型钢混凝土组合结构技术规程(JGJ 138-2001).北京:中国建筑工业出版社, 2001
    62 R. W. Furlong. Strength of Steel-Ecased Concrete Beam-Columns. Journal of Structural Division,ASCE, 2007, 93(5):113-124
    63 R. W. Furlong. Design of Steel-Ecased Concrete Beam-Columns. Journal of Structural Division,ASCE, 2008, 94(1):267-281
    64 R. B. Knowles, R. Park. Strength of Concrete Filled Steel Tubular Columns. Journal of StructuralDivision, ASCE, 2006, 92(12):2565-2587
    65 R. B. Knowles. R. Park. Axial Load Design for Concrete Filled Steel Tubes. Journal of StructuralDivision, ASCE, 2006, 92(10):2125-2153
    66 L. H. Han, Y. F. Yang. Cyclic Performance of Concrete-Filled Steel CHS Columns under FlexuralLoading. Journal of Constructional Steel Research, 2006, 61(5):423-452
    67 S. Ramana, P. Gopala, D. Manoharanb. Experimental Behaviour of Eccentrically Loaded SlenderCircular Hollow Steel Columns in-Filled with Fibre Reinforced Concrete. Journal ofConstructional Steel Research, 2007, 62(1):513-520
    68 L. H. Han, F. Y. Liao, T. zhong. Performance of Concrete Filled Steel Tube Reinforced ConcreteColumns Subjected to Cyclic Bending. Journal of Constructional Steel Research, 2009,65(3):1607-1616
    69 KojiroUenaka, HiroakiKitoh, Keiichiro Sonoda. Concrete Filled Double Skin Circular StubColumns under Compression. Thin-Walled Structures, 2010, 48(6):19-24
    70 W. Klingsch. New Developments in Fire Resistance of Hollow Section Structures. Symposium onHollow Structural Sections in Building Construction, ASCE, ChicagoIllinois, 1985:1~34
    71 T. T. Lie, R. J. Irwin. Evaluation of Fire Resistance of Reinforced Concrete Columns withRectangular Cross-Section. NRC-CNRC Internal Report, 1990, No.601
    72 R. Hass. On Realistic Testing of the Fire Protection Technology of Steel and Cement Supports.Translation of BHPR/NL/T/1444. 1991
    73 W. Klingsch. Optimization of Cross Sections of Steel Composite Columns. Proc. of theThirdInternational Conference on Steel-Concrete Composite Structures (II), ASCCS, Fukuoka,1991:99-105
    74 T. T. Lie, R. J. Irwin. Method to Calculate the Fire Resistance of Reinforced Concrete Columnswith Rectangular Cross Section. ACI Structural Journal, 1993, 90(1): 52-60
    75 T. T. Lie, E. M. A. Denham. Factors Affecting the Fire Resistance of Circular Hollow SteelColumns Filled with Bar-Reinforced Concrete. NRC-CNRC Internal Report, 1993, No.651
    76 T. T. Lie. Fire Resistance of Circular Steel Columns Filled with Bar-Reinforced Concrete.Journalof Structural Engineering, 1994, 120: 1489-1509
    77 T. T. Lie, R. J. Irwin. Fire Resistance of Rectangular Steel Columns Filled with Bar-ReinforcedConcrete. Journal of Structural Engineering, 1995, 121(5): 797-805
    78 T. T. Lie, V. K. R. Kodur. Fire Resistance of Steel Columns Filled with Bar-Reinforced Concrete.Journal of Structural Engineering, 1996, 122(1): 30-36
    79 V. K. R. Kodur, T. T. Lie. Fire Resistance of Rteel Columns Filled with Fiber-ReinforcedConcrete. Journal of Structural Engineering, 1996, 122(7): 776-782
    80林立岩,吴凌云.钢管高强混凝土叠合柱在辽宁省邮政枢纽大楼工程中的应用.高强混凝土工程应用,清华大学出版社, 1998: 76~78
    81赵大洲.钢骨-钢管高强混凝土组合柱力学性能的研究. [大连理工大学博士学位论文].2006:2
    82陶忠,韩林海,黄宏.方中空夹层钢管混凝土偏心受压柱力学性能的研究.土木工程学报,2006, 36(2): 33-40
    83韩林海.钢管混凝土结构.北京:科学出版社, 2000: 101-217
    84任少华.方钢管混凝土推出试验内力分配研究.陕西建筑, 2008, 35(6): 110-115
    85 Kojiro Uenaka, Hiroaki Kitoh, Keiichiro Sonoda. Concrete Filled Double Skin Circular StubColumns Under Compression. Thin-Walled Structures, 2010, 48 (1) :19–24
    86 X. L. Zhao, L. H. Han. Double Skin Composite Construction. Progress in Structural Engineeringand Materials, 2006, 8(3):93-102
    87 F. Yagishita, H. Kitoh, M. Sugimoto, T. Tanihira, K.Sonoda. Double Skin Composite TubularColumns Subjected to Cyclic Horizontal and Constant Axial Forces. Composite and HybridStructures, 2009, 1(1):497–503.
    88 V. Manojkumar, A. Chitawadagi, C. Mattur, Narasimhan, S. M. Kulkarni. Axial Capacity ofRectangular Concrete-Filled Steel Tube Columns-DOE Approach. Construction and BuildingMaterials, 2010, 24(12):585-595
    89 E. Ellobodya, B. Young. Nonlinear Analysis of Concrete-Filled Steel SHS and RHS Columns.Thin-Walled Structures, 2006, 44(10):919-930
    90 H. Mohamed, Harajli. Axial Stress-Strain Relationship for FRP Confined Circular and RectangularConcrete Columns. Cement & Concrete Composites, 2006, 28(8):938-948
    91 E. Ellobodya, B. Young, D. Lam. Eccentrically Loaded Concrete Encased Steel CompositeColumns. Thin-Walled Structures, 2011, 49(9):53-65
    92 E. Ellobodya, B. Young. Numerical Simulation of Concrete Encased Steel Composite Columns.Journal of Constructional Steel Research, 2011, 67(8):211-222
    93 N. M. F. Silva, N. Silvestre, D. Camotim. GBT Formulation to Analyse the Buckling Behaviour ofFRP Composite Open-Section Thin-Walled Columns. Composite Structures, 2010, 93(4):79-92
    94陶忠.方钢管混凝土构件力学性能若干关键问题的研究. [哈尔滨工业大学博士学位论文].2007: 114-145
    95 Lally. Handbook of Lally Column Construction (Steel Columns-Concrete Filled). Tenth Edition.New York: Lally Column Companies, 1926: 85
    96 W. A. Russell. Structural Properties of Light-Gage Tubular Columns. Housing ResearchPaper,Housing and Home Finance Agency. 1953,21: 86-99
    97 J. C. Chapman, P. K. Neogi. Research on Concrete Filled Tubular Columns. EngineeringStructures Laboratories, Civil Engineering Department, Imperial College, London. 1964,31:109-121
    98 H. J. Salani, J. R. Sims. Behavior of Mortar Filled Steel Tubes in Compression.Proceedings.American Concrete Institute. 1964, 61(10): 1271-1283
    99 R. W. Furlong. Strength of Steel Encased Concrete Beam Columns. Journal of theStructuralDivision, ASCE. 1967, 93(ST5): 113-124
    100 N. J. Gardner, E. R. Jacobson. Structural Behavior of Concrete Filled Steel Tubes. ACI Journal ofStructural Division, 1967,64(7): 404-413
    101 P. K. Neogi and H. K. Sen. Concrete Filled Steel Columns under Eccentric Loading. JournalofStructural Engineering, 1969,47(5): 187-195
    102 B. R. Knowles, R. Park. Strength of Concrete Filled Steel Tubular Columns. Journal of theStructural Division, ASCE. 1969,195(ST12): 2565-2586
    103 R. B. Knowles, R. Park. Axial Load Design for Concrete Filled Steel Tubes. Journal ofStructuralDivision, ASCE. 1970, 96(ST10): 2125-2153
    104 M. Tomii and K. Yashimaro. Experimental Strdies on Concrete Filled Steel Tubular Stub Columnunder Concentric Loading. Proceedings of the International Colloquium onStability of StructuresUnder Static and Dynamic Loads, SSRC/ASCE/Washington, D.C./March 17-19,1977: 718-741
    105 K. Sakina, M. Tomii and K. Watanabe. Sustaining Load Capacity of Plain Concrete Stub ColumnsConfined by Circular Steel Tubes. Proceedings of the International SpecialityConference onConcrete Filled Steel Tubular Structures, 1985: 112-118
    106 M. Tomii, X. Yan and K. Sakino. Experimental Study on the Properties of Concrete Confined inCircular Steel Tube. Proceedings of the International Speciality Conference onConcrete FilledSteel Tubular Structures, 1988: 24-31
    107 K.Sakino and H. Hayashi. Behavior of Concrete Filled Steel Tubular Stub columns underConcentric Loading. Proceedings of the Third International Conference on Steel-ConcreteComposite Structure, ASCCS, Fukuoka, Japan. 1991: 25-30
    108 T. Okamato and T.Maeno. Experimental Study on Rectangular Steel Tube Columns Infilled withUltra High Strength concrete Hardened by Centrifugal force. Annual Meeting of AIJ,Proceedings,Chiba. 1988: 1359-1374
    109 Y.Yoshioka. State of Art of Composite Steel Tube and Concrete Structures in Japan. Us-JapanWork Shop on composite and Hybrid Structures, Proceedings, Berkeley, California. 1992:119-130
    110 M. Shams and M. A. Saadeghvaziri. Nonlinear Evaluation of Axial Loaded Concrete Filled SteelTubular Columns. ACI Structural Journal, 1999,96(6): 777-786
    111 S. P. Schneider, Axially Loaded Concrete-Filled Steel Tubes. Journal of Structural Engineering,ASCE. 1998,124(10): 1125-1138
    112蒋家奋,汤关祚.三向应力混凝土.北京:中国铁道出版社, 1988
    113国家建筑材料工业局标准.钢管混凝土结构设计与施工规程(JCJ01-89).上海:同济大学出版社, 1989
    114中国工程建设标准化协会标准.钢管混凝土结构设计与施工规程(CECS28:90).北京:中国计划出版社, 1992
    115钟善桐.钢管混凝土结构(修订版).哈尔滨:黑龙江科学技术出版社, 1994
    116中华人民共和国经济贸易委员会.钢-混凝土组合结构设计规程(DL/T 5085-1999).北京:中国电力出版社, 1999
    117 L. H. Han, Y. F.Yang. Cyclic Performance of Concrete-Filled Steel CHS Columns under FlexuralLoading. Journal of Constructional Steel Research, 2006, 61(10):423-452
    118 S. R. Gopal, P. D. Manoharan. Experimental Behaviour of Eccentrically Loaded Slender CircularHollow Steel Columns In-Filled with Fibre Reinforced Concrete. Journal of Constructional SteelResearch, 2006, 62(9):513-520
    119 L. H. Han, F. Y. Liao, T. Zhong, Z. Hong. Performance of Concrete Filled Steel TubeReinforced Concrete Columns Subjected to Cyclic Bending. Journal of Constructional SteelResearch, 2009, 65(3):1607-1616
    120 A. Elremaily, A. Azizinamini. Behavior and Strength of Circular Concrete-Filled tube Columns.Journal of Constructional Steel Research, 2007, 58(12):1567-1591
    121林拥军.配有圆钢管的钢骨混凝土柱试验研究. [东南大学博士学位论文]. 2002: 18-20
    122钱稼茹,康洪震.钢管高强混凝土组合柱抗震性能试验研究.建筑结构学报, 2009,30(14):85-93
    123中国工程建设标准化协会标准.钢管混凝土叠合柱结构技术规程(CECS188:2005).北京:中国计划出版社, 2006
    124吴波,刘克敏,李惠.钢骨高强混凝土叠合柱弯矩曲率关系的非线性分析.哈尔滨建筑大学学报, 1999, 32(5):6-10
    125李惠,刘克敏,吴波.钢骨高强混凝土叠合柱压弯矩承载力的研究.哈尔滨建筑大学学报,2001, 34(3):1-4
    126李惠,刘克敏,吴波.钢骨高强混凝土叠合柱轴压比限值的研究.建筑结构学报, 2001,22(2):66-70
    127李惠,王震宇,吴波.钢骨高强混凝土叠合柱轴压的轴力分配及名义轴压比限值研究.世界地震工程, 1999, 15(2):1-8
    128尹维平,彭佩基,肖玉礼等.箍筋配置对轴心受压外包角钢短柱工作性能影响的试验研究.哈尔滨建筑工程学院学报, 1982(1):41-50
    129周起敬,姜维山,潘泰华.钢与混凝土组合结构设计施工手册.北京:中国建筑工业出版社,1991:339-393
    130王连广.钢与混凝土组合结理论与计算.北京:科学出版社, 2006:234
    131姜绍飞,刘之洋,林泉洪.外包钢轴压短柱的试验研究与性能分析.实验力学, 1997,12(2):329-334
    132王冬雁,许淑芳,姜维山.外包钢钢筋混凝土柱的试验研究.西北建筑工程学院学报(自然科学版), 2000, 17(2):26-30 17
    133戚继亮.外包钢加固低强度混凝土柱偏压试验研究. [上海大学硕士学位论文]. 2009
    134郑文忠,王琨.型钢混凝土梁-角钢混凝土柱框架抗震性能试验研究.土木工程学报, 2011,44(3):49-60
    135陆新征,江见鲸.用ANSYS Solid 65单元分析混凝土组合构件复杂应力.建筑结构, 2003,23(6):22-24
    136李小伟,赵均海,朱铁栋等.方钢管混凝土轴压短柱的力学性能.中国公路学报, 2006, 19(4):77-81
    137中华人民共和国国家标准.混凝土结构设计规范(GB 50010-2002).北京:中国建筑工业出版社, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700