萨氏海鞘(Ciona savignyi) miRNA的生物信息学预测、实验验证与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文用生物信息学方法分析萨氏海鞘(C. savignyi)、玻璃海鞘(C.intestinalis)和尾海鞘(Oikopleura dioica)的miRNA,共预测了52个Ciona属海鞘特有miRNA、527个保守性miRNA、37个miRNA簇。首次实验验证了6个萨氏海鞘miRNA的表达。
     通过聚类分析将萨氏海鞘的180个预测miRNA归纳为140个家族,发现海鞘miRNA家族的构成与其他后口动物之间有很大的差异,80.00%的萨氏海鞘miRNA家族为尾索动物所特有,与其他几种脊索动物共有的只有16.43%,与其他几种后口动物共有的只有3.57%。海鞘系统发生中miRNA的显著变化可能推动了其机体结构的重大变化以适应固着生活的新生活方式和新环境。
     对表达实验阳性的miRNA进行了生物信息学功能预测,GO功能分类表明miRNA可能调控多种生物学过程;其中csa_2-com和csa_7可能调控心脏发育,而csa_m-27c和csa_9-com可能调控胚胎发育中的多种过程。
     对萨氏海鞘csa_m-27c的表达检测发现,它在精卵细胞发育过程中表达量较低,在受精卵进入胚胎发育过程之后表达显著上调,胚胎发育结束之后明显下降,提示它对胚胎发育过程的基因表达调控可能具有重要作用。
     萨氏海鞘与非尾索动物之间具有数量众多的同序列异源miRNA,暗示着miRNA进化中可能存在具有序列特异性的选择压力。靶基因的序列特异性可能是miRNA趋同进化的动力。
     保守性miRNA靶基因与其他物种已有的靶基因实验证据的比较分析表明,保守性miRNA家族的靶基因序列可能发生变异而脱离调控,然而miRNA通过调控与原靶基因密切相关的基因(例如其受体)仍可能保持对原生物学过程的调控。Ciona属海鞘特有的csa_m-27c是脊椎动物miR-27家族的异源同功miRNA——具有相似的调控作用,但不是同源基因。这暗示miRNA介导的转录后调控体系可能超越序列水平而在生物学过程水平上的具有保守性。
Prediction of miRNAs for3Urochordates (C. savignyi, C. intestinalis andOikopleura dioica) were carried out with bioinformatic approaches. We predicted527conservative miRNA genes from the3species, including52miRNA genesspecific to the Urochordata family Ciona and37miRNA gene clusters. Wereported the first collection of6experimentally validated miRNAs in C. savignyi.
     We clustered the180predicted C savignyi miRNAs into140families by PBCbootstrap analysis among6Deuterostomias, and found that80.00%of them arespecific to family Ciona, only16.43%and3.57%are conserved with otherChordates and Deuterostomias, respectively. The profound change in miRNArepertoire might have played an important role in the dramatic change of life styleand morphology during Ascidians phylogenesis.
     Function of6experimentally validated C. savignyi miRNAs are analyzed bycomputational prediction of their potential target genes. Gene ontology analysissuggests that multiple biological progresses are regulated by these miRNAs, amongwhich embryonic development may be regulated by csa_m-27c and csa_9_com, andheart development may be the targeted progress of csa_2-com and csa_7.
     Temporal and spacial expression profile of the novel miRNA csa_m-27c showsthat its expression was low in the gonad, but increased significantly duringembryonic development before dropped abruptly while the C. savignyi developedinto tadpole larva, indicting an important role of csa_m-27c in the embryonicdevelopment, which is accordant to the bioinformatic function analysis.
     Ciona savignyi shares many sequencially similar miRNAs with non-Urochordataanimals, but only a third of them are homologous. Numerous analogous miRNAssuggests sequencially selective pressure from miRNA targets.
     By comparison between predicted targets of conservative C. savignyi miRNAsand reported experimental evidences, we found that conservative miRNAs maysometime maintain their regulation of a specific biological progress even if they lostthe control of a target gene. csa_m-27c is an analogy of miR-27c family. Itfunctions similar to miR-27but have a different origin, like a miRNA equivalent ofan isozyme. This suggests that conservation of miRNA mediated transcriptionalregulation system may exceed sequence level and live up to progress level.
引文
1. Kim, V.N., MicroRNA biogenesis: Coordinated cropping and dicing. Nature ReviewsMolecular Cell Biology,2005.6(5): p.376-385.
    2. Heimberg, A.M., et al., MicroRNAs and the advent of vertebrate morphological complexity.Proceedings of the National Academy of Sciences of the United States of America,2008.105(8): p.2946-2950.
    3. Okazaki, Y., et al., Analysis of the mouse transcriptome based on functional annotation of60,770full-length cDNAs. Nature,2002.420(6915): p.563-573.
    4. Collignon, J., MiRNA in embryonic development: The taming of nodal signaling.Developmental Cell,2007.13(4): p.458-460.
    5. Martello, G., et al., MicroRNA control of nodal signalling. Nature,2007.449(7159): p.183-U1.
    6. Gregory, R.I., et al., The Microprocessor complex mediates the genesis of microRNAs. Nature,2004.432(7014): p.235-240.
    7. Pratt, A.J. and I.J. MacRae, The RNA-induced Silencing Complex: A Versatile Gene-silencingMachine. Journal of Biological Chemistry,2009.284(27): p.17897-17901.
    8. Meister, G. and T. Tuschl, Mechanisms of gene silencing by double-stranded RNA. Nature,2004.431(7006): p.343-349.
    9. Liu, J.D., et al., Argonaute2is the catalytic engine of mammalian RNAi. Science,2004.305(5689): p.1437-1441.
    10. Hammond, S.M., et al., Argonaute2, a link between genetic and biochemical analyses of RNAi.Science,2001.293(5532): p.1146-1150.
    11. Humphreys, D.T., et al., MicroRNAs control translation initiation by inhibiting eukaryoticinitiation factor4E/cap and poly(A) tail function. Proceedings of the National Academy ofSciences of the United States of America,2005.102(47): p.16961-16966.
    12. Valencia-Sanchez, M.A., et al., Control of translation and mRNA degradation by miRNAs andsiRNAs. Genes&Development,2006.20(5): p.515-524.
    13. Standart, N. and R.J. Jackson, MicroRNAs repress translation of m(7) Gppp-capped targetmRNAs in vitro by inhibiting initiation and promoting deadenylation. Genes&Development,2007.21(16): p.1975-1982.
    14. Pillai, R.S., S.N. Bhattacharyya, and W. Filipowicz, Repression of protein synthesis bymiRNAs: how many mechanisms? Trends in Cell Biology,2007.17(3): p.118-126.
    15. Nilsen, T.W., Mechanisms of microRNA-mediated gene regulation in animal cells. Trends inGenetics,2007.23(5): p.243-249.
    16. Iorio, M.V., et al., MicroRNA gene expression deregulation in human breast cancer. CancerResearch,2005.65(16): p.7065-7070.
    17. Bagga, S., et al., Regulation by let-7and lin-4miRNAs results in target mRNA degradation.Cell,2005.122(4): p.553-563.
    18. Griffiths-Jones, S., et al., miRBase: tools for microRNA genomics. Nucleic Acids Research,2008.36: p. D154-D158.
    19. Bentwich, I., et al., Identification of hundreds of conserved and nonconserved humanmicroRNAs. Nature Genetics,2005.37(7): p.766-770.
    20. Lim, L.P., et al., Microarray analysis shows that some microRNAs downregulate largenumbers of target mRNAs. Nature,2005.433(7027): p.769-773.
    21. Rana, T.M., Illuminating the silence: understanding the structure and function of small RNAs.Nature Reviews Molecular Cell Biology,2007.8(1): p.23-36.
    22. Kloosterman, W.P. and R.H.A. Plasterk, The diverse functions of MicroRNAs in animaldevelopment and disease. Developmental Cell,2006.11(4): p.441-450.
    23. Bushati, N. and S.M. Cohen, MicroRNA functions. Annual Review of Cell and DevelopmentalBiology,2007.23: p.175-205.
    24. Friedman, R.C., et al., Most mammalian mRNAs are conserved targets of microRNAs. GenomeResearch,2009.19(1): p.92-105.
    25. Kim, V.N. and J.W. Nam, Genomics of microRNA. Trends in Genetics,2006.22(3): p.165-173.
    26. Du, T.T. and P.D. Zamore, microPrimer: The biogenesis and function of microRNA.Development,2005.132(21): p.4645-4652.
    27. Tanzer, A. and P.F. Stadler, Molecular evolution of a microRNA cluster. Journal of MolecularBiology,2004.339(2): p.327-335.
    28. Lagos-Quintana, M., et al., Identification of tissue-specific microRNAs from mouse. CurrentBiology,2002.12(9): p.735-739.
    29. Washietl, S., et al., Structured RNAs in the ENCODE selected regions of the human genome.Genome Research,2007.17(6): p.852-864.
    30. Birney, E., et al., Identification and analysis of functional elements in1%of the humangenome by the ENCODE pilot project. Nature,2007.447(7146): p.799-816.
    31. Cheng, J., et al., Transcriptional maps of10human chromosomes at5-nucleotide resolution.Science,2005.308(5725): p.1149-1154.
    32. Lee, R.C., R.L. Feinbaum, and V. Ambros, THE C-ELEGANS HETEROCHRONIC GENELIN-4ENCODES SMALL RNAS WITH ANTISENSE COMPLEMENTARITY TO LIN-14. Cell,1993.75(5): p.843-854.
    33. Tam, O.H., et al., Pseudogene-derived small interfering RNAs regulate gene expression inmouse oocytes. Nature,2008.453(7194): p.534-U8.
    34. Zhao, T., et al., A complex system of small RNAs in the unicellular green alga Chlamydomonasreinhardtii. Genes&Development,2007.21(10): p.1190-1203.
    35. Molnar, A., et al., miRNAs control gene expression in the single-cell alga Chlamydomonasreinhardtii. Nature,2007.447(7148): p.1126-U15.
    36. Lund, E., et al., Nuclear export of microRNA precursors. Science,2004.303(5654): p.95-98.
    37. Han, J.J., et al., The Drosha-DGCR8complex in primary microRNA processing. Genes&Development,2004.18(24): p.3016-3027.
    38. Denli, A.M., et al., Processing of primary microRNAs by the Microprocessor complex. Nature,2004.432(7014): p.231-235.
    39. Hutvagner, G., et al., A cellular function for the RNA-interference enzyme Dicer in thematuration of the let-7small temporal RNA. Science,2001.293(5531): p.834-838.
    40. Grishok, A., et al., Genes and mechanisms related to RNA interference regulate expression ofthe small temporal RNAs that control C-elegans developmental timing. Cell,2001.106(1): p.23-34.
    41. Bernstein, E., et al., Role for a bidentate ribonuclease in the initiation step of RNAinterference. Nature,2001.409(6818): p.363-366.
    42. Khvorova, A., A. Reynolds, and S.D. Jayasena, Functional siRNAs and miRNAs exhibit strandbias (vol115, pg209,2003). Cell,2003.115(4): p.505-505.
    43. Schwarz, D.S., et al., Asymmetry in the assembly of the RNAi enzyme complex. Cell,2003.115(2): p.199-208.
    44. Park, W., et al., CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act inmicroRNA metabolism in Arabidopsis thaliana. Current Biology,2002.12(17): p.1484-1495.
    45. Peters, L. and G. Meister, Argonaute proteins: Mediators of RNA silencing. Molecular Cell,2007.26(5): p.611-623.
    46. Filipowicz, W., et al., Post-transcriptional gene silencing by siRNAs and miRNAs. CurrentOpinion in Structural Biology,2005.15(3): p.331-341.
    47. Tolia, N.H. and L. Joshua-Tor, Slicer and the Argonautes. Nature Chemical Biology,2007.3(1): p.36-43.
    48. Jin, P., R.S. Alisch, and S.T. Warren, RNA and microRNAs in fragile X mental retardation.Nature Cell Biology,2004.6(11): p.1048-1053.
    49. Pauley, K.M., et al., Formation of GW bodies is a consequence of microRNA genesis. EmboReports,2006.7(9): p.904-910.
    50. Liu, J.D., et al., A role for the P-body component GW182in microRNA function. Nature CellBiology,2005.7(12): p.1261-1266.
    51. Behm-Ansmant, I., et al., MRNA degradation by miRNAs and GW182requires both CCR4:NOT deadenylase and DCP1: DCP2decapping complexes. Genes&Development,2006.20(14): p.1885-1898.
    52. Kiriakidou, M., et al., An mRNA m(7)G cap binding-like motif within human Ago2repressestranslation. Cell,2007.129(6): p.1141-1151.
    53. Filipowicz, W., S.N. Bhattacharyya, and N. Sonenberg, Mechanisms of post-transcriptionalregulation by microRNAs: are the answers in sight? Nature Reviews Genetics,2008.9(2): p.102-114.
    54. Baek, D., et al., The impact of microRNAs on protein output. Nature,2008.455(7209): p.64-U38.
    55. Hobert, O., Gene regulation by transcription factors and microRNAs. Science,2008.319(5871): p.1785-1786.
    56. Stark, A., et al., Systematic discovery and characterization of fly microRNAs using12Drosophila genomes. Genome Research,2007.17(12): p.1865-1879.
    57. Ruby, J.G., et al., Evolution, biogenesis, expression, and target predictions of a substantiallyexpanded set of Drosophila microRNAs. Genome Research,2007.17(12): p.1850-1864.
    58. Sempere, L.F., et al., The phylogenetic distribution of metazoan microRNAs: Insights intoevolutionary complexity and constraint. Journal of Experimental Zoology Part B-Molecularand Developmental Evolution,2006.306B(6): p.575-588.
    59. Fu, X.H., M. Adamski, and E.M. Thompson, Altered miRNA repertoire in the simplifiedchordate, Oikopleura dioica. Molecular Biology and Evolution,2008.25(6): p.1067-1080.
    60. Griffiths-Jones, S., The microRNA Registry. Nucleic Acids Research,2004.32: p. D109-D111.
    61. Ambros, V., et al., A uniform system for microRNA annotation. Rna-a Publication of the RnaSociety,2003.9(3): p.277-279.
    62. Gaidatzis, D., et al., Inference of miRNA targets using evolutionary conservation and pathwayanalysis. Bmc Bioinformatics,2007.8.
    63. Bartel, D.P., MicroRNAs: Target Recognition and Regulatory Functions. Cell,2009.136(2): p.215-233.
    64. Norden-Krichmar, T.M., et al., Computational prediction and experimental validation ofCiona intestinalis microRNA genes. Bmc Genomics,2007.8.
    65. Lim, L.P., et al., Vertebrate MicroRNA genes. Science,2003.299(5612): p.1540-1540.
    66. Hendrix, D., M. Levine, and W. Shi, miRTRAP, a computational method for the systematicidentification of miRNAs from high throughput sequencing data. Genome Biology.11(4): p.R39.
    67. Grad, Y., et al., Computational and experimental identification of C-elegans microRNAs.Molecular Cell,2003.11(5): p.1253-1263.
    68. Hofacker, I.L., et al., FAST FOLDING AND COMPARISON OF RNA SECONDARYSTRUCTURES. Monatshefte Fur Chemie,1994.125(2): p.167-188.
    69. Lim, L.P., et al., The microRNAs of Caenorhabditis elegans. Genes&Development,2003.17(8): p.991-1008.
    70. Burge, C. and S. Karlin, Prediction of complete gene structures in human genomic DNA.Journal of Molecular Biology,1997.268(1): p.78-94.
    71. Xue, C.H., et al., Classification of real and pseudo microRNA precursors using localstructure-sequence features and support vector machine. Bmc Bioinformatics,2005.6.
    72. Huang, Y. and X. Gu, A bootstrap based analysis pipeline for efficient classification ofphylogenetically related animal miRNAs. Bmc Genomics,2007.8.
    73. Kim, Y.K. and V.N. Kim, Processing of intronic microRNAs. Embo Journal,2007.26(3): p.775-783.
    74. Rodriguez, A., et al., Identification of mammalian microRNA host genes and transcriptionunits. Genome Research,2004.14(10A): p.1902-1910.
    75. Takuno, S. and H. Innan, Evolution of complexity in miRNA-mediated gene regulation systems.Trends in Genetics,2008.24(2): p.56-59.
    76. Chen, C.F., et al., Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic AcidsResearch,2005.33(20).
    77. Wu, S., et al., Multiple microRNAs modulate p21Cip1/Waf1expression by directly targeting its3' untranslated region. Oncogene,2010.29(15): p.2302-2308.
    78. John, B., et al., Human MicroRNA targets. Plos Biology,2004.2(11): p.1862-1879.
    79. Ye, J., et al., WEGO: a web tool for plotting GO annotations. Nucleic Acids Research,2006.34: p. W293-W297.
    80. Luo, K.X., et al., The Ski oncoprotein interacts with the Smad proteins to repress TGF betasignaling. Genes&Development,1999.13(17): p.2196-2206.
    81. Akiyoshi, S., et al., c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with Smads. Journal of Biological Chemistry,1999.274(49): p.35269-35277.
    82. Xu, W.D., et al., Ski acts as a co-repressor with Smad2and Smad3to regulate the response totype beta transforming growth factor. Proceedings of the National Academy of Sciences of theUnited States of America,2000.97(11): p.5924-5929.
    83. Lin, Y.C., et al., Human TRIM71and its nematode homologue are targets of let-7MicroRNAand its zebrafish orthologue is essential for development. Molecular Biology and Evolution,2007.24: p.2525-2534.
    84. Shah, Y.A., et al., Peroxisome proliferator-activated receptor alpha regulates a microRNA-mediated signaling cascade responsible for hepatocellular proliferation. Molecular andCellular Biology,2007.27(12): p.4238-4247.
    85. Qian, J.F., X.L. Wang, and E. Wang, Molecular cloning and characterizing a novel humanMax-associated protein, hMad4, as nonproliferation-specific. Molecular Biology of the Cell,1997.8: p.790-790.
    86. Marcotte, R., et al., c-Myc creates an activation loop by transcriptionally repressing its ownfunctional inhibitor, hMad4, in young fibroblasts, a loop lost in replicatively senescentfibroblasts. Journal of Cellular Biochemistry,2005.96(5): p.1071-1085.
    87. Negishi, Y., et al., IDENTIFICATION AND CDNA CLONING OF SINGLE-STRANDED-DNABINDING-PROTEINS THAT INTERACT WITH THE REGION UPSTREAM OF THEHUMAN C-MYC GENE. Oncogene,1994.9(4): p.1133-1143.
    88. Johnson, S.M., et al., RAS is regulated by the let-7MicroRNA family. Cell,2005.120(5): p.635-647.
    89. Tsuchiya, Y., et al., MicroRNA regulates the expression of human cytochrome P4501B1.Cancer Research,2006.66(18): p.9090-9098.
    90. Mertens-Talcott, S.U., et al., The oncogenic microRNA-27a targets genes that regulatespecificity protein transcription factors and the G(2)-M checkpoint in MDA-MB-231breastcancer cells. Cancer Research,2007.67(22): p.11001-11011.
    91. Fukuda, Y., H. Kawasaki, and K. Taira, Exploration of human miRNA target genes in neuronaldifferentiation. Nucleic Acids Symp Ser (Oxf),2005(49): p.341-2.
    92. Scott, G.K., et al., Coordinate suppression of ERBB2and ERBB3by enforced expression ofmicro-RNA miR-125a or miR-125b. Journal of Biological Chemistry,2007.282(2): p.1479-1486.
    93. McManus, M.J., et al., An oncogenic epidermal growth factor receptor signals via a p21-activated kinase-caldesmon-myosin phosphotyrosine complex. Journal of Biological Chemistry,2000.275(45): p.35328-35334.
    94. Harris, T.A., et al., MicroRNA-126regulates endothelial expression of vascular cell adhesionmolecule1. Proceedings of the National Academy of Sciences of the United States of America,2008.105(5): p.1516-1521.
    95. Balzac, F., et al., EXPRESSION OF BETA-1B INTEGRIN ISOFORM IN CHO CELLSRESULTS IN A DOMINANT-NEGATIVE EFFECT ON CELL-ADHESION AND MOTILITY.Journal of Cell Biology,1994.127(2): p.557-565.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700