兰州某钢厂附近土壤重金属与磁化率测量及环境意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤是人类环境的重要组成部分,也是地表环境系统中物质与能量迁移和转化的重要载体,在维护和保持地球表层环境系统的自然平衡和环境质量中起着重要作用。钢铁厂排放的废水、废气、废渣严重污染周围的土壤,因此对钢铁厂造成的土壤污染的监测与研究引起了广泛关注。本文通过测定兰州某钢铁厂附近的土壤Pb、Zn、Cu、Fe和Mn金属元素含量及磁化率,结合岩石磁学参数(等温剩磁、热磁曲线、磁滞回线)分析,取得了如下成果:
     1.Pb、Zn、Cu、Fe和Mn元素含量变化趋势大致相同,并且均在最表层土壤中含量最大。金属元素之间显著相关,相关系数为0.6~0.86,表明金属元素来源相同。金属污染现状评价结果显示:垂直方向上,污染主要集中在2cm以上土壤;水平方向上,污染程度受主导风向和污染源影响,钢铁厂上风向属轻度污染,下风向2km范围内多属中度污染(其中污染物落地最大浓度点位于采点A9附近(距炼钢炉1.2km),属重度污染),2km至最远采点(3.7km)属轻度污染。
     2.高、低频磁化率值变化趋势一致,均从下向上升高,在深度20-5 cm,磁化率值基本不变,在5~2 cm,磁化率值逐渐升高,2 cm处磁化率值快速升高,达5 cm处的1.45倍,而在2~0 cm,磁化率值骤然增大,在0.5~0cm处最大,是5 cm深度以下样品的3.5倍,表明深度2cm以上的土壤中有外来磁性矿物的输入。磁化率在水平方向上的变化与金属元素的变化特征一致。磁化率和频率磁化率呈负相关关系,表明表层土壤的磁化率增高是钢铁厂排放污染物造成的,而且主要集中在深度2~0cm;岩石磁学测量表明外来输入的磁性矿物主要为假单畴-多畴粒级的磁铁矿,而背景土壤中磁性矿物则为赤铁矿和磁铁矿。
     3.磁化率和重金属元素含量显著相关,指示磁性矿物和金属元素具有类似的来源。基于环境磁学方法比常规化学方法相对简便、快速、经济、不破坏样品且无二次污染,本文提出了磁化率浓集因子(S)这一新的土壤污染监测评价参数,并按照金属元素污染判断指标和磁化率变化特征,提出了判断污染程度的磁化率浓集因子指标体系(分别为Si≤1属无污染、120属重度污染),为快速而经济地进行土壤污染监测与评价提供新的指标。
Soil is an important part of environment, it plays an important role in migration and transformation of matter and energy. However, waste which comes from steel factories pollutes the air, water and soil seriously. Therefore studying the soil pollution adjacent the steel factory is practically significant. With the advantage of simple, fast, inexpensive, non-destructive measurement, environmental-magnetic methods have been widely used in environmental pollution studies. Based on the measurement of the contents of Pb, Zn, Cu, Fe, Mn and magnetic susceptibility of the soils adjacent a steel factory near Lanzhou city, together with the rock-magnetism parameters of representative samples (including isothermal remanent magnetization (IRM), magnetic remanent coercivity (Bcr), saturation magnetization (Ms) and saturation remanent magnetization (Mrs), magnetization unblocked temperature), this paper evaluates the pollution of the soils in this region, and proposes a new indicator-the magnetic susceptibility concentration.
     The contents of the measured heavy metals are significantly increased in the topsoil. And the similar fluctuant trend depth-dependent for each measured heavy metal with a correlation coefficient of 0.66~0.86 is found in the measured profile. All these show that the anthropogenic dust input into the topsoil. This suggests that the steel factory is probably the predominant cause for strong metal signals. Pollution is mainly found in the downwind direction area, of which the strongest part is in a range of 2 km and a depth of 2 cm. All the individual pollution indexes and Nemerow indexes of heavy metals of topsoil are higher than 1, pollution indexes of sampling A9 of topsoil are higher than 3, which show that the topsoil is contained seriously.
     The magnetic susceptibility in uppermost soil horizons (0~2cm) increases significantly relative to the deep soil, and gradually decrease at 2~5 cm. The magnetic susceptibility of soils below 5 cm has not been disturbed, thus it can refer to the background values of soil here. Negative correlation between magnetic susceptibility and frequency indicates that high susceptibility values of the topsoil are caused by the steel factory emissions. The variation of the susceptibility is consistent with the measured heavy metals, indicating that the pollution area estimated by the magnetic susceptibility corresponds to that by the heavy metals. Rock-magnetism measurement show that magnetite and hematite exist in the deep soils (below 5cm levels) and the magnetite predominates in the polluted topsoil samples. The plot of Day indicates the grain sizes of magnetite are mainly pseudo-domain and a few of multi-domain.
     A strong correlation between the magnetic susceptibility and metals indicates they have the same source. Here we propose magnetic susceptibility concentration factor (S) as a new indicator to evaluate the magnitude of the soil pollution, whose criteria calculated from the correspondent index system of Nemerow, i.e. Si≤l referring to non-pollution,120 to heavy pollution. It is expected that the S would be used as an effective indicator to monitor and evaluate the magnitude of soil pollution instead of the chemical parameters.
引文
[1]Bar. Ness E, Chen Y. Manure and Pear based iron-Organo complexes 1:Characterization and enrichment [J]. Plant and soil,1991,130:35-43.
    [2]Chester R, Sharples E J, Sanders G S, et al. The distribution of natural and non-crustal ferromagnetic minerals in soil-sized-particulates from the Mediterrnean atmosphere [J]. Water, Air, Soil Pollution,1984,23:25-35.
    [3]Crockford R H, Fleming P M. Environmental magnetism as a stream sediment tracer:an interpretation of the methodology and some case studies [J]. Australian Journal of Soil Research,1998,36(1):167.
    [4]Dearing J A. Environmental magnetic susceptibility, using the Bartington MS2 system [J]. Second edition, England:Chi Publishing,1999.
    [5]Evans M E, Heller F. Environmental Magnetism:Principles and Applications of Environmagnetics [J]. California:Academic Press,2003.211-229.
    [6]Fine P, Singer M J, Verosub K L, et al. New evidence for the origin of ferrimagnetic minerals in loess from China [J]. Soil Science Society of America Journal,1993,57:1537-1542.
    [7]Flanders P J. Identifying fly ash at a distance from fossil fuel power station [J] Environmental Science and Technology,1999,33:528-532.
    [8]Gautam P, Blaha U, Appel E et al. Environmental magnetic approach towards the quantification of pollution in Kathmandu urban area, Nepal [J]. Physics and Chemistry of the Earth,2004,29:973-984.
    [9]GUO Z, LIU T, Fedotoff N, Wei L, Ding Z, Wu N, Lu H, Jiang W, An Z. Climate extremes in loess of China coupled with the strength of deep-water formation in the North Atlantic [J]. Global and Planetary Change,1988,18:113-128.
    [10]Hansen L D, et al. Grystalline components of stack collected size-fractioned coal fly ash [J]. Environ, Sci.Technol,1981,15:1057-1062.
    [11]Hay K L. Dearing JA, Baban SM J, et al 1997. A preliminary attempt to identify atmospherically derived particles in English topsoils from magnetic susceptibility measurements [J]. Physics and Chemistry of Earth,22 (1-2):207-210.
    [12]Heller F, Evans M E. Loess magnetism [J]. Rev. Geophys.,1995,33:211-240.
    [13]Heller F, LIU T S. The magnetostratigraphy dating of Chinese loess deposits [J]. Nature, 1982,300:431-433.
    [14]Hoffmann V, Knab M, Appel E. Magnetic susceptibility mapping of roadside pollution [J]. Journal of Geochemical Exploration,1999,66:313-326.
    [15]Hunt A, Jones J, Oldfield F. Magnetic measurements and heavy metals in atmospheric particulateres of anthropogenic origin [J].Science Total Environment,1984,33:129-139.
    [16]Hunt A. The application of mineral magnetic methods to atmospheric aerosol discrimination [J]. Physics of the Earth and Planetary Interiors,1986,42:12-21.
    [17]Kapicka A, Petrovsky E, Ustjak S, et al. Proxy mapping of fly-ash pollution of soils around a coal-burning power plant:a case study in Czech Republic [J]. Journal of Geochemical Exploration,1999,66:291-297.
    [18]Kukla Q Heller F, Liu X M, Xu T C, Liu T S, An Z S. Pleistocene climates in China dated by magnetic susceptibility [J]. Geology,1988,16:811-814.
    [19]Li X D Thornton I. Chemical Partitioning of trace and major elements in soils contaminated by mining and smelting activities [J]. Applied Geochemistry,2001,16:1693-1706.
    [20]Li X D Thornton I. Chemical Partitioning of trace and major elements in soils contaminated by mining and smelting activities [J]. Applied Geochemistry,2001,16:1693-1706.
    [21]Lu S G, Bai S Q. Study on the correlation of magnetic properties and heavy metals content in urban soils of Hangzhou City, China [J]. Journal of Applied Geophysics,2006,60:1-12.
    [22]Lu Y, Gong Z T, Zhang G L, et al. Concentrations and chemical speciations of Cu, Zn, Pb and Cr of urban soils in Nanjing, China [J]. Geoderma,2003,115 (1/2):101-111.
    [23]Maher B A, Thompson R.1999. Quarternary climates, environment and magnetism [M]. Cambridge University Press.
    [24]Mayer T., Morris W.A., Versteeg K. J. Feasibility of using magnetic properties for assess-ment of particale-assoceated contaminant transport [J]. Water Quality Research Journal, Cannada,1996,31:741-752.
    [25]Muxworthy A. R., Matzka, J., Petersen. N. Comparison of magnetic parameters of urban atmospheric particulate matter with pollution and meteorological data [J]. Atmospheric Environment.2002,35:4379-4386.
    [26]Ngobi G N, Kelts K, Johnson T C et al. Environmental magnetism of Late Pleistocene/ Holocene sequences from lake victoria, east Africa [J]. Mono Graphiae Biologicae,1998, 79:59.
    [27]Odfield F, Appleby P G, Thompson R. Palacoecological studies of three lakes in the highlands of Papua New Guinea I The chronology of sedimentation [J]. Ecol,1980,68:457-477.
    [28]Oldfield F, Hunt A, Jones M DH, et al. Magnetic differentiation of atmospheric dusts. Nature, 1985,317:516-518.
    [29]Robert J. Lauf, Lawrence A. Harris, Susan S. Rawlston. Pyrite framboids as the source of magnetite spheres in fly ash Environ [J]. Sci. Technol.,1982,16 (4),218-220.
    [30]Scoullos M.J., Oldfied F., Thompson R. Magnetic monitoring of marine particulate pollution in the Elefsis Gulf, Greece [J]. Marine Pollution Bulletin,1979,10(10):287-291.
    [31]Shu J, Dearing J A, Morse A P, et al. Magnetic properties of daily sampled total suspended particles in Shanghai, China [J]. Environmental Science and Technology,2000,34:2393-2400.
    [32]Tang L L, Tang X Y, Zhu Y G, et al. Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China [J]. Environment International,2005,31:822-828.
    [33]Taylor M D. Accumulation of cadmium derived from fertilizers in New Zealand soil [J]. The Science of Total Environment,1997,208 (1/2):123-126.
    [34]Thompson R, Oldfield F.1986. Environmental Magnetism [M]. London:Allen and Unwin.
    [35]Weber, S., Hoffmann, P., Ensling, J., et al. Characterization of iron compounds from urban and rural aerosols sources [J]. Journal of Aerosol Science,2000,31(8):987-997.
    [36]ZHIYUN LIN. The source and fate of Pbin central Sweden [J]. Sci. Total Environ,1998.209 (1):47-58.
    [37]HJ/T166-2004 土壤环境监测技术规范[S].
    [38]安芷生,李华梅,王俊达.洛川黄土剖面的古地磁学研究[J].地球化学,1977,(4):239 -249.
    [39]陈满荣,俞立中,张卫国,等.山西耕作土壤样品磁性空间分异及其环境意义[J].生物磁学,2006,6(1):1-6.
    [40]陈志良,仇荣亮,张军书,等.重金属污染土壤的修复技术[J].环境保护,2002(6):2123.
    [41]单红丹,卢升高.火电厂粉煤灰的矿物磁性及其环境意义[J].矿物学报,2005,25(2):141-146.
    [42]邓成龙,刘青松,潘永信,等.中国黄土环境磁学[J].第四纪研究,2007,27(2):193-209.
    [43]段雪梅,胡守云,闫海涛,等.南京某钢铁公司周边耕作土壤的磁学性质与重金属污染的相关性研究[J].地球科学,2009,39(9):1304-1312.
    [44]段雪梅,沈明洁,胡守云,等.首钢工业区土壤剖面重金属含量及其结合态的磁指示作用的研究[J].地球物理学进展,2008,23(1):225-232.
    [45]方满,刘洪海.武汉市垃圾场堆放场重金属污染调查及控制途径[J].中国环境科学,1998,8(4):54-59.
    [46]高祥云,汤志云,李建和,等.国内土壤环境污染现状与防治措施[J].江苏环境科技,2006,19(2):52-55.
    [47]郭永林.我国的酸雨问题和防治[J].山西财经大学学报(研究专刊),2002,24:106.
    [48]何振立,周启星,谢正苗.污染及有益元素的土壤化学平衡[M].北京:中国环境科学出版社,1998
    [49]黄昌勇.土壤学[M].北京:中国农业出版社,2000:171-172
    [50]黄会一,蒋德明,张春兴,等.沈阳镉土地区生物治理的研究.见:高拯民(eds.).土壤-植物系统污染生态研究,1986.
    [51]姜月华,殷鸿福,王润华.环境磁学理论、方法和研究进展[J].地球学报,2004,25(3):357-362.
    [52]琚宜太,王少怀,邓成龙,等.福建三明地区被污染土壤的磁学性质及其环境意义[J].地球物理学报,2004,47(2):252-255.
    [53]李鸿威,戴霜,张楠,等.黄河兰州段、白银段重金属污染的磁学指标初探[J].环境污染与防治,2009,31(2):51-55.
    [54]李继明,叶学春,张全智,等.农产品的肥料污染与对策[J].河南农业科学,2002,(9):29-30.
    [55]李鹏,强小科,唐艳荣,等.西安市街道灰尘磁化率特征及其污染指示意义[J].中国环境科学,2010,30(3):309-314.
    [56]李晓庆,胡雪峰,孙为民,等.城市土壤污染的磁学监测研究[J].土壤(Soils),2006,38(1):66-74.
    [57]李勇.首钢地区颗粒物磁学特征研究[硕士论文].北京:中国地质大学.2006.
    [58]李仲华.试述土壤污染对人类健康的侵害[J].环境科学与管理,2009,34(7):192-194.
    [59]林慧萍.酸雨对陆生植物的影响机理[J].福建林业科技,2005,32(1):60-64.
    [60]林玉锁.中国土壤环境安全面临的突出问题[J].环境保护,2004,10.
    [61]刘秀铭,刘东生,Friedrich Heller,等.中国黄土磁颗粒分析及其古气候意义[J].中国科学,1991,6(6):639-644.
    [62]刘秀铭,刘东生,Friedrich Heller,等.黄土频率磁化率与古气候冷暖变换[J].第四纪研究,1990,3(1):42-50
    [63]刘玉燕.城市土壤研究现状与展望[J].昌吉学院学报,2006,(2):105-108.
    [64]刘振东,刘庆生,汪汉胜,等.武汉市东湖沉积物的磁性特征与重金属含量之间的关系[J].地球科学-中国地质大学学报,2006,31(2):266-272.
    [65]卢升高.土壤频率磁化率与矿物粒度的关系及其环境意义[J].应用基础与科学学报,2000.8(1):9-15.
    [66]倪刘建,张甘霖,杨金玲,等.钢铁工业区降尘对周边土壤的影响[J].土壤学报,2007,44(4):637-642.
    [67]潘海峰.铬渣堆存区土壤重金属污染评价[J].环境与开发,1994,9(2):268-270.
    [68]彭津琴,刘永强,杨玉芳,等.遏制土壤盐碱化、荒漠化的必要性及技术进展[J].天津农业科学,2008,14(4):26-29.
    [69]申荣艳,骆永明,章钢娅,等.长江三角洲地区城市污泥中多氯联苯和有机氯农药含量与组分研究[J].土壤,2006,38(5):539-546.
    [70]申荣艳,骆永明,章钢娅,等.城市污泥农用对植物和土壤中有机污染物的影响[J].农业环境科学学报,2007,26(2):651-657.
    [71]沈明洁,胡守云,U.Blaha,等.北京东郊722土壤垂向剖面重金属污染的磁学响应及其统计意义[J].地球科学-中国地质大学学报,2006a,31(3):399-404.
    [72]沈明洁,胡守云,U.Blaha,等.北京石景山工业区附近一个污染土壤剖面的磁学研究[J].地球物理学报,2006b,49(6):1665-1673.
    [73]王冠.兰州市街道尘埃磁性特征研究[博士论文].兰州:兰州大学.2008.
    [74]王学松,秦勇.城市环境中磁学相应的研究进展[J].中国环境监测,2003,19(6):62-64.
    [75]王占华,杨少华,崔玉波.我国污泥堆肥的土地利用现状及对策[J].吉林建筑工程学院学报,2005,22(2):8-11.
    [76]旺罗,刘东生,吕厚远.污染土壤的磁化率特征[J].科学通报,2000,45:1091-1094.
    [77]邬杨善.城市污水处理-投资与决策[M].北京:中国环境科学出版社,1992.
    [78]吴丹,王式功,尚可政.中国酸雨研究综述[J].干旱气象,2006,24(2):70-77.
    [79]夏敦胜,余晔,马剑英,等.兰州市街道尘埃磁学特征及其环境意义[J].环境科学,2007a,28(5):937-944.
    [80]夏敦胜,王冠,马剑英,等.兰州市大气降尘环境磁学特征研究[J].中国沙漠,2007b,27(5):860-865.
    [81]夏敦胜,余晔,马剑英,等.大气降尘磁学特征对城市污染源的指示[J].干旱区资源与环境,2007c,21(12):110-115.
    [82]谢巧勤,孙玉兵,高薇,等.中国风尘沉积环境磁学研究现状[J].合肥工业大学学报-自然科学版,2006,29(9):1057-1062.
    [83]杨小波,吴庆书.城市生态学[M].北京:科学出版社,2000:124-129.
    [84]殷瑞钰.中国钢铁工业的崛起与技术进步.北京:冶金工业出版社,2004.
    [85]余涛,杨忠芳,岑静,等.磁化率对土壤重金属污染的指示性研究-以沈阳新城子区为例[J].现代地质,2008,22(6):1034-1040.
    [86]俞立中.环境磁学在城市污染研究中的应用[J].上海环境科学,1999,18(4):175-178.
    [87]曾凡刚,王玮,吴燕红,等.化石燃料燃烧产物对大气环境质量的影响及研究现状[J].中央民族大学学报,2001,10(2):113-120.
    [88]曾静静.兰州城市表层土壤重金属Cu-Zn-Pb的分布及磁化率特征[硕士论文].兰州:兰州大学,2007.
    [89]曾慕成,徐国平,王志.中国钢铁工业污染及其防治[J].工业安全与环保,2008,34(4):7-9.
    [90]崔雯航.高勇伟,陈海涛.我国土壤污染状况及其危害性[J],山西农业-土肥科技,2008,(8):30-31.
    [91]张春霞,黄宝春,李振宇,等.高速公路附近树叶的磁学性质及其对环境污染的指示意义[J].科学通报,2006,51(12):1459-1468.
    [92]张甘霖,赵玉国,杨金玲,等.城市土壤环境问题及其研究进展[J].土壤学报,2007,44(5):925-933.
    [93]张辉.南京地区土壤沉积物中重金属形态研究[J].环境科学学报,1997,17(3):346-351.
    [94]张坤民,孙荣庆.中国环境污染治理投资现状与发展趋势分析[J].中国环境科学,1999,19(2):97-101.
    [95]张书贵.土壤重金属污染评价与研究[J].安徽技术师范学院学报,2001,15(4):23-24.
    [96]张艳彬,王玉,杨忠芳.等.成都经济区土壤磁化率特征及其环境意义[J].吉林大学学报-地球科学版,2007,37(3):597-604.
    [97]赵其国等.土壤质量与持续环境[J].土壤,1993,29(3):113-121.
    [98]赵晓莉,徐德福,方华,等.污泥中有机污染物对农田植物影响研究综述[J].安徽农业科学,2008,(18).
    [99]郑喜坤,鲁安怀,高翔,等.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.
    [100]郑袁明,宋波.陈同斌.等.北京市不同土地利用方式下土壤锌积累及其污染风险[J].自然资源学报,2006,21(1):64-71.
    [101]周东美,郝秀珍,薛艳,等.污染土壤的修复技术研究进展[J].生态环境,2004(2):88-96.
    [102]周鸿斌.角媛梅,史正涛,等.云南沘江沿岸农田土壤磁测分析与重金属污染评价[J].农业环境科学学报,2008,27(4):1586-1591.
    [103]周文娟,杨小强.周永章.等.环境磁学磁性参数简介[J].中山大学研究生学刊,2006,26(1):82-89.
    [104]朱目祥.李春景,吴汉宁,等.中国黄土磁学性质与古气候意义[J].中国科学,1994,24(9):992-997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700