北京地区街尘—径流污染特征及潜在污染负荷估算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市化的快速推进和城市点源治理的加强,城市地表径流对水环境污染的影响日益凸显。本文以城市地表街尘和径流为研究对象,通过对街尘及其负载的污染物城乡空间分布、粒径对街尘及天然降雨径流污染物的影响、人工控制试验模拟街尘降雨冲刷过程的研究,揭示了街尘-径流污染物的迁移机制及不透水地面污染负荷的估算方法,研究结果表明:
     城乡环境背景与管理水平差异对街尘的粒径分布及其负载的重金属污染有重要影响。中心城区与卫星城区街尘的细粒径颗粒物的比例和重金属含量较高,其中道路Pb浓度从高到低依次:中心城区(70.5±11.8 mg/kg)>城中村(66.7±12.8 mg/kg)>卫星城区(56.3±9.5 mg/kg)>乡镇(51.2±6.6mg/kg)>村庄(38.6±3.2 mg/kg),而在城中村与村庄街尘单位面积质量及其负载重金属质量较高。其中,城中村和村庄在道路、居民区的单位面积Pb质量分别为:4.87±1.45mg/m2、6.94±9.32 mg/m2; 4.74±4.53 mg/m2.6.33±6.34 mg/m2.
     土地利用类型对街尘粒径及其负载重金属分布和径流的污染特征有着显著影响。在交通区、居民区、商业区三种土地利用类型中,交通区街尘与径流中各种重金属浓度最高,小粒径颗粒的比例较高(在街尘和径流中小于105μm比例分别为47.8%、81%),而其它土地利用类型中径流粒径分布差别不大。
     通过人工控制试验可以准确模拟不同粒径街尘在沥青和水泥两种路面降雨冲刷过程的迁移行为,发现细粒径颗粒物在水泥路面的迁移速度比在沥青路面快,粗粒径变化不明显,表明粗糙度对细粒径有着重要的影响。在两种路面均发现小粒径具有较高的迁移能力,而单位面积的质量的多少不会影响街尘的迁移能力。
     运用模拟降雨试验和迁移率计算构建了一个大尺度下估算径流重金属排放负荷的方法来解决大区域下径流污染负荷核算。采用GIS提取不同类型不透水地表信息并分类统计面积,然后结合城乡梯度下街尘污染特征,估算得到北京地区单次降雨历时1h潜在污染负荷输出量在雨强25 mm/h、40 mm/h、80 mm/h下分别为2319.4 kg、2693.6 kg、3287.1 kg。
     本项研究能够为深入理解街尘的污染特征和径流污染物的迁移机制,为利用静态污染物替代动态污染物间接计算在大区域径流污染物核算方法奠定基础。研究认为对地表径流污染源——街尘进行控制与治理是解决城市水环境的有效措施之一。根据街尘的城乡单位面积质量及粒径分布特征,在中心城区与卫星城区控制初期径流的是控制地表径流的有效措施,而在城中村及农村提高地表清扫技术则是当务之急。
Urban runoff pollution is becoming a serious environmental problem in the context of rapidly urban expansion and no-point pollution control in China. In this study, the mechanism of street dust washoff processes and the estimation method of pollutant loads in the runoff with street dust were discussed based on investigation of spatial distribution and pollution characteristics of street dust, linkage between street dust and runoff pollution, and rainfall simulation experiment. The findings are as follows:
     The obvious differences in environmental background and management level between urban and rural regions significantly affected street dust distribution and pollution characteristics. The investigation showed the proportion of finer grain size and concentration of Pb in street dust were the highest in Urban, as for concentration of Pb on the road, the ranking order from high to low was urban (70.5±11.8mg/kg)>urban village(66.7±12.8 mg/kg)> satellite town (56.3±9.5 mg/kg)>township(51.2±6.6 mg/kg)>village(38.6±3.2 mg/kg), while unit area mass and heavy metal load were higher in urban village and village than other places, unit area Pb mass on road and residential district were 4.87±1.45mg/m2,6.94±9.32 mg/m2; 4.74±4.53 mg/m2,6.33±6.34 mg/m2 respectively.
     Land use types were key factors affecting particle size distribution of street dust heavy metal contamination in street dust and runoff. The study showed that the concentration of heavy metal in street dust and runoff were highest in traffic road in all of land use types in this study, as well as the percentage finer grain size particulate(smaller than 105μm,47.8%,81% respectively, while there was no significant of particle size distribution in runoff among all the land use types.
     A series of rainfall simulation experiments were conducted in order to study street dust washoff processes influenced by different diverse particle constitutes of street dust. It was found that the smaller grain size fraction of street dust was more rapidly washed from the cement ground than from the asphalt floor, while bigger one is not significant. This result indicated that roughness was very important for runoff behavior of finer particle. There is clearly higer mobility of small grain size better than big one in both impervious ground. The quantity of per unit area of street dust will not influent the rate of washoff.
     Based on rainfall simulation experiments, the method of estimating heavy metal loads in runoff at the large scale was established. Imperious surface information was picked up with GIS, then categorize and calculate the area of different tapes, at last according to the ratio of washoff obtain urban-suburban-rural gradient washoff potential pollution load. The result show that washoff potential pollution load of Pb at rainfall intensity 25mm/h、40mm/h、80 mm/h were 2319.4kg.2693.6kg、3287.1kg in 1h in Bejing.
     This study can provide the basis for deeply understanding the pollution characteristics of street dust and its pollution mechanism through urban runoff, which is helpful to build methodological foundation of estimating pollutant loads from street dust in urban runoff events at large scale. As well as indicate that effective to solve the problem of water-environment with measures of control source of runoff pollution-street dust. The findings imply that different strategies should be considered among different urban and rural regions for practices of controlling runoff pollution, such as first flush control will be taken in urban and satellite town, and improvement of clean technology on impervious ground will be carried out in urban village and village.
引文
[1]尹澄清.城市面源污染问题:我国城市化进程的新挑战——代“城市面源污染研究”专栏序言[J].环境科学学报,2006,26(007):1053-1056.
    [2]常静.城市地表灰尘—降雨径流系统污染物迁移过程与环境效应[D]:华东师范大学,2007.
    [3]Zhao H, Li X, Wang X, et al. Grain size distribution of road-deposited sediment and its contribution to heavy metal pollution in urban runoff in Beijing, China[J]. Journal Hazard Mater,2010,183:203-210.
    [4]黄磷.2006年《北京统计年鉴》[J].数据,2006,(010):41-41.
    [5]国家统计局城市社会经济调查司.中国城市统计年鉴[J].北京;中国统计局出版社.2008:361-368.
    [6]张文茂,苏慧.北京城市化进程与特点研究(下)[J].北京规划建设,2009,(003):71-75.
    [7]张文茂,苏慧.北京城市化进程与特点研究(上)[J].北京规划建设,2009,(002):80-83.
    [8]尹澄清.城市面源污染的控制原理和技术[M].北京;中国建筑工业出版社.2009.
    [9]Drapper D, Tomlinson R, Williams P. Pollutant concentrations in road runoff:Southeast Queensland case study[J]. Journal of environmental engineering,2000,126(4):313-320.
    [10]李立青,尹澄清,何庆慈等.武汉市城区降雨径流污染负荷对受纳水体的贡献[J].中国环境科学,2007,27(003):312-316.
    [11]Bryan Ellis J, Revitt D. Incidence of heavy metals in street surface sediments:solubility and grain size studies[J]. Water, Air, & Soil Pollution,1982,17(1):87-100.
    [12]Sutherland R, Tolosa C. Multi-element analysis of road-deposited sediment in an urban drainage basin, Honolulu, Hawaii[J]. Environmental Pollution,2000,110(3):483-495.
    [13][13] Banerjee A. Heavy metal levels and solid phase speciation in street dusts of Delhi, India[J]. Environmental Pollution,2003,123(1):95-105.
    [14]Sutherland R, Day J, Bussen J. Lead concentrations, isotope ratios, and source apportionment in road deposited sediments, Honolulu, Oahu, Hawaii [J]. Water, Air, & Soil Pollution,2003,142(1):165-186.
    [15]赵洪涛,尹澄清,陈梅雪.长江三角洲河网地区典型城镇街尘中多环芳烃的污染特征[J].生态毒理学报,2009,4(001):123-130.
    [16]张丽萍,李业光,王昭艳.北京地区非点源污染现状分析与防治对策探讨[J].水资源与水工程学报,2005,16(004):20-23.
    [17]郭笃发.环境中铅和镉的来源及其对人和动物的危害[J].环境科学进展,1994,2(003):71-76.
    [18]王春梅,欧阳华,王金达等.沈阳市环境铅污染对儿童健康的影响[J].环境科学,2003,24(005):17-22.
    [19]李鱼,董德明,吕晓君等.汽车尾气中铅对公路两侧土壤的污染特征[J].生态环境,2004,13(004):549-552.
    [20]张帅明,戴耀华,谢晓桦等.中国15城市儿童血铅水平及影响因素现况调查[J].中华流行病学杂志,2005,26(009):651-654.
    [21]郝芳华,程红光,杨胜天.非点源污染模型:理论方法与应用[M].北京:中国环境科学出版社.2006.
    [22]杨柳,马克明,郭青海等.城市化对水体非点源污染的影响[J].环境科学,2004,25(006):32-39.
    [23]赵洪涛.河网地区降雨径流过程中的街尘污染及对水环境的影响[D].北京:中国科 学院生态环境研究中心,2008.
    [24]Lee JH, Bang KW. Characterization of urban stormwater runoff[J]. Water Research, 2000,34(6):1773-1780.
    [25]Adachi K, Tainosho Y. Characterization of heavy metal particles embedded in tire dust[J]. Environment International,2004,30(8):1009-1017.
    [26]谢莉莉.水污染与人体健康[J].大众科技,2009,(001):103-104.
    [27]Brezonik PL, Stadelmann TH. Analysis and predictive models of stormwater runoff volumes, loads, and pollutant concentrations from watersheds in the Twin Cities metropolitan area, Minnesota, USA[J]. Water Research,2002,36(7):1743-1757.
    [28]Taylor SL, Roberts SC, Walsh CJ, Hatt BE. Catchment urbanisation and increased benthic algal biomass in streams:linking mechanisms to management[J]. Freshwater Biology, 2004,49(6):835-851.
    [29]Vaze J, Chiew F. Experimental study of pollutant accumulation on an urban road surface[J]. Urban Water,2002,4(4):379-389.
    [30]袁铭道.美国水污染控制和发展概况[M].中国环境科学出版社,1986.
    [31]鲍全盛,毛显强.我国水环境非点源污染研究与展望[J].上海环境科学,1996,15(005):11-16.
    [32]李怀恩.流域非点源污染模型研究进展与发展趋势[J].水资源保护,1996,(002):14-18.
    [33]何萍,王家骥.非点源(NPS)污染控制与管理研究的现状,困境与挑战[J].农业环境保护,1999,18(005):234-237.
    [34]郑一,王学军.非点源污染研究的进展与展望[J].水科学进展,2002,13(001):105-110.
    [35]周慧平,许有鹏,葛小平.GIS支持下非点源污染模型应用分析[J].水土保持通报,2003,23(003):60-63.
    [36]程炯,林锡奎,吴志峰等.非点源污染模型研究进展[J].生态环境,2006,15(003):641-644.
    [37]徐力刚,张奇.流域非点源污染物输移模型研究现状及展望[J].农业环境科学学报,2006,25(z1).
    [38]樊娟,刘春光,石静等.非点源污染研究进展及趋势分析[J].农业环境科学学报,2008,27(004):1306-1311.
    [39]徐力刚,张奇.流域非点源污染物输移模型研究现状及展望[J].JOURNAL OF AGRO-ENVIRONMENT SCIENCE,2006,25(z1):316-322.
    [40]Goonetilleke A, Thomas E, Ginn S, et al. Understanding the role of land use in urban stormwater quality management [J]. Journal of environmental management,2005,74(1): 31-42.
    [41]Lee H, Lau SL, Kayhanian M, Stenstrom MK. Seasonal first flush phenomenon of urban stormwater discharges[J]. Water Research,2004,38(19):4153-4163.
    [42]Soller J, Stephenson J, Olivieri K, et al. Evaluation of seasonal scale first flush pollutant loading and implications for urban runoff management[J]. Journal of environmental management,2005,76(4):309-318.
    [43]Jartun M, Ottesen RT, Steinnes E, et al. Runoff of particle bound pollutants from urban impervious surfaces studied by analysis of sediments from stormwater traps[J]. Science of the Total Environment,2008,396(2-3):147-163.
    [44]夏青.城市径流污染系统分析[J].环境科学学报,1982,2(4):271-278.
    [45]温灼如,苏逸深,刘小靖等.苏州水网城市暴雨径流污染的研究[J].环境科学,1986,,7(6):2-6.
    [46]吴林祖.杭州城市径流污染特征的初步分析[J].上海环境科学,1987,6(6):34-36.
    [47]施为光.街道地表物的累积与污染特征:以成都市为例[J].环境科学,1991,12(003):18-23.
    [48]王和意,刘敏,刘巧梅等.城市降雨径流非点源污染分析与研究进展[J].城市环境与城市生态,2003,16(006):283-285.
    [49]朱松,方沛南,蓝雪春.降雨径流污染研究综述[J].中国农学通报,2009,25(12):240-245.
    [50]Sartor J, Boyd G, Agardy F. Water pollution aspects of street surface contaminants[J]. Journal (Water Pollution Control Federation),1974,46(3):458-467.
    [51]Day J, Hart M, Robinson M. Lead in urban street dust[J].1975.
    [52]Takada H, Onda T, Ogura N. Determination of polycyclic aromatic hydrocarbons in urban street dusts and their source materials by capillary gas chromatography[J]. Environmental Science & Technology,1990,24(8):1179-1186.
    [53]Stone M, Marsalek J. Trace metal composition and speciation in street sediment:Sault Ste. Marie, Canada[J]. Water, Air, & Soil Pollution,1996,87(1):149-169.
    [54]Chen T, Wong J, Zhou H, et al. Assessment of trace metal distribution and contamination in surface soils of Hong Kong[J]. Environmental Pollution,1997,96(1):61-68.
    [55]Sutherland R, Tack F, Tolosa C, et al. Operationally defined metal fractions in road deposited sediment, Honolulu, Hawaii[J]. Journal of Environmental Quality,2000,29(5): 1431.
    [56]Sutherland R. Lead in grain size fractions of road-deposited sediment[J]. Environmental Pollution,2003,121(2):229-237.
    [57]Al-Khashman O. Heavy metal distribution in dust, street dust and soils from the work place in Karak Industrial Estate, Jordan[J]. Atmospheric Environment,2004,38(39): 6803-6812.
    [58]Pitt R, Williamson D, Voorhees J, et al. Review of Historical Street Dust and Dirt Accumulation and Washoff Data [M]. Effective Modeling of Urban Water Systems, Monograph.2004.
    [59]Adachi K, Tainosho Y. Single particle characterization of size-fractionated road sediments[J]. Applied Geochemistry,2005,20(5):849-859.
    [60]TokalIoglu S, Kartal S. Multivariate analysis of the data and speciation of heavy metals in street dust samples from the Organized Industrial District in Kayseri (Turkey)[J]. Atmospheric Environment,2006,40(16):2797-2805.
    [61]Kr mova K, Robertson D, Cve kova V, et al. Road-deposited sediment, soil and precipitation (RDS) in Bratislava, Slovakia:compositional and spatial assessment of contamination[J]. Journal of Soils and Sediments.2009,9(4):304-316.
    [62]郭琳,曾光明,程运林.城市街道地表物特性分析[J].中国环境监测,2003,19(006):40-42.
    [63]杜佩轩,田晖,韩永明.城市灰尘概念,研究内容与方法[J].陕西地质,2004,22(001):73-79.
    [64]张菊,陈振楼,许世远等.上海城市街道灰尘重金属铅污染现状及评价[J].环境科学,2006,27(003):519-523.
    [65]刘春华,岑况.北京市街道灰尘粒度特征及其来源探析[J].环境科学学报,2007,27(006):1006-1012.
    [66]Zhu W, Bian B, Li L. Heavy metal contamination of road-deposited sediments in a medium size city of China[J]. Environmental monitoring and assessment,2008,147(1):171-181.
    [67]李耀初,吴淮,罗伟华.惠阳城区降雨径流重金属污染特征研究:Ⅰ.地表堆积物重金属含量分析[J].环境科学研究,2008,21(003):51-56.
    [68]王丽丽,刘敏,欧冬妮等.上海城市地表灰尘重金属粒级效应与赋存形态研究[J].华东师范大学学报(自然科学版),2009.
    [69]李立青,尹澄清,孔玲莉等.2次降雨间隔时间对城市地表径流污染负荷的影响[J].环境科学,2007,28(010):2287-2293.
    [70]贺瑞敏,张建云,陆桂华.我国非点源污染研究进展与发展趋势[J].水文,2005,25(004):10-13.
    [71]陈桥,胡维平,章建宁.城市地表污染物累积和降雨径流冲刷过程研究进展[J].长江流域资源与环境,2009,18(010):992-996.
    [72]EPA U. http://www.epa.gov/wastes/hazard/testmethods/sw846/online/3_series.htm [OL] 2010..
    [73]魏复盛,徐晓白,阎吉昌.水和废水监测分析方法指南,下册[M].中国环境科学出版社,1997.
    [74]Sansalone J. Buchberger. Partitioning and first flush of metals in urban roadway storm water[J]. Journal of environmental engineering, (1997)123(2):134-143.
    [75]陈同斌,郑袁明,陈煌等.北京市土壤重金属含量背景值的系统研究[J].环境科学,2004,25(001):117-122.
    [76]郭广慧,雷梅,陈同斌等.交通活动对公路两侧土壤和灰尘中重金属含量的影响[J].环境科学学报,2008,28(010):1937-1945.
    [77]杨信诚.铅基轴承合金的强化及应用[J].内燃机配件,1992,(003):40-46.
    [78]张凤泉,陈贵江,康永林等.汽车用低合金钢的现状与发展[J].特殊钢,2003,24(004):1-4.
    [79]Al-Chalabi A, Hawker D. Response of vehicular lead to the presence of street dust in the atmospheric environment of major roads[J]. Science of the Total Environment, 1997,206(2-3):195-202.
    [80]张志明,方凤满,杨丁等.城市地表灰尘的分形特性分析[J].土壤,(001):142-147.
    [81]常静,刘敏,李先华等.上海城市地表灰尘重金属污染粒级效应与生物有效性[J].环境科学,2008,29(012):3489-3495.
    [82]王丽丽,刘敏,欧冬妮等.上海城市地表灰尘重金属粒级效应与赋存形态研究[J].华东师范大学学报(自然科学版),2009,(6):64-71.
    [83]田鹏,杨志峰,李迎霞.公路地表灰尘及径流中颗粒物附着重金属对比研究[J].环境污染与防治,2009,31(006):14-18.
    [84]Gomez B, Palacios M, Gomez M, et al. Levels and risk assessment for humans and ecosystems of platinum-group elements in the airborne particles and road dust of some European cities[J]. The Science of the Total Environment,2002,299(1-3):1-19.
    [85]赵冬泉,王浩正,陈吉宁等.城市暴雨径流模拟的参数不确定性研究[J].水科学进展,2009,20(001):45-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700