SOCS1基因与慢加急性乙型肝炎肝衰竭病情评价及激素治疗的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中文摘要第一部分SOCSl基因在慢加急性乙型肝炎肝衰竭中的表达及其甲基化状态的检测
     研究背景
     慢加急性乙型肝炎肝衰竭(Acute-on-chronic hepatitis B liver failure, ACHBLF)是指由乙型肝炎病毒(Hepatitis B virus, HBV)慢性感染的基础上,出现急性肝功能失代偿,继发严重的肝脏损害的严重症候群。ACHBLF在我国慢性乙型肝炎患者中发病率较高,以凝血功能障碍,黄疸,肝性脑病,腹水为主要表现,最终导致多器官功能障碍综合征,病程凶险死亡率极高。目前,细胞因子在肝衰竭的发病机制中的作用日益受到人们的重视,一方面细胞因子可使淋巴细胞活化,参与免疫反应清除病毒;另一方面细胞因子直接参与和加重肝衰竭的演变过程,引起免疫病理反应导致肝细胞的坏死。
     细胞因子信号转导抑制因子(Suppressor of cytokine signaling, SOCS)1属于SOCS蛋白家族,是一类由细胞产生并反馈性阻断细胞因子信号转导过程的负性调节因子之一。研究发现SOCS1可通过负反馈环抑制炎症细胞因子信号的传导,在多种免疫反应中发挥重要作用。而HBV可能导致宿主基因甲基化,使SOCS1表达降低,对炎症因子的抑制作用减弱,可能会加重肝脏的炎症损害。
     研究表明,SOCS1基因的甲基化与慢性病毒性肝炎的炎症、纤维化及抗病毒治疗存在着一定的相关性。但是在慢加急性乙型肝炎肝衰竭中SOCS1基因表达及启动子的甲基化的情况与炎症因子的关系还未有研究。
     研究目的
     通过检测ACHBLF患者外周血单个核细胞内SOCS1的mRNA表达情况、启动子区甲基化状态及血浆中相关炎症因子白介素-6(interleukin-6,IL-6)、干扰素-γ(interferon-γ, IFN-γ)和肿瘤坏死因子-α (tumor necrosis factor-α, TNF-α)水平。并与慢性乙型病毒性肝炎(CHB)患者及正常人进行比较,分析SOCS1的甲基化与肝脏免疫损伤的关系,并初步探讨其在慢加急性乙型肝炎肝衰竭患者发病机制中的作用及临床相关性。
     研究方法
     研究对象为2009年6月到2013年3月问在山东大学齐鲁医院和烟台传染病医院就诊和治疗的60例ACHBLF患者,60例CHB患者,以及30例门诊健康体检者作为对照。ACHBLF患者诊断符合亚太肝脏研究协会年会(APASL)标准。采用实时荧光定量PCR(real-time quantitative PCR, RT-PCR)方法检狈ACHBLF、CHB患者及健康对照外周血单个核细胞中SOCSl的表达情况,并通过甲基化特异性PCR(Methylation-specific PCR, MSP)检测SOCSl启动子区的甲基化状态。应用酶联免疫吸附剂测定(Enzyme linked immunosorbent assay, ELISA)方法检测ACHBLF、CHB患者及健康对照血浆中IL-6,IFN-γ和TNF-α的水平。并将SOCS1表达量IL-6,IFN-γ和TNF-α的水平与病情严重指标总胆红素(Total bilirubin, TBIL)、凝血酶原活动度(Prothrombin activity, PTA)、血清丙氨酸转氨酶(Alanine aminotransferase, ALT)、HBV-DNA及MELD评分进行相关分析。比较不同SOCS1基因启动子去甲基化状态患者临床指标及预后。统计学分析采用SPSS13.0软件包进行,结果用均数±标准差(x±s)表示,组间差异采用两组独立样本资料的t检验或卡方检验,相关分析采用Pearson线性相关分析。P<0.05为差异具有统计学意义。
     研究结果
     1.ACHBLF患者组和CHB患者组血浆IL-6及TNF-α水平明显高于健康对照组(P<0.05);ACHBLF患者组的IL-6及TNF-α水平在三组中最高,明显高于CHB患者组(P<0.05)。ACHBLF患者组血浆IFN-γ水平明显高于CHB患者组,但与健康对照组相比无明显统计学差异。
     2.ACHBLF及CHB患者的SOCS1mRNA表达量明显高于健康对照组(P<0.01);ACHBLF患者组的SOCS1表达量明显高于CHB患者组(P<0.05)。
     3.ACHBLF患者细胞因子IL-6/IFN-γ/TNF-α水平与TBIL、ALT及MELD评分呈正相关,与PTA呈负相关,与HBV-DNA载量无明显相关性。
     4ACHBLF患者的SOCS1基因mRNA水平与TBIL、ALT成负相关,与PTA成正相关。另夕SOCS1表达量与ACHBLF患者IL-6/IFN-γ/TNF-α水平分别成负相关。与HBV DNA载量及MELD评分无明显相关性。
     5ACHBLF患者组的SOCS1基因启动子的甲基化率(35.0%)明显高于CHB患者组(16.7%,χ2=3.52,P=0.003),在30例健康对照中均未发现SOCS1启动子区的甲基化。
     6.在ACHBLF及CHB患者患者中,甲基化组的SOCS1基因表达量明显低于非甲基化组。ACHBLF患者SOCS1启动子区甲基化组的IL-6/IFN-γ/TNF-α水平、TBIL和ALT水平明显高于非甲基化组,而PTA水平则明显低于非甲基化组。另外,ACHBLF患者甲基化组的MELD积分及死亡率高于非甲基化组。
     结论
     SOCS1的表达量与患者的病情严重程度成负相关,SOCS1基因启动子区的甲基化可能参与了相关炎症因子对慢加急性乙型肝炎肝衰竭患者肝功能的免疫损害。
     中文摘要第二部分SOCS1基因甲基化及表达与糖皮质激素治疗慢加急性乙型肝炎肝衰竭的研究
     研究背景
     慢加急性肝衰竭的发生不同时相依次经受了免疫损伤、缺血缺氧性损伤和内毒素血症的三重打击,其中炎症因子参与的免疫损伤在肝衰竭发生中起着至关重要的作用。肝病尤其是肝衰竭患者普遍存在着肾上腺功能不全的情况,因此早期使用糖皮质激素是治疗慢加急性肝衰竭的方法之一,近年来随着对糖皮质激素不良反应及并发症防治手段的增强,使用糖皮质激素调节患者机体免疫功能、抑制炎性反应已经成为治疗慢加急性肝衰竭的一种选择。
     第一部分的研究已经证实了SOCS1基因启动子区的甲基化参与了相关炎症因子对ACHBLF患者的肝功能损害。但ACHBLF患者中糖皮质激素对SOCS1的影响及对患者预后是否有提示作用尚未有研究。既往研究资料证实糖皮质激素在体内、体外环境均能够促进SOCS1基因表达并引起甲基化状态改变。据此我们推测对ACHBLF患者采用糖皮质激素治疗可能影响SOCS1对相关的炎症反应的调控。本研究有助于我们认识糖皮质激素治疗对ACHBLF患者SOCS1的表达及甲基化状态的影响,揭示SOCS1对糖皮质激素治疗ACHBLF的提示作用,为提供临床治疗理论依据和新的途径。
     研究目的
     通过研究糖皮质激素治疗对ACHBLF患者SOCS1表达,甲基化状态及相关基因、细胞因子的影响,进一步探讨分析SOCS1表达与糖皮质激素激素治疗预后的相关性。
     研究方法
     研究对象为2007年12月到2013年5月间在山东大学齐鲁医院就诊和治疗的ACHBLF患者47例,以及30例门诊健康体检者作为对照。ACHBLF患者诊断符合亚太肝脏研究协会年会(APASL)标准。所有ACHBLF患者确诊后均给予糖皮质激素治疗4周。应用RT-PCR法检钡ACHBLF患者治疗前,治疗第3天及治疗28天后SOCSl及干扰素调节受体(interferon regulatory factors, IRF)-1,趋化因子配体(C-X-C motif ligand, CXCL)9, CXCL10, CXCL11的表达情况,应用ELISA技术检测ACHBLF患者和健康对照血浆中IL-6及TNF-α水平,结合患者临床指标,与MELD评分进行相关分析,用甲基化特异性PCR法(Methylation Specific PCR,MSP)测定SOCSl基因启动子的甲基化状态,分析糖皮质激素对SOCSl基因启动子区甲基化状态的影响,探讨SOCSl表达与糖皮质激素治疗的相关性。统计学分析采用SPSSl3.0软件包进行,结果用均数±标准差(x±s)表示,组间差异采用两组独立样本资料的t检验,相关分析采用Pearson线性相关分析。P<0.05为差异具有统计学意义。
     研究结果
     1.激素治疗后ACHBLF患者肝性脑病和腹水症状均有明显改善。MELD积分明显下降。
     2.激素治疗前,ACHBLF患者SOCS1基因mRNA基因表达水平明显高于健康对照(P<0.05);ACHBLF生存组的SOCS1mRNA表达量明显高于死亡组(P=0.007)。激素治疗第三天,生存组SOCS1表达量上升;治疗第28天,生存组SOCSl基因(?)mRNA表达量明显下降,而死亡组在治疗中及治疗后SOCS1基因mRNA表达量无明显变化。
     3.激素治疗前,ACHBLF患者血浆IL-6及TNF-α水平明显高于健康对照(P<0.05);激素治疗后第三天,ACHBLF患者IL-6及TNF-α水平出现明显下降,其中死亡组TNF-α水平明显高于生存组,而两组IL-6水平在治疗第3天无明显差异。激素治疗第28天,生存组IL-6及TNF-α水平均明显低于死亡组(P<0.05)。ACHBLF患者中IFN-γ及STATl相关基因表达量与健康对照相比均有不同程度上升,并在激素治疗3天出现明显下降,在第28天下降均超过30%。
     4.SOCS1表达水平与MELD积分在激素治疗前、后均存在明显的负相关性。
     5.激素治疗前,ACHBLF患者TBIL水平明显高于健康对照(P<0.05),PTA水平明显低于健康对照;ACHBLF患者生存组与死亡组TBIL及PTA水平无明显差别(P>0.05)。激素治疗第28天,生存组患者TBIL水平明显下降,PTA明显上升;而死亡组无明显改善。在90天随访结束时采用激素治疗的ACHBLF患者死亡率为52.3%。采用小样本生存率估计(Kaplan-Meier法)对最初存在甲基化及无甲基化的患者分别进行生存分析,发现激素治疗能够明显提高SOCS1非甲基化患者的生存率(P<0.05)。
     6.激素治疗前有34%的ACHBLF患者存在SOCS1基因的甲基化情况,而30例健康对照中均未发现SOCS1启动子区的甲基化。激素治疗第3天MSP检测ACHBLF患者未发现甲基化状态明显改变,激素治疗第28天检测发现,8名最初存在SOCSl基因启动子甲基化的患者未检测至SOCS1的甲基化状态,其中全部6名最初存在甲基化的生存组患者中有5人出现去甲基化,而l0例死亡组患者中仅有3例出现了去甲基化情况。结论慢加急性乙型肝炎肝衰竭患者中,早期应用糖皮质激素能够明显改善患者肝功能,提高SOCS1基因非甲基化者的生存率,而出现SOCS1甲基化的ACHBLF患者对糖皮质激素治疗效果反应较差,死亡率明显高于无甲基化的患者,预后不良。通过检测ACHBLF患者SOCS1基因甲基化状态,或许可以成为使用糖皮质激素治疗ACHBLF筛选条件。
Section Ⅰ
     METHYLATION OF SUPPRESSOR OF CYTOKINE SIGNALING1GENE PROMOTER IS ASSOCIATED WITH
     ACUTE-ON-CHRONIC HEPATITIS B LIVER FAILURE
     Background
     Hepatitis B virus (HBV) infection is a significant worldwide health problem with higher prevalence and more than400million persons estimated to be chronically infected in Asia. The progression of chronic HBV infection may lead to the condition of liver failure which is defined as acute-on-chronic hepatitis B liver failure (ACHBLF). ACHBLF can eventually cause multiple organ dysfunction syndrome (MODS), accompanied by complications of sepsis, upper gastrointestinal bleeding, ischemia or additional superimposed liver injury with a poor prognosis and high mortality rate. Correspondingly, there is less study about the characteristics and pathogenesis of ACHBLF.
     Clinical researches have shown that uncontrolled hepatic immunoactivation makes the elevated level of pro-inflammatory cytokines evocable. Those pro-inflammatory cytokines induce apoptosis of hepatocyte and regeneration inhibitory state of hepatic failure. In addition, the activation of lymphocytes by these cytokines could also lead to immunopathological effects and systemic inflammatory response. In a word, cytokines directly involve in the evolution and exacerbation of ACHBLF.
     Most signal transduction of pro-inflammatory cytokines was through the Janus kinase(JAK)/signal transducer and activator of transcription (STAT) signal transduction pathway which plays an important role in the regeneration of hepatocytes. The intension and duration of cytokine effect are tightly controlled by several mechanisms, including the suppressors of cytokine signaling (SOCS). SOCS1, member of the SOCS protein family, contains a center SH2domain and a unique carboxyl SOCS box. In the pathogenesis of liver failure, SOCS1serves a regulatory mechanism to limit cytokine-mediated inflammation after hepatic ischemia reperfusion injury. SOCSl plays a critical role in negative regulation of inflammatory and immune homeostasis. But the research of SOCSl gene was limited on chronic liver disease, especially on ACHBLF.
     In the present study, we identified the presence of SOCSl gene methylation changes in ACHBLF. We assessed the level of pro-inflammatory cytokines and expression of SOCSl in CHB and ACHBLF patients. The results obtained were then correlated with the findings from pathological studies to define the clinical significance of aberrant DNA methylation in ACHBLF.
     Objective
     This present study was therefore to identify the potential role of SOCS1and its promoter methylation pattern in the patients with acute-on-chronic hepatitis B liver failure (ACHBLF). Materials and Methods
     Sixty ACHBLF patients,60chronic hepatitis B (CHB) patients and30healthy controls were investigated in this study. SOCSl mRNA level in peripheral blood mononuclear cells (PBMCs) was determined by quantitative real-time PCR. Plasma levels of interleukin (IL)-6, interferon (IFN)-γ and tumor necrosis factor (TNF)-α were detected by enzyme-linked immunosorbent assay (ELISA). Methylation of SOCSl promoter from PBMCs was determined using methylation-specific polymerase chain reaction (PCR). Furthermore, this methylation status was compared with clinical findings and cytokine levels.
     Results
     Expression of SOCSl mRNA in CHB and ACHBLF patients was significantly higher than that in healthy controls. The serum level of IL-6, IFN-y and TNF-a was significantly higher in ACHBLF than CHB. Increased serum level of IL-6, IFN-y and TNF-α was correlated with total bilirubin, ALT, PTA and MELD scores in ACHBLF. The degree of methylation of the SOCS1in ACHBLF patients (35.0%,21/60) was significantly higher than that in CHB patients (16.7%,10/60). Furthermore, methylated group showed lower level of SOCS1higher MELD scores and mortality rate when when compared with unmethylated group of ACHBLF.
     Conclusions
     These results suggested that SOCSl might contribute to immune-related liver damage in ACHBLF and its aberrant methylation may be a key event for the prognosis of ACHBLF.
     Section II
     PROGNOSES OF PATIENTS WITH ACUTE-ON-CHRONIC HEPATITIS B LIVER FAILURE ARE CLOSELY ASSOCIATED WITH ALTERED SOCS1MRNA EXPRESSION AND CYTOKINE PRODUCTION FOLLOWING GLUCOCORTICOID TREATMENT
     Background
     The pathogenesis of ACHBLF was related to immune-mediated liver injury and over enhancement of immunologic function. The immunopathologic damage and microcirculation disturbance could lead to liver cells in ischemia, hypoxia, and edema. Previous studies suggested that the use of corticosteroids was crucial to prevent liver cell necrosis when used in the early stage of severe hepatitis. The adrenal insufficiency in liver diseases makes it reasonable to introduce sufficient doses of corticosteroids in the early stage of liver failure. As an optional therapy for ACHBLF, the corticosteroids treatment has received many attentions. Glucocorticoid suppressed the inflammation by controlling and preventing the immune-correlated damages. The upregulation of SOCS1by corticosteroids has been established both in vivo and vitro, which suggested that cortisol may be playing a key role in suppressing cytokine signaling and the associated inflammatory response through SOCS1. However, the effect of glucocorticoid on SOCS1remains unclear in ACHBLF.
     Objective
     In the present study, we explored the inflammatory cytokine levels and SOCS1gene mRNA expression in peripheral blood mononuclear cells (PBMCs) before and after glucocorticoid treatment in ACHBLF patients. We also investigated the correlation between SOCS1expression, model for end-stage liver disease (MELD) scores and mortality rates. Furthermore, the SOCS1promoter methylation status in different stages of glucocorticoid treatment were more intensively analyzed to verify the potentially role of methylation and effect of corticoids on the prognosis of patients with ACHBLF.
     Materials and Methods
     Fourty-seven ACHBLF patients receiving four weeks' glucocorticoid treatment and30healthy controls were investigated to determine the potential effects of glucocorticoid on the transcriptional level of SOCS1in peripheral blood mononuclear cells (PBMCs). SOCS1mRNA level and IFN-γ-responsive/STAT1-dependent genes expression was determined by quantitative real-time PCR. Plasma levels of interleukin (IL)-6and tumor necrosis factor (TNF)-α were detected by enzyme-linked immunosorbent assay (ELISA). Methylation of SOCSl promoter was determined using methylation-specific polymerase chain reaction (PCR) before and after glucocorticoid treatment. Furthermore, this methylation status was compared with clinical findings and cytokine levels.
     Results
     On the3rd and28th day of glucocorticoid treatment, SOCS1expression was negatively correlated with MELD score. IL-6and TNF-α levels were statistically lower while SOCS1transcription level was higher in survivals than non-survivals both in pre-and post-treatment ACHBLF patients. Methylation rate of SOCS1promoter in ACHBLF patients was higher than healthy controls determined by methylation-specific polymerase chain reaction. The mRNA level of SOCS1in methylated ones was significantly lower than that in unmethylated. IFN-y-responsive and STAT1-dependent genes expression was higher in survivals and was dramatically decreased with rising expression of SOCS1after glucocorticoid treatment. The mortality was significantly higher in methylated patients than those without methylation at the end of90-day follow-up. Furthermore, we found5in6survivals got SOCSl demethylated on the28th day after treatment, while the number was3in10non-survivals.
     Conclusions
     In conclusion, we researched the corticosteroids effect on SOCS1in ACHBLF patient with altered expression of mRNA and disparate methylation status. It revealed the effect of glucocorticoid on down-expression and demethylation of SOCS1in ACHBLF. These findings suggested that ACHBLF patients without SOCSl methylation may have a favorable response to corticosteroid treatment.
引文
1. Wong VW, Wong GL, Chu WC, et al. Hepatitis B virus infection and fatty liver in the general population. JHepatol.2012; 56:533-540.
    2. Taylor BC, Yuan JM, Shamliyan TA, et al. Clinical outcomes in adults with chronic hepatitis B in association with patient and viral characteristics:A systematic review of evidence. Hepatology.2009; 49(5 Suppl):S85-95.
    3. Jalan R, Gines P, Olson JC, Mookerjee RP, et al. Acute-on chronic liver failure. J Hepatol.2012; 57:1336-1348.
    4. Sarin SK, Kumar A, Almeida JA, et al. Acute-on-chronic liver failure:consensus recommendations of the Asian Pacific Association for the study of the liver (APASL). Hepatol Int.2009; 3:269-282.
    5. Olson JC, Wendon JA, Kramer DJ, et al. Intensive care of the patient with cirrhosis. Hepatology.2011; 54:1864-1872.
    6. Liver Failure and Artificial Liver Group, Chinese Society of Infectious Diseases, Chinese Medical Association; Severe Liver Diseases and Artificial Liver Group, Chinese Society of Hepatology, Chinese Medical Association. Guildeline for diagnosis and treament of liver failure. Chin J Clin Infect Dis.2012; 5:321-327.中华医学会感染病学分会肝衰竭与人工肝学组,中华医学会肝病学分会重型肝病与人工肝学组. 肝衰竭诊治指南(2012年版).中华临床感染病杂志.2012;5:321-327.
    7. Zhang A, Wan Z, You S, et al. Association of Hepatitis B Virus Mutations of A1846T and C1913A/G With Acute-on-Chronic Liver Failure Development From Different Underlying Chronic Liver Diseases. Hepat Mon.2013; 13: e12445.
    8. Stravitz RT, Bowling R, Bradford RL, et al. Role of procoagulant microparticles in mediating complications and outcome of acute liver injury/acute liver failure. Hepatology.2013; 58:304-313.
    9.李俊峰,段钟平.慢加急性肝衰竭:从病理生理到临床实践.临床肝胆病杂志.2013:9:641-644.
    10. Jha AK, Nijhawan S, Rai RR, et al. Etiology, clinical profile, and inhospital mortality of acute-on-chronic liver failure:a prospective study. Indian J Gastroenterol.2013; 32:108-114.
    11. Moreau R, Jalan R, Gines P, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology.2013; 144:1426-1437.
    12. Graziadei IW. The clinical challenges of acute on chronic liver failure. Liver Int. 2011; Suppl 3:24-26.
    13. Strebovsky J, Walker P, Dalpke AH. Suppressor of cytokine signaling proteins as regulators of innate immune signaling. Front Biosci.2012; 17:1627-1639.
    14. Nakagawa H, Maeda S. Inflammation- and stress-related signaling pathways in hepatocarcinogenesis. World J Gastroenterol 2012; 18:4071-4081.
    15. Palmer DC, Restifo NP. Suppressors of cytokine signaling (SOCS) in T cell differentiation, maturation, and function. Trends Immunol.2009; 30:592-602.
    16. Zhang J, Li H, Yu JP, et al. Role of SOCS1 in tumor progression and therapeutic application. Int J Cancer.2012; 130:1971-1980.
    17. Yoshimura A. Regulation of cytokine signaling by the SOCS and Spred family proteins. Keio JMed.2009;58:73-83.
    18. Kamizono S, Hanada T, Yasukawa H, et al. The SOCS box of SOCS-1 accelerates ubiquitin-dependent proteolysis of TEL-JAK2. J Biol Chem.2001; 276:12530-12538.
    19. Vivekanandan P, Daniel HD, Kannangai R, et al. Hepatitis B virus replication induces methylation of both host and viral DNA. J Virol.2010; 84:4321-4329.
    20. Jang JY, Jeon YK, Lee CE, et al. ANT2 suppression by shRNA may be able to exert anticancer effects in HCC further by restoring SOCSl expression. Int J Oncol.2013; 42:574-582.
    21. Langdale LA, Hoagland V, Benz W, et al. Suppressor of cytokine signaling expression with increasing severity of murine hepatic ischemia reperfusion injury. J Hepatol.2008; 49:198-206.
    22. Kwon NH, Kim JS, Lee JY, et al. DNA methylation and the expression of IL-4 and IFN-gamma promoter genes in patients with bronchial asthma. J Clin Immunol.2008; 28:139-146.
    23. Zhao ZX, Cai QX, Peng XM, et al. Expression of SOCS-1 in the liver tissues of chronic hepatitis B and its clinical significance. World J Gastroenterol.2008; 14: 607-611.
    24. Malinchoc M, Kamath PS, Gordon FD, et al. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology. 2000; 31:864-871.
    25. Niu Y, Liu H, Yin D, et al. The balance between intrahepatic IL-17(+) T cells and Foxp3(+) regulatory T cells plays an important role in HBV-related end-stage liver disease. BMC Immunol.2011; 12:47.
    26. Tillmann HL, Zachou K, Dalekos GN. Management of severe acute to fulminant hepatitis B:to treat or not to treat or when to treat? Liver Int.2012; 32:544-553.
    27. Cornberg M, Jaroszewicz J, Manns MP, et al. Treatment of chronic hepatitis B. Minerva Gastroenterol Dietol.2010; 56:451-465.
    28. Ryan JM, Tranah T, Mitry RR, et al. Acute liver failure and the brain:a look through the crystal ball. Metab Brain Dis.2013; 28:7-10.
    29. Jindal A, Kumar M, Sarin SK. Management of acute hepatitis B and reactivation of hepatitis B. Liver Int.2013;33 Suppl 1:164-175.
    30. Chen M, Hu P, Peng H, et al. Enhanced peripheral γδT cells cytotoxicity potential in patients with HBV-associated acute-on-chronic liver failure might contribute to the disease progression. J Clin Immunol.2012; 32:877-885.
    31. Wang LY, Meng QH, Zou ZQ, et al. Increased frequency of circulating Th17 cells in acute-on-chronic hepatitis B liver failure. Dig Dis Sci.2012; 57:667-674.
    32. Ge J, Wang K, Meng QH, et al. Implication of Th17 and Thl cells in patients with chronic active hepatitis B. J Clin Immunol.2010; 30:60-67.
    33. Li T, Meng QH, Zou ZQ, et al. Correlation between promoter methylation of glutathione-S-tranferase P1 and oxidative stress in acute-on-chronic hepatitis B liver failure. J Viral Hepat.2011; 18:e226-231.
    34. Qi ZX, Wang LY, Fan YC, et al. Increased peripheral RORα and RORyt mRNA expression is associated with acute-on-chronic hepatitis B liver failure. J Viral Hepat.2012; 19:811-822.
    35. Szabo G, Csak T. Inflammasomes in liver diseases. JHepatol.2012; 57:642-654.
    36. Zou Z, Li B, Xu D, et al. Imbalanced intrahepatic cytokine expression of interferon-gamma, tumor necrosis factor-alpha, and interleukin-10 in patients with acute-on-chronic liver failure associated with hepatitis B virus infection. J Clin Gastroenterol.2009; 43:82-190.
    37. Carroll MB, Forgione MA. Use of tumor necrosis factor alpha inhibitors in hepatitis B surface antigen-positive patients:a literature review and potential mechanisms of action. Clin Rheumatol.2010; 29:1021-1029.
    38. Vigano M, Degasperi E, Aghemo A, et al. Anti-TNF drugs in patients with hepatitis B or C virus infection:safety and clinical management. Expert Opin Biol Ther.2012; 12:193-207.
    39. Kao JT, Lai HC, Tsai SM, et al. Rather than interleukin-27, interleukin-6 expresses positive correlation with liver severity in naive hepatitis B infection patients. Liver Int.2012; 32:928-936.
    40. Luetke-Eversloh M, Killig M, Romagnani C. Signatures of Human NK Cell Development and Terminal Differentiation. Front Immunol.2013; 4:499.
    41. Chijioke O, Munz C. Dendritic cell derived cytokines in human natural killer cell differentiation and activation. Front Immunol.2013; 4:365.
    42. Nicoletti F, Zaccone P, Xiang M, et al. Essential pathogenetic role for interferon (IFN-)gamma in concanavalin A-induced T cell-dependent hepatitis:exacerbation by exogenous IFN-gamma and prevention by IFN-gamma receptor-immunoglobulin fusion protein. Cytokine.2000; 12:315-323.
    43. Cittadini A, Monti MG, Iaccarino G, et al. SOCS1 gene transfer accelerates the transition to heart failure through the inhibition of the gp130/JAK/STAT pathway. Cardiovasc Res.2012; 96:381-390.
    44. Iwamoto T, Senga T, Naito Y, et al. The JAK-inhibitor, JAB/SOCS-1 selectively inhibits cytokine-induced, but not v-Src induced JAK-STAT activation. Oncogene. 2000; 19:4795-4801.
    45. Cornish AL, Davey GM, Metcalf D, et al. Suppressor of cytokine signaling-1 has IFN-gamma-independent actions in T cell homeostasis. J Immunol.2003; 170: 878-886.
    46. Alexander WS. Suppressors of cytokine signalling (SOCS) in the immune system. Nat Rev Immunol 2002:410-416.
    47. Morita Y, Naka T, Kawazoe Y, et al. Signals transducers and activators of transcription (STAT)-induced STAT inhibitor-1 (SSI-1)/suppressor of cytokine signaling-1 (SOCS-1) suppresses tumor necrosis factor alpha-induced cell death in fibroblasts. Proc Natl Acad Sci U S A.2000; 97:5405-5410.
    48. Dalpke A, Heeg K, Bartz H, Baetz A. Regulation of innate immunity by suppressor of cytokine signaling (SOCS) proteins. Immunobiology.2008; 213: 225-235.
    49. Masters SL, Palmer KR, Stevenson WS. Genetic deletion of murine SPRY domain-containing SOCS box protein 2 (SSB-2) results in very mild thrombocytopenia. Mol Cell Biol.2005; 25:5639-5647.
    50. Ma J, Qiao Z, Xu B. Effects of ischemic preconditioning on myocardium Caspase-3, SOCS-1, SOCS-3, TNF-α and IL-6 mRNA expression levels in myocardium IR rats. Mol Biol Rep.2013; 40:5741-5748.
    51. Ehrlich M, Lacey M. DNA methylation and differentiation:silencing, upregulation and modulation of gene expression. Epigenomics.2013; 5:553-568.
    52. Jin B, Robertson KD. DNA methyltransferases, DNA damage repair, and cancer. Adv Exp Med Biol.2013; 754:3-29.
    53. Lao Y1, Wu H1, Zhao C, et al. Promoter polymorphisms of DNA methyltransferase 3B and risk of hepatocellular carcinoma. Biomed Rep.2013; 1: 771-775.
    54. Gnyszka A, Jastrzebski Z, Flis S. DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer Res.2013; 33: 2989-2996.
    55. Liu X, Xu Q, Chen W, et al. Hepatitis B virus DNA-induced carcinogenesis of human normal liver cells by virtue of nonmethylated CpG DNA. Oncol Rep. 2009; 21:941-947.
    56. Chun JY, Bae JS, Park TJ, et al. Putative association of DNA methyltransferase 1 (DNMT1) polymorphisms with clearance of HBV infection. BMB Rep.2009; 42: 834-839.
    57. Lai NS, Chou JL, Chen GC, et al. Association between cytokines and methylation of SOCS-1 in serum of patients with ankylosing spondylitis. Mol Biol Rep.2014. [Epub ahead of print].
    58. Miyoshi H, Fujie H, Moriya K, et al. Methylation status of suppressor of cytokine signaling-1 gene in hepatocellular carcinoma. J Gastroenterol.2004; 39: 563-569.
    59. Ko E, Kim SJ, Joh JW, et al. CpG island hypermethylation of SOCS-1 gene is inversely associated with HBV infection in hepatocellular carcinoma. Cancer Lett. 2008; 271:240-250.
    60. Kawaguchi T, Yoshida T, Harada M, et al. Hepatitis C virus down-regulates insulin receptor substrates 1 and 2 through up-regulation of suppressor of cytokine signaling 3. Am J Pathol.2004; 165:1499-1508.
    61. Mair M, Blaas L, Osterreicher CH, Casanova E, et al. JAK-STAT signaling in hepatic fibrosis. Front Biosci.2011; 17:2794-2811.
    62. Nakashima T, Yokoyama A, Onari Y, et al. Suppressor of cytokine signaling 1 inhibits pulmonary inflammation and fibrosis. J Allergy Clin Immunol.2008; 121: 1269-1276.
    1. Sarin SK, Kumar A, Almeida JA, et al. Acute-on-chronic liver failure:consensus recommendations of the Asian Pacific Association for the study of the liver (APASL). Hepatol Int.2009; 3:269-282.
    2. Finkenstedt A, Nachbaur K, Zoller H, et al. Acute on chronic liver failure: Excellent outcome after liver transplantation but high mortality on the wait list. Liver Transpl.2013; 19:879-886.
    3. Moreau R, Arroyo V. Acute on Chronic Liver Failure:a New Clinical Entity. Clin Gastroenterol Hepatol.2014. [Epub ahead of print]
    4.张绪清,聂青和. 糖皮质激素在重型肝炎中的应用和评价.实用肝脏病杂志.2004;7:70-72.
    5. Ito K, Chung KF, Adcock IM.Update on glucocorticoid action and resistance. J Allergy Clin Immunol.2006; 117:522-543.
    6. Yeager MP, Guyre PM, Munck AU. Glucocorticoid regulation of the inflammatory response to injury. Acta Anaesthesiol Scand.2004; 48:799-813.
    7. O'Beirne J, Holmes M, Agarwal B, et al. Adrenal insufficiency in liver disease-what is the evidence? J Hepatol.2007; 47:418-423.
    8. Gao L, Wang JF, Xiang M, et al. Expression of human glucocorticoid receptor in T lymphocytes in acute-on-chronic hepatitis B liver failure. Dig Dis Sci.2011; 56:2605-2612.
    9. Dhanda AD, Lee RW, Collins PL, McCune CA.Molecular targets in the treatment of alcoholic hepatitis. World J Gastroenterol.2012; 18:5504-5513.
    10. Strassburg CP, Manns MP. Therapy of autoimmune hepatitis. Best Pract Res Clin Gastroenterol.2011; 25:673-687.
    11. Matthews P. Glucocorticoids can help in acute severe alcoholic hepatitis. Aliment Pharmacol Ther.2009; 30:91-92
    12. Fujiwara K, Yasui S, Yonemitsu Y, et al. Efficacy of combination therapy of antiviral and immunosuppressive drugs for the treatment of severe acute exacerbation of chronic hepatitis B. J Gastroenterol.2008; 43:711-719.
    13. Fujiwara K, Yokosuka O, Kojima H, et al. Importance of adequate immunosuppressive therapy for the recovery of patients with "life-threatening" severe exacerbation of chronic hepatitis B. World J Gastroenterol.2005; 11: 1109-1114.
    14. He B, Zhang Y, Lu MH, et al. Glucocorticoids can increase the survival rate of patients with severe viral hepatitis B:a meta-analysis. Eur J Gastroenterol Hepatol.2013; 25:926-34.
    15. Ko E, Kim SJ, Joh JW, et al. CpG island hypermethylation of SOCS-1 gene is inversely associated with HBV infection in hepatocellular carcinoma. Cancer Lett.2008; 271:240-250.
    16. Davey GM, Heath WR, Starr R. SOCS1:a potent and multifaceted regulator of cytokines and cell-mediated inflammation. Tissue Antigens.2006; 67:1-9.
    17. Fenner JE, Starr R, Cornish AL, et al. Suppressor of cytokine signaling 1 regulates the immune response to infection by a unique inhibition of type Ⅰ interferon activity. Nat Immunol.2006; 7:33-39.
    18. Rosenblum JM, Shimoda N, Schenk AD, et al CXC chemokine ligand (CXCL) 9 and CXCL 10 are antagonistic costimulation molecules during the priming of alloreactive T cell effectors. J Immunol.2010; 184:3450-3460.
    19. Oliere S, Hernandez E, Lezin A, et al. HTLV-1 evades type I interferon antiviral signaling by inducing the suppressor of cytokine signaling 1 (SOCS1). PLoS Pathog.2010; 6:e1001177.
    20. Baetz, A, Frey, M, Heeg, K, et al. Suppressor of cytokine signaling (SOCS) proteins indirectly regulate Toll-like receptor signaling in innate immune cells. J Biol Chem.2004; 279:54708-54715.
    21. Shi J, Wei L. Regulation of JAK/STAT signalling by SOCS in the myocardium. Cardiovasc Res.2012; 96:345-347.
    22. Kubo M, Hanada T, Yoshimura A. Suppressors of cytokine signaling and immunity. Nat Immunol.2003; 4:1169-1176.
    23. Zhao J, Zhang JY, Yu HW, et al. Improved survival ratios correlate with myeloid dendritic cell restoration in acute-on-chronic liver failure patients receiving methylprednisolone therapy. Cell Mol Immunol.2012; 9:417-422.
    24. Kappus MR1, Bajaj JS. Covert hepatic encephalopathy:not as minimal as you might think. Clin Gastroenterol Hepatol.2012; 10:1208-1219.
    25. Wong F, Bernardi M, Balk R, et al. Sepsis in cirrhosis:report on the 7th meeting of the International Ascites Club. Gut.2005; 54:718-725.
    26. Thomassin H, Flavin M, Espinas ML, et al. Glucocorticoid-induced DNA demethylation and gene memory during development. EMBO J.2001; 20: 1974-1983.
    27. Recknagel P, Gonnert FA, Halilbasic E, et al. Mechanisms and functional consequences of liver failure substantially differ between endotoxaemia and faecal peritonitis in rats. Liver Int.2013; 33:283-293.
    28. Oketani M, Ido A, Nakayama N, et al. Etiology and prognosis of fulminant hepatitis and late-onset hepatic failure in Japan:Summary of the annual nationwide survey between 2004 and 2009. Hepatol Res.2013; 43:97-105.
    29. Jalan R, Gines P, Olson JC, Mookerjee RP, et al. Acute-on chronic liver failure. J Hepatol.2012; 57:1336-1348.
    30. Jalan R, Stadlbauer V, Sen S, et al. Natural history of acute decompensation of cirrhosis:the basis of the definition, prognosis, and pathophysiology of acute-on-chronic liver failure. Hepatology.2006; 44 (Suppl.1):371A-372A.
    31. Jalan R, Sen S, Williams R. Prospects for extracorporeal liver support. Gut.2004; 53:890-898.
    32. Rolando N, Wade J, Davalos M, et al. The systemic inflammatory response syndrome in acute liver failure. Hepatology.2000; 32:734-739.
    33. Vaquero J, Polson J, Chung C, et al. Infection and the progression of hepatic encephalopathy in acute liver failure. Gastroenterology.2003; 125:755-764.
    34. Antoniades CG, Berry PA, Wendon JA, et al. The importance of immune dysfunction in determining outcome in acute liver failure. J Hepatol.2008; 49: 845-861.
    35. Guo LM1, Liu JY, Xu DZ, et al. Application of Molecular Adsorbents Recirculating System to remove NO and cytokines in severe liver failure patients with multiple organ dysfunction syndrome. Liver Int.2003; 23 Suppl 3:16-20.
    36. Olson JC1, Kamath PS. Acute-on-chronic liver failure:what are the implications? Curr Gastroenterol Rep.2012; 14:63-66.
    37. Jalan R, Stadlbauer V, Sen S, et al. Role of predisposition, injury, response and organ failure in the prognosis of patients with acute-on-chronic liver failure:a prospective cohort study. Crit Care.2012; 16:R227.
    38. Reynolds RM. Programming effects of glucocorticoids. Clin Obstet Gynecol. 2013; 56:602-609.
    39. Dejager L, Vandevyver S, Petta I, et al. Dominance of the strongest: Inflammatory cytokines versus glucocorticoids. Cytokine Growth Factor Rev. 2014; 25:21-33.
    40.甘苏琴,龙尧.糖皮质激素治疗重型乙型肝炎的研究进展.医学综述.2011;17:1856-1858.
    41. Liver Failure and Artificial Liver Group, Chinese Society of Infectious Diseases, Chinese Medical Association; Severe Liver Diseases and Artificial Liver Group, Chinese Society of Hepatology, Chinese Medical Association. Guildeline for diagnosis and treament of liver failure. Chin J Clin Infect Dis.2012; 5:321-327.中华医学会感染病学分会肝衰竭与人工肝学组,中华医学会肝病学分会重型肝病与人工肝学组.肝衰竭诊治指南(2012年版).中华临床感染病杂志.2012; 5:321-327.
    42. He Y, Zhang W, Zhang R, et al. SOCS1 inhibits tumor necrosis factor-induced activation of ASK1-JNK inflammatory signaling by mediating ASK1 degradation. JBiol Chem.2006; 281:5559-5566.
    43. Haffner MC, Jurgeit A, Berlato C, et al. Interaction and functional interference of glucocorticoid receptor and SOCS1. J Biol Chem.2008; 283:22089-22096.
    44. Philip AM, Daniel Kim S, Vijayan MM. Cortisol modulates the expression of cytokines and suppressors of cytokine signaling (SOCS) in rainbow trout hepatocytes. Dev Comp Immunol.2012; 38:360-367.
    45. Chung CS, Chen Y, Grutkoski PS, et al. SOCS-1 is a central mediator of steroid-increased thymocyte apoptosis and decreased survival following sepsis. Apoptosis.2007; 12:1143-1153.
    46. Zhang X, Wang J, Cheng J, et al. An integrated analysis of SOCS1 down-regulation in HBV infection-related hepatocellular carcinoma. J Viral Hepat.2013. [Epub ahead of print]
    47. Koeberlein B, zur Hausen A, Bektas N, et al. Hepatitis B virus overexpresses suppressor of cytokine signaling-3 (SOCS3) thereby contributing to severity of inflammation in the liver. Virus Res.2010; 148:51-59.
    48. Matsumoto K, Miyake Y, Miyatake H, et al. A combination treatment of entecavir and early-phase corticosteroid in severe exacerbation of chronic hepatitis B. World J Gastroenterol.2009; 15:1650-1652.
    49. Yu S, Jianqin H, Wei W, et al. The efficacy and safety of nucleos(t)ide analogues in the treatment of HBV-related acute-on-chronic liver failure:a meta-analysis. Ann Hepatol.2013; 12:364-372.
    50. Asselah T, Marcellin P. Long-term results of treatment with nucleoside and nucleotide analogues (entecavir and tenofovir) for chronic hepatitis B. Clin Liver Dis.2013; 17:445-450.
    51. Lapinski TW1, Pogorzelska J, Flisiak R. HBV mutations and their clinical significance. Adv Med Sci.2012; 57:18-22.
    52. Fung J, Lai CL, Seto WK Nucleoside/nucleotide analogues in the treatment of chronic hepatitis B. JAntimicrob Chemother.2011; 66:2715-2725.
    53. Koeberlein B, zur Hausen A, Bektas N, et al. Hepatitis B virus overexpresses suppressor of cytokine signaling-3 (SOCS3) thereby contributing to severity of inflammation in the liver. Virus Res.2010; 148:51-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700