嗜酸氧化亚铁硫杆菌浸矿过程铁硫代谢体系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境友好高效的生物冶金技术的工业应用和发展亟需理论的突破以给生产实践提供指导,但由于对生物因素了解的局限性及生物冶金体系本身的复杂性一直妨碍了人们对生物冶金体系的全局的理解。本论文运用序列比对与识别、同源模建、进化踪迹分析、途径网络重构、分子模拟、量子化学计算、静电势分析、分子对接等生物信息学和分子计算方法,结合蛋白质表达纯化和定点突变与表征等技术,对嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans,简称A.f菌)在浸矿过程中利用铁硫能源驱动生物体合成的铁硫代谢能量传递过程进行了系统地研究,构建了其能量传递途径网络图,解释了单个A.f菌如何浸矿。此外,对硫化矿生物浸出体系及其能量传递耦合的产酸问题进行了分析。论文的具体研究内容和结果可概括为五个方面:
     一.A.f菌的若干能量传递蛋白的结构分析与反应机理预测。
     细胞色素c:A.f菌有10个细胞色素c,聚类分析表明它们分成4大同源蛋白类。其中4个周质细胞色素c_4家族蛋白的序列结构比较表明位于Cyc1的Tyr63和Glu121位点附近的残基差异决定它们的功能差异。
     细胞色素bc_1复合体:A.f菌有2个细胞色素bc_1复合体,对它们进行了结构模建和机理探讨,序列和结构比较显示了它们在细胞色素b亚基位于血红素b_L辅基近溶液外侧的Arg79位点存在差异,这可能导致了它们的正反向功能差异。
     终端氧化酶:A.f菌有4个终端氧化酶,对它们进行了结构模建和机理探讨,结果表明,细胞色素aa_3和ba_3复合体的电子供体是周质细胞色素c;细胞色素bo_3和bd复合体的电子供体是泛醌。
     细胞色素CycA1:模建了三维分子结构,它包含2个血红素辅基。
     细胞色素Cyc2_like蛋白:生物信息学分析表明它是定位于外膜含一个血红素的高分子量细胞色素蛋白。
     硫化物泛醌还原酶(SQR):SQR的结构尚未解析,模建了A.f菌源SQR三维分子结构,并跟黄素(FAD)和泛醌(UQ)进行分子对接,根据这些结果提出了其反应机理。
     基因doxDA:A.f菌doxDA-1与doxDA-2基因的生物信息学分析表明它们是融合基因。
     DsbG蛋白:结构模建结果表明,二聚体DsbG蛋白中的两个单体对称结合,2个保守的Cys119和Cys122残基的位置远离二聚体DsbG蛋白的接触面,但它们的位置十分接近。
     核糖-5-磷酸异构酶:模建了三维分子结构并跟底物R5P进行了分子对接,根据对接结果识别了催化的关键残基,提出了其反应机理。
     谷胱甘肽还原酶:模建了三维分子结构并跟底物进行分子对接,根据对接结果识别了催化的关键残基,提出了其反应机理。
     二.A.f菌的若干能量传递蛋白的结构模建与表达验证。
     铜蓝蛋白:静电势分析、活性位点量化计算和蛋白质表达定点突变实验证实残基Cys138对结合铜原子非常重要。
     亚铁氧化酶(Iro):Iro的结构尚未解析,模建了A.f菌源Iro结构,结果表明它是由4个半胱氨酸配位[Fe_4S_4]铁硫簇的高电位铁硫蛋白(HiPIP)家族蛋白,对离铁硫簇十分近的Tyr10虚拟突变实验预测了该位置处的芳香环对保护铁硫簇起重大作用,蛋白质的表达纯化及定点突变实验进一步证实了这些结论。
     高电位铁硫蛋白:结构模建表明它含有4个半胱氨酸配位的[Fe_4S_4]铁硫簇;蛋白的表达纯化实验表明它含有铁硫簇活性中心;定点突变实验进一步证实预测的残基配位[Fe_4S_4]铁硫簇。
     亚硫酸还原酶:模建了它的黄素蛋白(SiR-FP)和血红素蛋白(SiR-HP)的三维分子结构,结果表明,SiR-HP中4个保守的Cys427,Cys433,Cys472和Cys476残基配位位于单体结构的中心的[Fe_4S_4]铁硫簇,血红素位于铁硫簇附近。蛋白的表达纯化实验表明SiR-FP含有[Fe_4S_4]铁硫簇活性中心和血红素基团,定点突变实验证实预测的残基配位[Fe_4S_4]铁硫簇。
     APS还原酶:结构模建结果表明它含有由4个保守的Cys110,Cys111,Cys193和Cys196残基配位[Fe_4S_4]铁硫簇,底物APS分子对接的结果显示其位置就在附近。蛋白的表达纯化实验表明它含有铁硫簇活性中心。
     铁硫簇组装供硫蛋白(IscS):模建了A.f菌源IscS的完整的三维分子结构,跟辅因子PLP和底物半胱氨酸分子对接发现了一些重要残基;蛋白的表达纯化实验进一步证勃A.f菌源的IscS是一个半胱氨酸脱硫酶,它依赖PLP,催化L型半胱氨酸转变成L型丙氨酸和硫烷硫,为铁硫簇组装供硫。
     铁硫簇组装蛋白(IscA):IscA可能含[Fe_4S_4]或[Fe_2S_2]铁硫簇,结构模建和蛋白的定点突变实验验证表明A.f菌源IscA含有由Cys35,Cys99,Cys101和Glu103配位的[Fe_4S_4]铁硫簇。
     铁硫簇支架蛋白(IscU):IscU可能含[Fe_4S_4]或[Fe_2S_2]铁硫簇,结构模建和蛋白的定点突变实验验证表明A.f菌源IscU含有由Cys37,Cys63,Cys106和Asp39配位的[Fe_2S_2]铁硫簇。
     铁氧还蛋白:铁氧还蛋白可能含[Fe_4S_4],[Fe_3S_4]或[Fe_2S_2]铁硫簇,结构模建表明它是由4个半胱氨酸残基Cys42,Cys48,Cys51和Cys87配位[Fe_2S_2]的铁硫蛋白;蛋白的表达纯化实验表明A.f菌源的铁氧还蛋白正确插入[Fe_2S_2]铁硫簇;定点突变实验进一步证实预测的残基配位[Fe_2S_2]铁硫簇。
     超氧化物歧化酶:进行了三维结构模建和进化踪迹分析,它的活性中心由Cys35,Cys99,Cys101和Glu103配位铁原子组成;蛋白的表达纯化实验表明它是含铁超氧化物歧化酶。
     中链乙酰辅酶A脱氢酶:它及其Y375K突变体与乙酰辅酶A的分子对接比较研究和蛋白表达验证结果表明,中链乙酰辅酶A脱氢酶的Tyr375突变成Lys375使其获得了乙酰辅酶A氧化酶活性。
     乙酰辅酶A氧化酶:分子对接预测和蛋白的表达验证结果表明Oct-2-en-4-ynoyl-CoA是它的一个特异性抑制剂。
     三.A.f菌的若干多拷贝能量传递蛋白的分子多样性。
     在三维分子结构层次考察了A.f菌的细胞色素c_4类蛋白、铜蓝蛋白、高氧还电位铁硫蛋白、硫化物泛醌还原酶在不同菌株和相同菌株的不同拷贝间的分子多样性。结果表明相同菌株的不同拷贝蛋白间的差异处于分子的局部;不同菌株同一蛋白间的差异为数个远离活性中心的残基,但有少数在活性中心附近发生突变。
     四.A.f菌浸矿过程铁硫代谢的能量传递网络图。
     对A.f ATCC 23270全基因组涉及铁硫代谢能量传递的二百多个基因和三十多个多基因操纵子进行了系统地分析,结合前面各部分的研究结果和已有文献的研究成果,构建了A.f菌浸矿过程铁硫代谢能量传递网络图。它包括矿物的分解,溶液中的反应,A.f菌的呼吸链、亚铁氧化、硫代谢、二氧化碳固定、氮气固定及氢气利用等部分。图中对所涉及蛋白的同工酶和多拷贝蛋白的个数及一些重要反应的氧还电势也进行了标注。通过这个图,可明白单A.f菌如何浸矿。
     五.硫化矿生物浸出体系的分析及产酸问题。
     以生成新物质的流量为切入点,系统地分析了硫化矿生物浸出体系,该体系的变化主要由铁硫碳氮氧和金属六条关键物质流主导。最后,根据A.f菌浸矿过程铁硫代谢能量传递网络图结果对硫化矿生物浸出过程能量传递耦合的产酸问题进行了分析。
Biohydrometallurgy is an effective technique to extracting metals and friendly to environment.Its industrial application and development need the breakthrough of theory so as to provide guides to the practices. However,the insufficiency for knowing to the biology factor and the complexity for the system of biohydrometallurgy have prevented people from understanding the global of the system of biohydrometallurgy.In this paper,with bioinformatics and molecular computation techniques such as sequence alignment and pattern identification,protein structure building,evolutionary trace analyse,pathway network reconstruction, molecular modeling,quantum chemistry computation,electrostatic potential analyse,molecular docking and so on,combining protein expression,purification,mutation,characterization and so on,the energy transfer process of iron and sulfur metabolism of Acidithiobacillus ferrooxidans utilizing iron and sulfur energy sources to drive the syntheses of its organism in the process of minerals bioleaching was systematically studied,its energy transfer network map was reconstructed. From this map it was explained how A.ferrooxidans to leach minerals. Furthermore,the global analysis of the system of sulfide mineral bioleaching and acid produce coupled by energy transfer were performed. The detail research contents and results of this paper could be summarized to five aspects as follow:
     1.Structure analysis and mechanism prediction of some energy transfer proteins in A.ferrooxidans.
     Cytochrome c:There are 10 cytochrome c proteins in A. ferrooxidans.Cluster analysis showed that they were classified to 4 homologous protein classes.The sequence alignment and structure compare for the 4 proteins of cytochrome c_4 family among them showed that the differences in the sites similar to Tyr63 and Gln121 in Cycl were responsible for their function differences.
     Cytochrome bc_1 complex:There are 2 cytochrome bc_1 complexes in A.ferrooxidans.Structure modeling and mechanism analysis were performed to them.The alignment and structure compare for them showed that the differences in the Arg79 site near to heme b_L in cytochrome b subunit for them were responsible for their differences of foreword or inverse function.
     Terminal oxidase:There are 4 terminal oxidases in A.ferrooxidans. Structure modeling and mechanism analysis were performed to them, results showed that the electron donors for cytochrome aa_3 and ba_3 complexes were cytochrome c proteins in periplasm,the electron donors for cytochrome bo_3 and bd complexes were quinones.
     Cytochrome CycA1:Modeled structure showed that this protein contained 2 hemes.
     Cytochrome Cyc2_iike protein:The bioinformatics analysis showed that this protein was a cytochrome c protein with one heme in outer membrane.
     Sulfide quinone reductase(SQR):The structure of SQR is unresolved.The structure of SQR from A.ferrooxidans was modeled and docked with FAD and qunione,its catalyze mechanism was proposed based on these results.
     Gene doxDA:The bioinformatics analysis to doxDA-1 and doxDA-2 genes showed that they were both fused genes.
     DsbG protein:Modeled structure show that the two conserved residues Cys119 and Cys122 were very near but the place of them were far from the contact interface between two homo subunit.
     Ribose-5-phosphate isomerase A(RpiA):Its structure was modeled and docked with R5P.Its key residues were identified and its catalyze mechanism was proposed based on these results.
     Glutathione reductase:Its structure was modeled and docked with substrates.Its key residues were identified and its catalyze mechanism was proposed based on these results.
     2.Structure modeling and protein expression verification of some energy transfer proteins in A.ferrooxidans.
     Rusticyanin:Electrostatic potential analysis,quantum chemistry computation for active site and protein expression and mutation confirmed that Cys138 was crucial for Cu atom binding.
     Iron oxidase(Iro):The structure of Iro is unresolved.The structure of Iro from A.ferrooxidans was modeled,which showed that this protein was a high potential iron sulfur protein(HiPIP) family protein with a [Fe_4S_4]cluster coordinated by 4 cysteines.The virtual mutation experiment for Tyr10 predicted that Tyr10 was crucial for the stable of the[Fe_4S_4]cluster.Protein expression and mutation experiment further confirmed those conclusions.
     High potential iron sulfur protein(HiPIP):Modeled structure show that this protein had a[Fe_4S_4]cluster coordinated by 4 cysteines. Protein expression showed that this protein had a[Fe_4S_4]cluster. Mutation experiment further confirmed the predicted residues coordinated[Fe_4S_4]cluster.
     Sulfite reductase:Structures of its flavin protein(SiR-FP) and heme protein(SiR-HP) are modeled.Results showed that SiR-HP had a[Fe_4S_4] cluster in the center coordinated by 4 cysteines,a heme is near to it. Protein expression showed that SiR-HP had a[Fe_4S_4]cluster and heme group.Mutation experiment further confirmed the predicted residues coordinate[Fe_4S_4]cluster.
     APS reductase:Modeled structure showed that this protein had a [Fe_4S_4]cluster coordinated by Cys110,Cys111,Cys193 and Cys196. Docking results showed that substrate APS was near to it.Protein expression confirmed that this protein had a[Fe_4S_4]cluster.
     Iron Sulfur Cluster Assembly sulfur donor protein(IscS):Its structure was modeled and docked with cofactor pyridoxal 5'-phosphate (PLP) and substrate cysteine.Its key residues were identified.Protein expression confirmed that IscS was a cysteine desulfurase,which is a PLP-dependent enzyme that catalyzes the conversion of L-cysteine to L-alanine and sulfan sulfur to provide sulfur for iron sulfur cluster assembly.
     Iron Sulfur Cluster Assembly A protein(IseA):IscA from A. ferrooxidans may contain[Fe_4S_4]or[Fe_2S_2]cluster.Modeled structure and protein mutation experiment confirmed that this protein had a[Fe_4S_4] cluster coordinated by Cys35,Cys99,Cys101 and Glu103.
     Iron Sulfur Cluster Assembly scaffold protein(IscU):IscU from A. ferrooxidans may contain[Fe_4S_4]or[Fe_2S_2]cluster.Modeled structure and protein mutation experiment confirmed that this protein had a[Fe_2S_2] cluster coordinated by Cys37,Cys63,Cys106 and Asp39.
     Ferredoxin:Ferredoxin from A.ferrooxidans may contain[Fe_4S_4], [Fe_3S_4]or[Fe_2S_2]cluster.Modeled structure,protein expression and mutation experiment confirmed that this protein had a[Fe_2S_2]cluster coordinated by Cys42,Cys48,Cys51 and Cys87.
     Superoxide dismutase:Structure modeling and evolutionary trace analysis were performed to them,results show that the active center of it was an iron coordinated by Cys35,Cys99,Cys101 and Glu103.protein expression experiment further confirmed that this protein was an iron-containing superoxide dismutase.
     Medium-chain acyl-CoA dehydrogenase:Comparison for this protein and its Y375K mutation docked with acyl-CoA respectively and protein expressions and mutation experiments confirmed that mutation of Tyr375 to Lys375 allowed this protein to acquire acyl-CoA oxidase activity.
     Acyl-CoA oxidase:Molecular docking and protein expression experiment confirmed that Oct-2-en-4-ynoyl-CoA was a specific inhibitor of acyl-CoA oxidase.
     3.Molecular diversities of some multi-copies energy transfer proteins in A.ferrooxidans.
     In the level of three dimension molecular structure,molecular diversities of cytochrome c_4 proteins,rusticyanin,high potential iron sulfur protein and sulfide quinone reductase in all kinds of strains and their difference copies in same strain of A.ferrooxidans were studied. Results showed that the differences among multi-copies proteins in same strain were in the local of molecules;except for some minority strains,the difference sites of the same protein in difference strains were generally only several residues far from active centers.
     4.The energy transfer network map of iron and sulfur metabolism in the process of A.ferrooxidans leaching minerals.
     Systemically analyzing more than two handreds genes and more than thirty operons involving energy transfer in A.ferrooxidans,combining the above research results and the results of other people's researches in literatures,the energy transfer pathway network map of iron and sulfur metabolism in the process of A.ferrooxidans leaching minerals was reconstructed.This map included mineral decompose,reaction in solution, and the subsystems of ferrous oxidation,sulfur metabolize,CO_2 fixation, N_2 fixation and H2 utilization of A.ferrooxidans.The sum of multicopies and isoenzymes of each protein and the redox potential of some key reactions were marked.Through this map,it can be known how an A. ferrooxidans to leach minerals.
     5.Analysis of the system of sulfide mineral bioleaehing and its acid produce coupled by energy transfer.
     With the new method of considering the flux of producing new matter as a cutting-point,the system of sulfide mineral bioleaching was systematically analyzed,the changes of this system were dominant by seven key matter flows of iron flow,sulfur flow,carbon flow,nitrogen flow,oxygen flow and metals flow.Finally,the details of acid produce coupled by energy transfer in the process of sulfide mineral bioleaching was analyzed.
引文
[1]杨显万,沈庆峰,郭玉霞.微生物湿法冶金.北京:冶金工业出版社,2003.
    [2]Torma AE.The role of Thiobacillus ferrooxidans in hydrometallurgical processes,eds.TK Ghose,A Fretcher,N Blackebrough.In Advances in Biochemical Engineering.New York:Springer.1977,6:1-37.
    [3]Rawlings DE.Heavy metal mining using microbes.Annual Review of Microbiology,2002,56:65-91.
    [4]裘荣庆.微生物冶金的研究和应用现状.微生物学通报,1995,22(3):180-183.
    [5]Kelly DP,Wood AP.Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus.International journal of systematic and evolutionary microbiology,2000,50:511-516.
    [6]姜成林,徐丽华.微生物资源开发利用.中国轻工业出版社,2001,152-153.
    [7]Cecal AI,Popa K,Craus M,et al.Bioleaehing of UO_2~(2+) ions from a Romanian poor uranium ore.Journal of Radioanalytical and Nuclear Chemistry,2002,254(1):81-84.
    [8]Moon-Sung C,Kyung-Suk C,Dong-Su K,et al.Bioleaehing of uranium from low grade black schists by Acidithiobacillus ferrooxidans.World Journal of Microbiology and Bioteehnology,2005,21(3):377-380.
    [9]欧津,李维卿,钟慧芳.贫铀矿石细菌浸出的研究.微生物学报,1977,17(1):11-20.
    [10]刘健,樊保团,张传敬.抚州铀矿细菌堆浸半工业试验研究.铀矿冶,2001,20(1):15-27.
    [11]樊保团,孟运生,刘建,等.赣州铀矿草桃背分矿细菌堆浸工业试验.铀矿冶,2002,21(2):67-73.
    [12]胡凯光,王清良,刘迎九,等.草桃背矿床原地破碎细菌浸出试验研.中国矿业,2003,12(7):51-53.
    [13]胡凯光,王清良,谭亚辉.新疆某铀矿石浸出试验.金属矿山,2003,326(8):23-24.
    [14]胡凯光,李传乙,黄爱武.湖南某矿细菌浸铀.矿冶,2003,12(2):10-13.
    [15]Kim SD,Bae JE,Park HS,et al.Bioleaching of cadmium and nickel from synthetic sediments by Acidithiobacillus ferrooxidans.Environmental Geochemistry and Health,2005,27:229-235.
    [16]Salo-Zieman VLA,Kinnunen PHM,Puhakka JA.Bioleaehing of acid-consuming low-grade nickel ore with elemental sulfur addition and subsequent acid generation.Journal of Chemical Technology & Biotechnology,2005,81(1):34-40.
    [17]Santos LRG,Barbosa AF,Souza AD,et al.Bioleaching of a complex nickel-iron concentrate by mesophile bacteria.Minerals Engineering,2006,19(12):1251-1258.
    [18]李洪枚.细菌浸出含镍磁黄铁矿金矿的研究.湿法冶金,2000,19(3):28-31.
    [19]陈泉军,方兆珩.生物浸出低品位镍铜硫化矿中的镍、铜、钴.过程工程学报,2002,1(4):369-373.
    [20]邓敬石,阮仁满.影响Sulfobacillus thermosulfidooxidans生长及亚铁氧化的因素研究.矿产综合利用,2002,3:38-41.
    [21]李浩然,冯雅丽.微生物浸出金川露天剥离低品位镍矿.北京科技大学学报,2004,26(6):584-587.
    [22]Rohwerder T.,Gehrke T.,Kinzler K.,et al.Bioleaching review part A:Progress in bioleaching:fundamentals and mechanisms of bacterial metal sulfide oxidation.Appl Microbiol Biotechnol,2003,63:239-248.
    [23]Sand,W.,T.Gehrke,R.Hallmann,A.Schippers.Sulfur chemistry,biofilm,and the(in)direct attack mechanism-a critical evaluation of bacterial leaching.Appl Microbiol Biotechnol,1995,43:961-966.
    [24]Rohwerder T,Gehrke T,Kinzler K,et al.Bioleaching review part B:Progress in bioleaching:fundamentals and mechanisms of bacterial metal sulfide oxidation.Appl Microbiol Biotechnol:2003
    [25]Fowler,T.A.,F.K.Crundwell.Leaching of zinc sulfide by Thiobacillus ferrooxidans:experiments with a controlled redox potential indicate no direct bacterial mechanism.Appl Environ Microbiol,1998,64:3570-3575.
    [26]Sand,W.,T.Gehrke,R.Hallmann,et al.Sulfur chemistry,biofilm,and the(in)direct attack mechanism-a critical evaluation of bacterial leaching.Appl Microbiol Biotechnol,1995,43:961-966.
    [27]Sand,W.,T.Gehrke,P.G.Jozsa,A.Schippers.(Bio) chemistry of bacterial leaching-direct vs.indirect bioleaching.Hydrometallurgy,2001,59:159-175.
    [28]Schippers,A.,W.Sand.Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur.Appl Environ Microbiol,1999,65:319-321.
    [29]Steudel R.Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes.Ind Eng Chem Res,1996,35:1417-1423.
    [30]Tributsch,H.,H.Gerischer.The oxidation and self-heating of metal sulphides as an electrochemical corrosion phenomenon.J Appl Chem Biotechnol,1976,26:747-761.
    [31]Mackintosh ME.Nitrogen fixation by Thiobacillus ferrooxidans.Journal of General Microbiology,1978,105:215-218.
    [32]Parro V,Moreno-Paz M.Gene function analysis in environmental isolates:the nif regulon of the strict iron oxidizing bacterium Leptospirillum ferrooxidans.Proceedings of the National Academy of Sciences of the United States of America,2003,100(13):7883-7888.
    [33]Tyson GW,Ian Lo,Baker B J,et al.Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp.nov.from an acidophilic microbial community.Appl Environ Microbiol.,2005,71(10):6319-6324.
    [34]Parro V,Moreno-Paz M.Nitrogen fixation in acidophile iron-oxidizing bacteria:the nif regulon of Leptospirillum ferrooxidans.Research in Microbiology,2004,155(9):703-709.
    [35]Stanley JT,Bryant MP,Pfennig N,et al.Bergeys Manual of Systematic Bacteriology,Bergey,D.H.(1860-1937).1989,volume 3,Williams and Wilkins,Baltimore,MD
    [36]Harrison AP.Genomic and physiological diversity amongst strains of Thio-bacillus ferrooxidans,and a genomie comparison with Thiobacillus thio-oxidans.Archives of microbiology,1982,131:68-76.
    [37]Pronk JT,Meijer WM,Haseu W,et al.Growth of Thiobacillusferrooxidans on formic acid.Appl Environ Microbiol.,1991,57:2057-2062.
    [38]Pronk JT,Liem K,Bos P,et al.Energy transduction by anaerobic ferric iron respiration in Thiobacillus ferrooxidans.Appl Environ Microbiol.,1991,57:2063-2068.
    [39]Markosyan G E.A new iron-oxidizing bacterium-Leptospirillum ferrooxidans nov.gen.nov.sp.Biol J Armenia,1972,25:26-29(in Russian).
    [40]Golovacheva RS,Golyshina OV,Karavaiko GI,et al.A new ironoxidizing bacterium,Leptospirillum thermoferrooxidans sp.Nov.Mikrobiologiya,1992,61:744-750.
    [41]Rawlings DE,Tfibutsch H,Hansford GS.Reasons why'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores.Microbiology, 1999,145: 5-13.
    [42] Vian M, Creo C, Dalmastri C, et al. Thiobacillus ferrooxidans selection in continuous culture. eds. RW Lawrence, RMR Branion, H G Ebner. In Fundamental and Applied Biohydrometallurgy.Amsterdam: Elsevier. 1986 .395-406.
    [43] Leduc LG, Ferroni GD, Trevors JT. Resistance to heavy metals in different strains of Thiobacillus ferrooxidans. World journal of microbiology and biotechnology, 1997,13(4): 453-455.
    [44] Hallberg KB, Lindstrom EB. Characterization of Thiobacillus caldus sp.nov., a moderately thermophilic acidophile. Microbiology, 1994,140:3451-3456.
    [45] Bergamo RF, Novo MTM, Verissimo RV, et al. Differentiation of Acidithio-bacillus ferrooxidans and A. thiooxidans strains based on 16S-23S rDNA spacer polymorphism analysis. Research in Microbiology, 2004, 155(7):559-567.
    [46] Dopson M, Lindstr(?)m EB. Potential Role of Thiobacillus caldus in Arsenopyrite Bioleaching. Appl Environ Microbiol., 1999,65(1): 36-40.
    [47] Guan Zhou Q, Bo F, Hong Bo Z, et al. Isolation of a strain of Acidithiobacillus caldus and its role in bioleaching of chalcopyrite. World Journal of Microbiology and Biotechnology, 2007.
    [48] Johnson DB. Genus Ⅱ Leptospirillum Hippe 2000 (ex Markosyan 1972, 26).eds. GGarrity.In Bergey's Manual of Comparative Bacteriology.Berlin:Springer ,2001,1:443-447.
    [49] De Wulf-Durand P, Bryant LJ, Sly LI. PCR-mediated detection of acidophilic,bioleaching-associated bacteria. Appl Environ Microbiol., 1997, 63:2944-2948.
    [50] Hippe H. Leptospirillum gen. nov.(ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov.(ex Markosyan 1972) nom. rev. and Leptospirillum thermoferrooxidans sp. nov.(Golovacheva et al. 1992).International Journal of Systematic and Evolutional Microbiology, 2000, 50:501-503.
    [51] Coram NJ, Rawlings DE. Molecular relationship between two groups of Leptospirillum and the finding that the world and the Leptospirillum ferriphilum sp.nov.dominates South African commercial biooxidation tanks that operate at 40℃.Appl Environ Microbiol.,2002,68:838-845.
    [52]Hallberg KB,Johnson DB.Biodiversity of acidophilic prokaryotes.Advances in Applied Microbiology,2001,49:37-84.
    [53]Goebel BM,Stackebrandt E.Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environ-ments.Appl Environ Microbiol.,1994,60:1614-1621.
    [54]Kishimoto N,Fukaya F,Inagaki K,et al.Distribution of bactedo-chlorophyll-αamong aerobic and acidiphilic bacteria and light enhanced CO_2-incorporation in Acidiphilium rubrum.FEMS Microbiological Ecology,1995,16:291-296.
    [55]和致中,彭谦,陈俊英.高温菌生物学.北京:科学出版社,2001.
    [56]Norris PR.Thermophiles and bioleaching.Rawlings DE.In Biomining:Theory,Microbes and Industrial Process.Springer-Verlag and Landes Bioscience,1997,247-258.
    [57]Huber G,Stetter KO.Sulfolobus metallicus,new species,a novel strictly chemolithotrophic thermophilic archaeal species of metal-mobilizers.Systematic and Applied Microbiology,1991,14:372-378.
    [58]Norris PR,Burton NP,Foulis NAM.Acidophiles in bioreactor mineral processing.Extremophiles,2000,4:71-76.
    [59]Huber G,Spinnler C,Gambacorta A,et al.Metallosphaera sedula gen.and sp.nov.represents a new genus of aerobic,metal-mobilizing,thermoacidophilic archaebacteria.Systematic and Applied Microbiology,1989,12:38-47.
    [60]Konishi Y,Tokushige M,Asai S,et al.Copper recovery from chalcopyrite concentrate by acidophilic thermophile Acidianus brierleyi in batch and continuous-flow stirred tank reactors.Hydrometallurgy,2001,59(2):271-282.
    [61]赵月峰,方兆珩.极度嗜热菌Acidianus brierleyi浸出镍铜硫化矿精矿.过程工程学报,2003,3(2):161-164.
    [62]石贤爱,李聪颖,林晖.嗜热布氏酸菌对梅州黄铜矿的生物浸出过程特性.过程工程学报,2005,5(3):332-336.
    [63]Edwards KJ,Bond PL,Gihring TM,et al.An archaeal iron-oxidising extreme aeidophile important in acid mine drainage.Science,2000,287:1796-1799.
    [64]Dopson M,Baker-Austin C,Hind A,et al.Charaeterisation of Ferroplasma isolates and "Ferroplasma acidarmanus" sp.nov.,extreme aeidophiles from acid mine drainage and industrial bioleaching environments.Appl Environ Microbiol.,2004,70(4):2079-2088.
    [65]Hawkes RB,Franzmann PD,Ohara G,et al.Ferroplasma cupricumulans sp.nov.,a novel moderately thermophilic,acidophilic archaeon isolated from an industrial-scale chalcocite bioleach heap.Extremophiles,2006,10(6):525-530.
    [66]Norris PR,Clark DA,Owen JP,et al.Characteristics of Sulfobacillus Acido-philus sp.nov.and other moderately thermophilic mineral-sulphide-oxidizing bacteria.Microbiology,1996,142:775-783.
    [67]周立祥,方迪,周顺桂.利用嗜酸性硫杆菌去除制革污泥中铬的研究.环境科学,2004,25(1):62-66.
    [68]周立祥,周顺桂,王世梅.制革污泥中的铬的生物脱除及其对污泥的调理作用.环境科学学报,2004,24(6):1014-1020.
    [69]王世梅,周立祥,黄峰源.酵母菌与两种硫杆菌复合对污泥中三价铬的去除.中国环境科学,2006,26(2):197-200.
    [70]张成桂,夏金兰,邱冠周.嗜酸氧化亚铁硫杆菌亚铁氧化系统研究进展.中国有色金属学报.2006,16(7):1239-1249
    [71]Natarajan K A,Kumari A.Development of a clean bioelectrochemieal process for leaching of ocean manganese nodules.Minerals Engineering,2002,15:103-106
    [72]Nestor D,Valdivia U,Chaves A P.Mechanisms of bioleaching of a refractory mineral of gold with Thiobacillus ferrooxidans.International Journal of Mineral Processing,2001,62:187-198
    [73]Kumad A,Natarajan K A.Electrochemical aspects of leaching of ocean nodules in the presence and absence of microorganisms.International Journal of Mineral Processing,2002,66:29-47
    [74]Mazuelos A,Palencia I,Romero R,Rodriguez G,Carranza F.Ferric iron production in packed bed bioreactors:Influence of pH,temperature,particle size,bacterial support material and type of air distributor.Minerals Engineering,2001,14:507-514
    [75]Liu Z,Borne F,Ratouchniak J,Bonnefoy V.Genetic transfer of IncP,IneQ and IncW plasmids to four Thiobacillus ferrooxidans strains by conjugation Hydrometallurgy,2001,59:339-345
    [76]Kazuhiro,SASA K I,et al.Respiratory Isozyme,Two Types of Rusticyanin of Acidithiobacillus ferrooxidans.Biosci.Biotechnol.Biochem.,2003,67:1039-1047
    [77]Andres Yarzabal,Corinne Appia-Ayme,Jeanine Ratouchniak and Violaine Bonnefoy.Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c,a cytochrome oxidase and rusticyanin.Microbiology,2004,150:2113-2123
    [78]Corinne Appia-ayme,Nicolas Guiliani,Jeannine Ratouchniak and Violaine Bonnefoy.Characterization of an Operon Encoding Two c-Type Cytochromes,an aa3-Type Cytochrome Oxidase,and RusticyaninThiobacillus ferrooxidans ATCC 33020.AEM,1999,65:4781-4787.
    [79]Ronk M,Shively J.E.Amino acid sequence of the blue copper protein rusticyanin from Thiobacillusferrooxidans,Biochemistry,1991,30:9435-9442.
    [80]Barrett M L,Harvey I,Sundararajan M,Surendran R,Hall J F,Ellis M J,Hough M A,Strange R W,Hillier I H,Hasnain S.S.Atomic resolution crystal structures,EXAFS,and quantum chemical studies of rusticyanin and its two mutants provide insight into its unusual properties,Biochemistry,2006,45:2927-2939.
    [81]Kanbi L D,Antonyuk S,Hough M A,Hall J F,Dodd F E,Hasnain S S.Crystal structures of the Met148Leu and Ser86Asp mutants of rusticyanin from Thiobacillus ferrooxidans:Insights into the structural relationship with the cupredoxins and the multi copper proteins,J.Mol.Biol.,2002,320:263-275.
    [82]Hall J F,Kanbi L D,Strange R W,Hasnain S S.Role of the axial ligand in typel Cu centers studied by point mutations of Met148 in rusticyanin,Biochemistry,1999,38:12675-12680.
    [83]Casimiro D R,Toy-Palmer A,Blake R C,Dyson H J.Gene synthesis,high-level expression,and mutagenesis of Thiobacillus ferrooxidans rusticyanin:His 85 is a ligand to the blue copper center,Biochemistry,1995,34:6640-6648.
    [84]Hall J F,Kanbi L D,Harvey I,Murphy L M,Hasnain S S.Modulating the redox potential and acid stability of rusticyanin by site-directed mutagenesis of Ser86,Biochemistry,1998,37:11451-11458.
    [85]Fukumori Y,Yano T,Sato A,Yamanaka T.Fe(Ⅱ)-oxidizing enzyme purified from Thiobacillusferrooxidans.FEMS Microbiol.Lett.,1988,50:169-172.
    [86]Kusano T,Takeshima T,Sugawara K,Inoue C,Shiratori T,Yano T,Fukumori Y,T.Molecular cloning of the gene encoding Thiobacillus ferrooxidans Fe(Ⅱ) oxidase. High homology of the gene product with HiPIP. J. Biol. Chem.,1992,267:11242-11247.
    [87] Breiter D R, Meyer T E, Rayment I, Holden H M. The molecular structure of the high potential iron-sulfur protein isolated from Ectothiorhodospira halophila determined at 2.5 A resolution. J. Biol. Chem.,1991,266:18660-18667.
    [88] Yarzabal A, Brasseur G, Bonnefoy V. Cytochromes c of Acidithiobacillus ferrooxidans . FEMS Microbiology Letters, 2002,209:189-195.
    [89] Andres Yarzabal, Gae Brasseur, Jeanine Ratouchniak, Karen Lund, Danielle Lemesle-Meunier, John DeMoss A, Bonnefoy V.The High-Molecular-Weight Cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an Outer Membrane Protein. Journal Of Bacteriology, 2002, 313-317
    [90] Kai M, Yano T, Fukumori Y, et al. Cytochrome oxidase of an acidophilic iron -oxidizing bacterium, Thiobacillus ferrooxidans, functions at pH 3.5.Biochemical and Biophysical Research Communications, 1989,2:839-843.
    [91] Kai M, Yano T, Tamegai H, Fukumori Y, et al. Thiobacillus ferrooxidans cytochrome c oxidase: purification, and molecular and enzymatic features . Journal of Biological Chemistry, 1992,112:816-821.
    [92] Friedrich CG, Brasischewsky F, Rother D, et al. Prokaryotic sulfur oxidation. Current Opinion in Microbiology, 2005, 8: 253-259.
    [93] Sugio T, Suzuki H, Oto A, et al. Purification and some properties of a hydrogen sulfide binding protein that is involved in sulfur oxidation of Thiobacillus ferrooxidans. Agri Biol Chem, 1991, 55: 2091-2097.
    [94] Buonfiglio V, Polidoro M, Flora L, et al. Identification of two outer membrane proteins involved in the oxidation of sulphur compounds in Thiobacillus ferrooxidans . FEMS Microbiol Rev, 1993,11: 43-50.
    [95] DeJong G A H, Hazeu W, Bos P, et al. Polythionate degradation by tetrathionate hydrolase of Thiobacillus ferrooxidans . Microbiology, 1997,143:499-504.
    [96] Rohwerder T, Sand W. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp.Microbiology, 2003,149: 1699-1710.
    [97] Gourdon R, Funtowicz N. Kinetic model of elemental sulfur oxidation by Thiobacillus thiooxidans in batch slurry reactors. Bioprocess and Biosystems Engineering,1998,18:241-249.
    [98]Konishi Y,Asai S,Yoshida N.Growth kinetics of Thiobacillus thiooxidans on the surface of elemental sulfur.Applied and Environmental Microbiology,1995,61:3617-3622.
    [99]Sampson MI,Phillips CV,Blake RC.Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides.Minerals Engineering,2000,13:373-389.
    [100]Gehrke T,Telegdi J,Thierry D,et al.Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching.Applied and Environmental Microbiology,1998,64:2743-2747.
    [101]Sharma PK,Dasb A,Raoa KH.Surface characterization of Acidithiobacillus ferrooxidans cells grown under different conditions.Hydrometallurgy,2003,71:285-292.
    [102]傅建华,邱冠周,胡岳华.浸矿细菌表面性质研究.金属矿山,2004,39:19-24.
    [103]Ohmura N,Tsugita K,Koizumi JI,et al.Sulfur-binding protein of flagella of Thiobacillus ferrooxidans.The Journal of Bacteriology,1996,178:5776-5780.
    [104]Prange A,Engelhardt H,Truper HG,et al.The role of the sulfur globule proteins of Allochromatium vinosum:mutagenesis of the sulfur globule protein genes and expression studies by real time RT-PCR.Archives of Microbiology,2004,182:165-174.
    [105]Silver M,Lundgren DG.Sulfur-oxidizing enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans).Canadian Journal of Chemistry,1968,46:457-461.
    [106]Suzuki I.Oxidation of elemental sulfur by an enzyme system of Thiobacillus thiooxidans.Bioehimica et Biophysica Aeta,1965,104:359-371.
    [107]Sugio T,Katagiri T,Modyama M,et al.Existence of a new type of sulfite oxidase which utilizes ferric ions as an electron aceeptor in Thiobacillus ferrooxidans.Applied Microbiology and Biotechnology,1988,54:153-157.
    [108]Ramirez P,Guiliani N,Valenzuela L,et al.Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron,sulfur compounds,or metal sulfides.Applied and Enviromental Microbiology,2004;70:4491-4498.
    [109]Buonfiglio V,Polidoro M,Flora L,et al.Identification of two surface proteins involved in the oxidation of sulphur compounds in Thiobacillus ferrooxidans. FEMS Microbiology Review, 1993, 11: 43-50.
    [110] Buonfiglio V, Polidoro M, Soyer F, et al. A novel gene encoding a sulfur-regulated outer membrane protein in Thiobacillus ferrooxidans. Journal of Biotechnology, 1999; 72: 85-93.
    [111] Sugio T, Ochi K, Muraoka T, et al. Isolation and some properties of sulfur dioxygenase from Acidithiobacillus thiooxidans NB1-3. Eds: Harrison STL,Rawlings DE and Petersen J, Cape Town, South Africa. Produced by Compress.ISBN: 1-920051-17-1. Proceedings of the 16th international biohydrometallurgy symposium, 2005,25-29.
    [112] Emmel T, Sand W, Kuig WA, et al. Evidence for the existence of a sulphur oxygenase in Sulfolobus brierleyi. Journal of General Microbiology, 1986, 132:3415-3420.
    [113] Urich T, Bandeiras TM, Leal SS, et al. The sulphur oxygenase reductase from Acidianus ambivalens is a multimeric protein containing a low-potential mononuclear non-haem iron centre. Biochemical Journal, 2004, 381: 137-146.
    [114] Kletzin A. Coupled enzymatic production of sulfite, thiosulfate, and hydrogen sulfide from sulfur: purification and properties of a sulfur oxygenase reductase from the facultatively anaerobic archaebacterium Desulfitrolobus ambivalens.Journal of Bacteriology, 1989,171: 1638-1643.
    [115] Kletzin A. Molecular characterization of the sor gene, which encodes the sulfur oxygenase/reductase of the thermoacidophilic Archaeum Desulfurolobus ambivalens. Journal of Bacteriology, 1992,174: 5854-5859.
    [116] Wakai S, Kikumoto M, Kanao T, et al. Involvement of sulfide quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1. Bioscience Biotechnology and Biochemistry, 2004, 68: 2519-2528.
    [117] Friedrich C G, Rother D, Bradischewsky F, et al. Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Applied and Environmental Microbiology, 2001,67: 2873-2882.
    [118] Vestal J R, Lundgren D G. The sulfite oxidase of Thiobacillus ferrooxidans (Ferrobacillus ferrooxidans). Canadian Journal of Biochemistry, 1971, 49:1125-1130.
    [119] Nakamura K, Yoskikawa H, Okubo S, et al. Purification and properties of membrane-bound sulfite dehydrogenase from Thiobacillus thiooxidans JCM7814.Bioscience Biotechnology and Biochemistry,1995,59:11-15.
    [120]De Jong GAH,Tang JA,Bos P,et al.Purification and characterization of a sulfite:cytochrome c oxidoreductase from Thiobacillus acidophilus.Journal of Molecular Catalysis B:Enzymatic,2000,8:61-67.
    [121]Kappler U,Dahl C.Enzymology and molecular biology of prokaryotic sulfite oxidation.FEMS Microbiology Letters,2001,203:1-9.
    [122]Muller F H,Bandeiras T M,Urich T,et al.Coupling of the pathway of sulfur oxidation to dioxygen reduction:characterization of a novel membrane-bound thiosulfate:quinone oxidoreductase.Molecular Microbiology,2004,53:1147-1160.
    [123]Tabita R,Silver M,Lundgren D G.The rhodanese enzyme of Ferrobacillus ferrooxidans(Thiobacillus ferrooxidans).Canadian Journal of Biochemistry,1969,47:1140-1145.
    [124]Gardner M N,Rawlings D E.Production of rhodanese by bacteria present in bio-oxidation plants to recover gold from arsenopyrite concentrates.Journal of Applied Microbiology,2000,89:185-190.
    [125]Ramirez P,Toledo H,Giliani N,et al.An exported rhodanese-like protein is induced during growth of Acidithiobacillus ferrooxidans in metal sulfides and different sulfur compounds.Applied and Environmental Microbiology,2002,68:1837-1845.
    [126]Silver M,Lundgren D G.The thiosulfate-oxidizing enzyme of Ferrobacillus ferrooxidans(Thiobacillus ferrooxidans).Canadian Journal of Biochemistry,1968,46:1215-1220.
    [127]Visser J M,De Jong GAH,Robertson LA,et al.Purification and characterization of a periplasmic thiosulfate dehydrogenase from the obligately autotrophic Thiobacillus sp.W5.Archives of Microbiology,1996,166:372-378.
    [128]Meulenberg R,Pronk J T,Hazeu W,et al.Oxidation of reduced sulfur compounds by intact cells of Thiobacillus acidophilus.Archives of Microbiology,1992,157:161-168.
    [129]Kelly D P,Shergill J K,Lu W P,et al.Oxidative metabolism of inorganic sulfur compounds by bacteria.Antonie van Leeuwenhoek,1997,71:95-107.
    [130]Steudel R,Holdt G,Gobel T,et al.Chromatographic separation of higher polythionates SnO_6~(2-) and their detection in cultures of Thiobacillus ferrooxidans;molecular composition of bacterial sulfur secretion.Angewandte Chemie International Edition,1987,26:153-158.
    [131]Sugio T,Kanao T,Furukawa H,et al.Isolation and identification of an iron-oxidizing bacterium which can grow on tetrathionate medium and the properties of a tetrathionate-decomposing enzyme isolated from the bacterium.Journal of Fermentation and Bioengineering,1996,82:233-238.
    [132]Bugaytsova Z,Lindstrom EB.Localization,purification and properties of a tetrathionate hydrolase from Acidithiobacillus caldus.European Journal of Biochemistry,2004,271:272-280.
    [133]张春霆.The Current Status and The Prospect of Bioinformatics.生物信息学的现状与展望,2000.
    [134]Benton D.Bioinformatics principles and potential of a new multidisciplinary tool.Tibtech,1996,14:261-272.
    [135]NIH and DOE.The U.S.Human Genome Project:The First Five Years FY 1991-1995.
    [136]赵国屏.生物信息学.北京:科学出版社,2002.
    [137]牛卫东,潘宪明.蛋白质结构预测.21世纪青年学者论坛:55-58
    [138]唐焕文,靳利霞,计明军.蛋白质结构预测的优化模型与方法.工程数学学报,2002,19(2):13-22
    [139]Anfinsen C B.Principles that govern the folding of protein chains.Science,1973,181:223-230
    [140]赵南明,周海梦等.生物物理学.北京:高等教育出版社,2000.
    [141]McCammon J A,Gelin B R,Karplus M.Dynamics of folded proteins.Nature,1977,267:585-590
    [142]Phillips D C.Biomolecular Stereodynamics Ⅱ.
    [142]Phillips D C.Biomolecular Stereodynamics Ⅱ.(eds) Sarma RH.Guilderland.New York:Adenine Press,1981.497
    [143]Linderstrom-Lang K.Deuterium exchange between peptides and water.Chem.Soc.,1955,2:1-20
    [144]Feynman R P,Leighton R B,Sands M.The Feynman Lectures in Physics.Addison-Wesley,1963.3-6
    [145]Fmuenfelder H,Petsko G A,Tsernoglou D.Temperature-dependent X-ray diffraction as a probe of protein structural dynamics.Nature,1979,280:558-563
    [146]Artymiuk P J,et al.Crystallographic studies of the dynamic properties of lysozyme.Nature,1979,280:563-568
    [147]Ichiye T,Karplus M.Fluorescence depolarization of tryptophan residues in proteins:a molecular dynamics study.Biochemistry,1983,22:2884-2893
    [148]Br(u|¨)nger A T,Brooks C L,Karplus M.Active site dynamics of ribonuclease.Proc.Natl.Acad.Sci.,1985,82:8458-8462
    [149]Dobson C M,Karplus M.Internal motion of proteins:Nuclear magneticresonance measurements and dynamic simulations.Methods Enzymol,1986,131:362-389
    [150]Smith J,Cusack S,Pezzeca U,et al.Inelastic neutron scattering analysis of low frequency motion in proteins:A normal mode study of the bovine pancreatic trypsin inhibitor.J.Chem.Phys.,1986,85:3636-3654
    [151]Frauenfelder H,et al.Thermal expansion of a protein.Biochemistry,1987,26:254-261
    [152]Br(u|¨)nger A T,Kuriyan J,Karplus M.Crystallographic R factor refinement by molecular dynamics.Science,1987,235:458-460
    [153]来鲁华等.蛋白质的结构预测与分子设计.北京大学出版社,1993.
    [154]Ho S P,DeGrade W E Design of a 4-Helix Bundle Protein:Synthesis of Peptides which Self-Associate into a Helical Protein.J Am Chem Soc,1987,109:6751-6755
    [155]靳利霞,唐焕文.蛋白质结构预测方法简述.自然,2001,23(4):217-221
    [156]Roy S,Sen S.Homology Modeling Based Solution Structure of Hoxc8-DNA Complex:Role of Context Bases Outside TAAT Stretch.J Biomol Struct Dyn.,2005,22:707-18
    [157]Moeglich A,Weinfurtner D,Maurer T,et al.A Restraint Molecular Dynamics and Simulated Annealing Approach for Protein Homology Modeling Utilizing Mean Angles.BMC Bioinformatics,2005,8:91
    [158]Sivozhelezov V,Nicolini C.Toward a blueprint for UDP-glucose pyrophosphorylase structure/function properties:homology-modeling analyses.Plant Mol Bio1.,2004,56:783-794
    [159]Malherbe N,Kratochwil M T,Zenner,et al.Mutational analysis and molecular modeling of the binding pocket of the metabotropic glutamate 5 receptor negative modulator 2-methyl-6-(phenylethynyl)-pyridine.Mol Pharmacol.,2003,64:823-32
    [160] Yasar F, Celik S, Koksel H.Molecular modeling of various peptide sequences of gliadins and low-molecular-weight glutenin subunits.Nahrung,2003,47:238-42
    [161] Takeda-Shitaka M, Takaya D, Chiba C,et al. Protein structure prediction in structure based drug design. Curr Med Chem.,2004,11(113):551-558
    [162] Bakhrat A, Jurica M S, Stoddard B L, Raveh D. Homology modeling and mutational analysis of Ho endonuclease of yeast.Genetics,2004,166:721-728
    [163] Andreini C, Band L, Bertini I,et al. Bioinformatic comparison of structures and homology-models of matrix metalloproteinases.J Proteome Res.,2004,3:21-31
    [164] Lee KW, Briggs J M.Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase:two amino acid binding sites in the editing domain. Proteins,2004,54:693-704
    [165] Kubala M, Obsil T, Obsilova V,et al. Protein modeling combined with spectroscopic techniques:an attractive quick alternative to obtain structural information. Physiol Res.,2004,53:187-97
    [166] Rohl C A, Strauss C E, Chivian D, Baker D. Modeling structurally variable regions in homologous proteins with rosetta.Proteins,2004,55:656-77
    [167] Lee S C, Russell A F, Laidig W D. Three-dimensional structure of bradykinin in SDS micelles. Study using nuclear magnetic resonance, distance geometry,and restrained molecular mechanics and dynamics. Int J Pept Protein Res., 1990,35:367-77
    [168] Pellegrini M, Mierke D F. "Threonine6-bradykinin:molecular dynamics simulations in a biphasic membrane mimetic",J Med Chem,1997,40,99-104.
    [169] Ben-Tal N, Sitkoff D, Bransburg-Zabary S,et al. Theoretical calculations of the permeability of monensin-cation complexes in model bio-membranes. Biochim Biophys Acta,2000,1466:221-33
    [170] Bader R, Bettio A, Beck-Sickinger A G, Zerbe O. Structure and dynamics of micelle-bound neuropeptide Yxomparison with unligated NPY and implications for receptor selection.J Mol Biol.,2001,305:307-29
    [171] Sternberg M J E. Protein structure prediction-a practical approach.Oxford:Oxford Press, 1996.
    [172] Sanchez R, Sali A. Comparative protein structure modeling in genomics.J Comput Phys, 1999,151:388-401
    [173] Sipple M J. Knowledge based potentials for proteins. Curr Opin Struc Biol,1995,5:229-235
    [174]Bryant S H.Evaluation of threading specificity and accuracy.Proteins,1996,26:172-185
    [175]Bowie J U,Luthy R,Eisenberg D.A method to identify protein sequences that fold into a known three-dimensional structure.Science,1991,253:164-170.
    [176]Jones DT,Taylor WR,Thornton JM.A new approach to protein fold recognition.Nature,1992,358:86-89
    [177]Lathrop RH.The protein threading problem with sequence amino acid interaction preferences is NP-complete.Protein Eng,1994,7:1059-1068
    [178]屠强.蛋白质从头设计.生命的化学,1998,18(6):22-25
    [179]靳利霞,唐焕文.模拟退火算法的一种改进及其在蛋白质结构预测中的应用.系统工程理论与实际,2002,9:92-96
    [180]倪红春,王翼飞,史定华.遗传算法在蛋白质结构预测中的应用.上海大学学报(自然科学版),2001,7(3):225-230
    [181]贾孟文,李前忠.蛋白质结构型预测的研究.内蒙古大学学报(自然科学版),2002,33(3):276-279
    [182]卢本卓,王存新,王宝翰.用于真实蛋白质结构预测的一种新的优化方法.化学物理学报,2003,16(2):117-121
    [183]来鲁华.蛋白质的结构预测.中国科学基金,1997,1:45-47
    [184]王志新.蛋白质结构预测的现状与展望.生命的化学,1998,18(6):19-21
    [185]唐焕文等.蛋白结构预测的优化模型与方法.工程数学学报,2002,19(2):13-22
    [186]蒋华良,胡增建,陈建忠,顾健德.配体一受体相互作用的计算机模拟及其在药物设计中的应用.化学进展,1998,10(4):427-441
    [187]Kim,D.E.,Chivian,D.,Baker,D.Protein structure prediction and analysis using the Robetta server.Nucleic Acids Res.,2004,32:526-531
    [188]阎隆飞,孙之荣.蛋白质分子结构.清华大学出版社,1999.266-27
    [189]王志中.现代量子化学计算方法.吉林大学出版社,1998.
    [190]唐敖庆,杨忠志,李前树.量子化学.北京:科学出版社,1982.
    [191]Parr R G,Yang W.Density-Functional Theory of Atoms and Molecules.Oxford:Oxford Univ.Press,1989.
    [192]Labanowski J K,Andzelm J W.Density Functional Methods in Chemistry.New York:SpringeroVerlag,1991
    [193]Hohenberg P,Kohn W.Inhomogeneous Electron Gas.Phys.Rev.1964,136:864
    [194]Kohn W,Sham L J.Self-Consistent Equations Including Exchangeand Correlation Effects.Phys.Rev.,1965,140:1133
    [195]Salahub D R,Zemer M C.The Challenge of d and f Electrons.Washington,D.C:ACS,1989.
    [196]Born M,Oppenheimer R,et al.Quantum Theory of the Molecules.Ann.Phys.,1927,84:457
    [197]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法.北京:科学出版社,1985.
    [198]赵学庄,罗渝然,臧雅茹,万学适.化学反应动力学原理.高等教育出版社,1990.
    [199]Andrew R L.Molecular Modeling:Principles and Applications.London:Addison Wesley Longrnan Limited,1996.
    [200]陈凯先,蒋华良,嵇汝运.计算机辅助药物设计-原理、方法及应用.上海:科学技术出版社,2000.76
    [201]郭尧君.蛋白质电泳实验技术一匕京:科学出版社,1999:132-144
    [202]Shahak Y,Arielib B,Padanb E,Hauska G.Sulfide quinone reductase(SQR)activity in Chlorobium.Federation of European Biochemical Soeielies(FEBS).2001,299(2):127-130
    [203]Michal Bronstein,Michael Schu T Z,Gunter Hauska,et al.Cyanobacterial Sulfide-Quinone Reductase:Cloning and Heterologous Expression.JOURNAL OF BACTERIOLOGY,2000,182(12):3336-3344
    [204]Bugaytsova Z,Lindstr6m E B.Localization,purification and properties of a tetrathionate hydrolase from Acidithiobacillus caldus,Eur.d.Biochem.2004,271:272-280.
    [205]GAH de Jong,Hazeu W,Bos P,Kuenen J G;Polythionate degradation by tetrathionate hydrolase of Thiobacillus ferrooxidans,Microbiology,1997,143:499-504.
    [206]Tano T,Kitaguchi H,Harada K,Nagasawa T,Sugio T.Purification and some properties of tetrathionate decomposing enzyme from Thiobacillus thiooxidans,Biosci.Biotechnol.Biochem.1996,60:224-227.
    [207]GAH deJong,Hazeu W,Bos P,Kuenen J G.Isolation of the tetrathionate hydrolase from Thiobacillus acidophilus.Eur.J.Biochem.19972,43:678-683.
    [208]Sugio T,Kanao T,Furukawa H,et al.Isolation and identification of an iron-oxidizing bacterium which can grow on tetrathionate medium and the properties of a tetrathionate-decomposing enzyme isolated from the bacterium,J. Ferment. Bioeng. 1996,82:233-238.
    [209] Tadayoshi Kanao, Kazuo Kamimura, Tsuyoshi Sugio. Identification of a gene encoding a tetrathionate hydrolase in Acidithiobacillus ferrooxidans. Journal of Biotechnology, 2007, 132(1): 16-22
    [210] Buonfiglio V, Polidoro M, Soyer F, Valenti P, Shively J. A novel gene encoding a sulfur-regulated outer membrane protein in Thiobacillus ferrooxidans, J.Biotechnol. ,1999, 72 :85-93.
    [211] Backhausen J E, Kitzmann C, Scheibe R. Competition between electron acceptors in photosynthesis: regulation of the malate valve during CO2 fixation and nitrite reduction. Photosynth. Res., 1994,42:75-86
    [212] Buchanan B B. Carbon dioxide assimilation in oxygenic and anoxygenic photosynthesis. Photosynth. Res., 1992,33:147-162.
    [213] Bassham J A, Krause G H. Free energy changes and metabolic regulation in steady-state photosynthetic carbon reduction. Biochim. Biophys. Acta,1969,189:207-221
    [214] Fridlyand LE. Enzymatic control of 3-phosphoglycerate reduction in chloroplasts. Biochim. Biophys. Acta, 1992,1102:115-118
    [215] Gerst U, Schonknecht G, Heber U. ATP and NADPH as the driving force of carbon reduction in leaves in relation to thylakoid energization by light, lanta,1994,193:421-429
    [216] Stitt M, Wirtz W, Heldt H. Regulation of sucrose synthesis by cytoplasmic fructose bisphosphatase and sucrose phosphate synthase during photosynthesis in varying light and carbon dioxide. Plant Physiol, 1983,72:767-774
    [217] Wigge B, Kromer S, Gardestrom P. The redox levels and subcellular distribution of pyridine nucleotides in illuminated barley leaf protoplasts studied by rapid fractionation. Physiol. Plant. 1993,88:10-18
    [218] Woodrow I E, Berry J A. Enzymatic regulation of photosynthetic CO_2 fixation in C3 plants. Ann. Rev. Plant Physiol. Plant Mol. Biol., 1988, 39:533-594
    [219] Zrenner R, Krause K P, Apel P, Sonnewald U. Reduction of the cytosolic fructose-1,6-bisphosphatase in transgenic potato plants limits photosynthetic sucrose biosynthesis with no impact on plant growth and tuber yield. Plant J.,1996,9:671-681
    [220] Stitt M. Rising CO_2 levels and their potential significance for carbon flow in cells.Plant Cell Environ.,1991,14:741-762
    [221]Leegood RC.Enzymes of the Calvin cycle.(Eds) Lea P A.Methods in Plant Biochemistry.London:Academic Press,1990.15-37.
    [222]Lunn J E,Douce R.Transport of inorganic pyrophosphate across the spinach chloroplast envelope.Biochem.J.,1993,290:375-379
    [223]Rosa L.Interaction between exogenous ribose 5-phosphate and the Benson-Calvin cycle in intact spinach chloroplasts.Plant Science Letters,1979,16(2/3):211-218.
    [224]Anderson L E.Ribose-5-phosphate isomerase and ribulose-5-phosphate kinase show apparent specificity for a specific ribulose 5-phosphate species.FEBS Letters,1987,212(1/9):45-48.
    [225]Sorensen K I,Hove-Jensen B.Ribose catabolism of Escherichia coli:characterization of the rpiB gene encoding ribose phosphate isomerase B and of the rpiR gene,which is involved in regulation of rpiB expression.Journal of Bacteriology.1996,178(4):1003-1011.
    [226]Jung C H,Hartman F C,Lu T Y,et al.D-Ribose-5-phosphate isomerase from spinach:heterologous overexpression,purification,characterization,and site-directed mutagenesis of the recombinant enzyme.Archives of Biochemistry and Biophysics.2000,73(2):409-417.
    [227]Zhang R,Anderson C E,Savchenko A,et al.Structure of Escherichia coli Ribose-5-phosphate Isomerase:a ubiquitous enzyme of the pentose phosphate pathway and the Calvin cycle.Structure,2003,11(1):31-42
    [228]Mihara H,Esaki N.Bacterial cysteine desulfurases:their function and mechanisms.Applied microbiology and biotechnology,2002,60(1/2):12-23.
    [229]Johnson D C,Dean D R,Smith A D,et al.Structure,function,and formation of biological iron-sulfur clusters.Annual review of biochemistry,2005,74:247-281
    [230]Urbina H D,Silberg J J,Hoff K G,et al.Transfer of sulfur from IscS to IscU during Fe-S cluster assembly.Journal biological chemistry,2001,276(48):44521-44526.
    [231]Lauhon C T.Requirement for IscS in biosynthesis of all thionucleosides in Escherichia coli.Journal of bacteriology,2002,184(24):6820-6829.
    [232]Bui B T S,Escalettes B,Chottard F,et al.Enzyme-mediated sulfide production for the reconstitution of[2Fe-2S]clusters into apo-biotin synthase of Escherichia coli.European journal of biochemistry,2000,267(9):2688-2694.
    [233]Cupp-Vickery J R,Urvina H,Vickery L E.Crystal Structure of lscS,a Cysteine Desulfurase from Escherichia coli.Journal of molecular biology,2003,330(5):1049-1059
    [234]Kaiser J T,Clausen T,Bourenkow G P,et al.Crystal structure of a NifS-like protein from Thermotoga maritima:implications for iron sulphur cluster assembly.Journal of Molecular Biology.2000,297(2):451-464.
    [235]Rawlings D E,Kusano T.Molecular Genetics of Thiobacillus ferrooxidans.Microbiological Reviews,1994,58(1):39-55.
    [236]Baler B J,Banfield J F.Microbial communities in acid mine drainage.FEMS Microbiology Ecology,2003,44(2):139-152.
    [237]Tuovinen O H,Niemela S I,Gyllenberg H G.Tolerance of Thiobacillus ferrooxidations to some metals.Antonie Van Leeuwenhoek,1971,37(4):489-496.
    [238]Banerjee P C.Genetics of metal resistance in acidophilic prokaryotes of acidic mine environments.Indian journal of experimental biology,2004,42(1):9-25.
    [239]Quatrini R,Appia-Ayme C,Denis Y,et al.Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling.Hydrometallurgy,2006,83(1-4):263-272.
    [240]Zelko I N,Mariani T J,Folz R J.Superoxide dismutase multigene family:a comparison of the Cu Zn-SOD(SOD1),Mn-SOD(SOD2),and EC-SOD (SOD3) gene structures,evolution,and expression.Free Radical Biology and Medicine,2002,33(3):337-349.
    [241]Bannister J V,Bannister W H,Rotilio G.Aspects of the structure,function,and applications of superoxide dismutase.CRC Critical Reviews in Biochemistry,1987,22(2):111-180.
    [242]Parker M W,Blake C C.Iron-and manganese-containing superoxide dismutases can be distinguished by analysis of their primary structures.FEBS Letters,1988,229(2):377-382
    [243]Parvatiyarke,Alaabbagh U A,Ochsner M A,et al.Global analysis of cellular factors and responses involved in Pseudomonas aeruginosa resistance to arsenite.Journal of Bacteriology,2005,187(14):4853-4864.
    [244]Geslin C,Lanos J,Prieur D,et al.The manganese and iron superoxide dismutases protect Escherichia coli from heavy metal toxicity.Research in Microbiology, 2001,152(10): 901-905.
    [245] Blundell T L, Sibanda B L, Stemberg M J E, et al. Knowledge-based prediction of protein structures and the design of novel molecules . Nature, 1987, 326:347-352.
    [246] Lipman D J, Pearson W R. Rapid and sensitive protein similarity searches .Science, 1985,227:1435-1441.
    [247] Sali A, Potterton L, Yuan F, et al. Evaluation of comparative protein modeling by MODELLER. Proteins, 1995,23 (3): 318-326.
    [248] Ponder J W, Richards F M. Tertiary templates for proteins: Use of packing criteria in the enumeration of allowed sequences for different structural classes . Journal of Molecular Biology, 1987,193(4): 775-791.
    [249] Jorgensen W L, Chandrasekhar J, Madura J D, et al. Comparison of simple potential functions for simulating liquid water . The Journal of Chemical Physics, 1983,79(2): 926-935.
    [250] Luthy R, Bowie J U, Eisenberg D. Assessment of protein models with three-dimensional profiles . Nature, 1992, 356 : 83-85.
    [251] Morris A L, Macarthur M W, Hutchinson E G, et al. Stereochemical Quality of Protein Structure Coordinates . Proteins, 1992,12(4): 345-364.
    [252] Lichtarge O, Bourne H R, Cohenf E. An evolutionary trace method defines binding surfaces common to protein families. Journal of Molecular Biology,1996,257:342-358.
    [253] Hartigan J A. Clustering algorithms[M].New York: Wiley Press, 1975
    [254] Lim J H, Yu Y G, Han Y S, at el. The Crystal Structure of an Fe-Superoxide Dismutase from the Hyperthermophile Aquifex pyrophilus at 1.9 A Resolution: Structural Basis for Thermostability. Journal of Molecular Biology, 1997,270(2): 259-274
    [255] Hatchikiane C, Henry Y A. An iron-containing superoxide dismutase from the strict anaerobe Desulfovibrio desulfuricans. Biochimie, 1977, 59(2): 153-161

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700