小球藻对培养基中磷的利用与啤酒废水资源化处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷是培养小球藻(Chlorella)常用Basal培养基中的大量成分,其含量以及磷与碳的比例直接关系到小球藻生长繁殖和代谢产物合成,若供应不足,则会成为生长限制因子,但若供应超量,则是资源浪费并容易引起环境富营养化。利用啤酒废水异养培养小球藻是一种废水资源化处理方式。本论文主要围绕上述问题开展了以下几个方面的研究工作:
     (1)采用初始葡萄糖浓度为10 g/l的Basal培养基,通过测定小球藻异养培养生长参数,从五株小球藻中,筛选到两株适宜高效异养培养的藻株,分别为Chlorella pyrenoidosa 15-2070和Chlorella vulgaris 15-2075,其最高生物量分别为5.3 g/l、5.2 g/l,最高生物量出现时间均在第3天,最大比生长速率分别为0.98 /d、0.96 /d,糖对细胞转化率分别为0.54 g/g、0.52 g/g。
     (2)用筛选到的Chlorella pyrenoidosa 15-2070用于啤酒废水的资源化处理。利用啤酒综合废水100 %替代纯水配制Basal培养基,含10 g/l葡萄糖的培养液中获得5.3 g/l藻细胞,结果表明,啤酒综合废水对小球藻生长没有抑制作用,可以用于小球藻高密度异养培养。采用本文设计的几种啤酒综合废水预处理方式,几种主要污染物最高去除率为:CODcr,92.2 %;BOD5,95.1 %;NO3--N,98.5 %;NH4+-N,92.3 %;这表明异养小球藻能有效净化啤酒综合废水。在本文设计的几种啤酒洗糟废水预处理方式下,啤酒洗糟废水资源化处理过程中小球藻生物量增加量为0.3 - 0.6 g/l,几种主要污染物最高去除率为:CODcr,52.4 %;BOD5,24.7 %;总氮,30.0 %;总磷,9.8 %,这表明异养小球藻能去除啤酒洗糟废水中的部分污染物,但培养工艺有待进一步优化。
     (3)在培养基初始PO_4~(3-)-P浓度为0 - 284.5 mg/l之间的变量试验条件下,初始葡萄糖浓度为10 g/l时,异养培养条件下小球藻生长对C/P的需求范围是206/1 - 2060/1,单位生物量的磷吸收量(P/B)的范围是0.8 - 8.1 mg/g;混养培养条件下对C/P的需求范围是103/1 - 2060/1,P/B的范围是0.8 - 16.1 mg/g;初始葡萄糖浓度为40 g/l时,异养和混养培养条件下,小球藻对C/P的需求范围都是206/1 - 2060/1,P/B的范围都是0.8 - 8.1 mg/g;自养培养条件下,小球藻P/B的范围是0.8 - 30.0 mg/g。温度、溶氧、pH、接种量都影响小球藻生长,但不影响P/B。试验结果表明,小球藻能耐受高浓度的磷酸盐且生长良好。Basal培养基中PO_4~(3-)-P浓度为284.5 mg/l,采取自养、混养和异养培养模式培养小球藻时,该值都超出小球藻所能吸收利用的最大磷量;初始葡萄糖浓度为10 g/l时,异养培养小球藻时Basal培养基中的PO_4~(3-)-P超出量最高达62.5倍,培养结束时至少有84.0 %的磷酸盐残留在培养废液中,若直接排放到环境中,将是发生富营养化的隐患。
     (4)在培养基初始PO_4~(3-)-P浓度为0 - 284.5 mg/l之间的变量试验条件下培养小球藻,通过离子色谱法检测小球藻细胞内总磷含量,葡萄糖浓度为10 g/l时,异养培养条件下,细胞内总磷含量为1.0 - 10.0 mg/g,小球藻能吸收的最大磷量是满足生长所需最低磷量的10倍;混养培养条件下,细胞内总磷含量为1.0 - 20.0 mg/g,小球藻能吸收的最大磷量是满足生长所需最低磷量的20倍。小球藻细胞中多余的磷一般是以多聚磷的形式储存在细胞内。通过荧光显微镜和透射电镜观察异养培养小球藻多聚磷形成状况,发现多聚磷主要分布在液泡中以及细胞壁和细胞膜的间隙。将含多聚磷的小球藻细胞转移到无磷培养基中继续培养,小球藻可以利用胞内储存的多聚磷继续生长,直到细胞内总磷含量为1.0 mg/g时,生长基本停止。
     (5)在培养基初始NO3--N浓度范围为0 - 311.9 mg/l之间的变量试验条件下,初始葡萄糖浓度为10 g/l时,异养培养条件下小球藻生长对C/N的需求范围是20/1 - 44/1,单位生物量的氮吸收量(N/B)的范围是17.6 - 37.1 mg/g;混养培养条件下的C/N范围是18/1 - 44/1,N/B的范围是17.6 - 43.3 mg/g;自养培养条件下,小球藻N/B的范围是17.6 - 75.0 mg/g。Basal培养基中NO3--N浓度为173.3 mg/l,异养和混养培养条件下,减少44.0 %硝酸盐用量可以获得相同的生物量;自养培养模式下,该值超出小球藻所能吸收利用最大氮量(75.0 mg/l)2.3倍。在满足小球藻生长的氮量范围内,小球藻叶绿素(包括叶绿素a和叶绿素b)含量随着硝酸氮含量的增加而增加;但若硝酸氮含量超出小球藻所能吸收利用的最大氮量,叶绿素含量不再增加。在满足小球藻生长的PO_4~(3-)-P浓度范围内,PO_4~(3-)-P含量对小球藻叶绿素含量没有影响。
In Basal medium, phosphorus is the major nutrients for the cultivation of Chlorella. Phosphorus concentration and the ratio of C/P in this medium have direct effects on the growth of Chlorella and the synthesis of metabolites The phosphorus contents will become a limiting factor for the growth of Chlorella if they are less than that needed, while eutrophication will be caused if their contents excess. Beer wastewater generally contains nontoxic materials such as N, P, and they can cause eutrophication if it was discharged directly. On the other hand, the cultivation of Chlorella consumes a large amount of pure water. Therefore, the combination of these two processes was proposed, and the main results are shown as follows.
     (1) Five Chlorella strains were screened on Basal medium containing 10 g/l glucose, it was shown that Chlorella pyrenoidosa 15-2070 and Chlorella vulgaris 15-2075 were suitable for heterotrophic mass cultivation according to the growth parameters. The maximum biomass was 5.3 g/l and 5.2 g/l, their maximum biomass appeared at the 3rd day, the specific growth rate was 0.98 /d and 0.96 /d, the cell growth yield on glucose was 0.54 g/g and 0.52 g/g for C. pyrenoidosa and C. vulgaris, respectively.
     (2) Beer wastewater was used for the cultivation of C. pyrenoidosa. The mixed beer wastewater was used to completely replace distilled water for the preparation of Basal medium containing 10 g/l glucose, on which Chlorella growth had not been restrained and 5.3 g/l biomass was achieved in this medium. It was shown that the mixed beer wastewater could be used as a major component for the heterotrophic of Chlorella. In addition, with appropriate preprocessing to the mixed wastewater, it was shown that the highest removal efficiencies were CODcr, 92.2 %; BOD5, 95.1 %; NO3--N, 98.5 %; NH4+-N, 92.3 % were achieved during the process. For the saccharifying process of wastewater, with appropriate preprocessing to the saccharifying process of wastewater, the increased biomass were 0.3 - 0.6 g/l, and it was shown that the highest removal efficiencies were CODcr,52.4 %;BOD5,24.7 %;total-N,30.0 %;total-P,9.8 %, during the growth of Chlorella, it can deplete some nutriment, but culture and treatment processing need to be optimized further。
     (3) The effects of various initial PO_4~(3-)-P concentrations from 0 to 284.5 mg/l were investigated on the growth of Chlorella. The results indicated that optimal ratios of carbon-to-phosphorous (C/P) were 206/1 - 2060/1, the cellular assimilation of phosphorus per Biomass Unit (P/B) were 0.8 - 8.1 mg/g for heterotrophic cultivation, and C/P were 103/1 - 2060/1, P/B were 0.8 - 16.1 mg/g for mixotrophic cultivation of C. pyrenoidosa with initial 10 g/l glucose; while C/P were 206/1 - 2060/1, P/B were 0.8 - 8.1 mg/g for both heterotrophic and mixotrophic cultivation with initial 40 g/l glucose; and P/B were 0.8 - 30.0 mg/g for autotrophic cultivation. Temperature, dissolved oxygen, pH and inocula have only effects on the growth of Chlorella, whereas no effects on P/B. Chlorella could be tolerant to high concentrations of phosphate and grows well. The PO_4~(3-)-P concentration in Basal medium was 284.5 mg/l, and this value was in excess of the maximum phosphorus concentration that C. pyrenoidosa absorbed under heterotrophic, mixotrophic and autotrophic cultivation. Thus, the concentration of phosphorus was 62.5-fold higher than that of required for the heterotrophic cultivation with 10 g/l glucose, and there were at least 84.0 % phosphate remained at the end of cultivation.
     (4) The total cellular phosphorus (TP) was determined using Ion Chromatography when the medium containing various initial PO_4~(3-)-P concentrations from 0 to 284.5 mg/l. TP were at the range of from 1.0 to 10.0 mg/g, the maximum absorbed phosphorus was 10-fold higher than the lowest concentration phosphorus of that required for growth under heterotrophic cultivation; and TP were at the range from 1.0 to 20.0 mg/g, the maximum absorbed phosphorus was 20-fold higher than the lowest concentration phosphorus of that required for growth under mixotrophic cultivation with initial 10 g/l glucose. The excessive phosphorus beyond the required of growth were commonly stored in the cells in the form of polyphosphate. The distribution and accumulation of polyphosphate were investigated by fluorescent microscopy and transmission electron microscope(TEM). The polyphosphate granules were observed in vacuole, and the clearance between cell wall and cell membrane. Chlorella cells containing polyphosphate grew in phosphate-free Basal medium, and the total cellular phosphorus content was 1.0 mg/g at the end of the cultivation.
     (5) The effects of various initial NO3--N concentrations from 0 to 311.9 mg/l on Chlorella growth were investigated. The results showed that the optimal ratios of carbon-to-nitrogen (C/N) were 20/1 - 44/1, the cellular assimilation of nitrogen (N/B) were 17.6 - 37.1 mg/g for heterotrophic cultivation; and C/N were 18/1 - 44/1, N/B were 17.6 - 43.3 mg/g for mixotrophic cultivation of C. pyrenoidosa with initial 10 g/l glucose; while N/B were 17.6 - 75.0 mg/g for autotrophic cultivation. When the NO3--N concentration of Basal medium was 173.3 mg/l, the reduction on 44.0 % NO3--N amount was able to obtain the same biomass for heterotrophic and mixotrophic cultivation, meanwhile 173.3 mg/l was 2.3-fold higher than the maximum nitrogen concentration that C. pyrenoidosa absorbed for the autotrophic cultivation. When nitrogen concentration was in the range that Chlorella absorbed, chlorophyll (including a and b) content increased with more NO3--N concentration in the medium. Chlorophyll content did not increase if nitrogen concentration was above the maximum absorbed amounts. Phosphorus concentration in the range enough for Chlorella growth had no effect on the chlorophyll content.
引文
[1] Chen, G. Q., Chen, F. Growing phototrophic cells without light[J]. Biotechnol. Lett. 2006, 28 (9), 607-616.
    [2]陈坚,李寅.发酵过程优化原理与实践[M].化学工业出版社:北京, 2002.
    [3]刘世名.小球藻(Chlorella Vulgaris)高密度异养培养[D].广州:华南理工大学, 1999.
    [4]况琪军,胡征宇,赵先富等.藻类生物技术在水环境保护中的应用前景探讨[J].安全与环境学报. 2004, 4 (S1), 46-49.
    [5]陈峰,姜悦.微藻生物技术[M]. 1st ed.;中国轻工业出版社:北京, 1999.
    [6] Hasegawa, T., Noda, K., Kumamoto, S. et al. Chlorella vulgaris culture supernatant (CVS) reduces psychological stress-induced apoptosis in thymocytes of mice[J]. Int J Immunopharmaco. 2000, 22 (11), 877-885.
    [7]刘学铭.小球藻异养生长特性及味精废水生产微藻蛋白研究[D].广州:华南理工大学, 1999.
    [8]魏文志,夏文水,李湘鸣等.小球藻糖蛋白的分离纯化与性质测定[J].食品科学. 2006, 27 (11), 101-104.
    [9]吴庆余,缪晓玲,徐翰.用淀粉酶解培养异养藻制备生物柴油的方法. 03109312.4[P], 02.09, 2005.
    [10] Shi, X. M., Chen, F., Yuan, J. P. et al. Heterotrophic production of lutein by selected Chlorella strains[J]. J. Appl. Phycol. 1997, 9 (5), 445-450.
    [11] Shi, X. M., Chen, F. Production and rapid extraction of lutein and the other lipid-soluble pigments from Chlorella protothecoides grown under heterotrophic and mixotrophic conditions[J]. Nahrung-Food. 1999, 43 (2), 109-113.
    [12] Shi, X. M., Jiang, Y., Chen, F. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture[J]. Biotechnol.Prog. 2002, 18 (4), 723-727.
    [13]托马斯.J.斯卡特鲁德,罗纳德.J.赫斯.用微生物生产L-抗坏血酸的方法. 86104477.0[P], 10.11, 1995.
    [14] Shi, X. M., Liu, H. J., Zhang, X. W. et al. Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures[J]. Process Biochemistry. 1999, 34 (4), 341-347.
    [15]胡开辉,汪世华.小球藻的研究开发进展[J].武汉工业学院学报. 2005, 24 (3), 27-30.
    [16]周华伟,林炜铁,陈涛.小球藻的异养培养及应用前景[J].氨基酸和生物资源. 2005, 27 (4), 69-73.
    [17] Wu, Z. Y., Shi, X. M. Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model[J]. Letters in Applied Microbiology. 2007, 44 (1), 13-18.
    [18] Lee, Y. K. Microalgal mass culture systems and methods: Their limitation and potential[J]. J. Appl. Phycol. 2001, 13 (4), 307-315.
    [19]王永红.集胞藻6803封闭式光生物反应器混合营养培养及其生理学研究[D].上海:华东理工大学, 2000.
    [20]吴正云.小球藻异养培养的动力学分析与优化[D].上海:上海交通大学, 2006.
    [21] Oh-hama, T., Miyachi, S. Chlorella. In Micro-Algal Biotechnology, Borowitzka, A.; Borowitzka, J., Eds. Cambridge University Press: London, 1987.
    [22] Redfield, A. C., Ketchum, B. H., Richards, F. A., The influence of organisms on the composition of sea-water[M]. Interscience Publication: New York 1963; p 26-77.
    [23] Ratledge, C., Kanagachandran, K., Anderson, A. J. et al. Production of docosahexaenoic acid by Crypthecodinium cohnii grown in a pH-auxostat culture with acetic acid as principal carbon source[J]. Lipids. 2001, 36 (11), 1241-1246.
    [24] De Swaaf, M. E., Sijtsma, L., Pronk, J. T. High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii[J].Biotechnol Bioeng. 2003, 81 (6), 666-672.
    [25] Ip, P.-F., Chen, F. Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture[J]. Process Biochemistry. 2005, 40 (11), 3491-3496.
    [26]闫海,张宾,王素琴等.小球藻异养培养的研究进展[J].现代化工. 2007, 27 (4), 18-21.
    [27] Shi, X. M., Zhang, X. W., Chen, F. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources[J]. Enzyme Microb. Technol. 2000, 27 (3-5), 312-318.
    [28] Tamn., F. Y., Wong, Y. S. Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media[J]. Bioresource technology. 1996, 57 (1), 45-50.
    [29] Wen, Z. Y., Chen, F. Optimization of nitrogen sources for heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis[J]. Enzyme Microb. Technol. 2001, 29 (6-7), 341-347.
    [30] Ip, P.-F., Chen, F. Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark[J]. Process Biochemistry. 2005, 40 (2), 733-738.
    [31] Brinda, B. R., Sarada, R., Kamath, B. S. et al. Accumulation of astaxanthin in flagellated cells of Haematococcus pluvialis - cultural and regulatory aspects[J]. Curr Sci India. 2004, 87 (9), 1290-1295.
    [32] Liu, B. H., Lee, Y. K. Secondary carotenoids formation by the green alga Chlorococcum sp.[J]. J. Appl. Phycol. 2000, 12 (3-5), 301-307.
    [33] Yongmanitchai, W., Ward, O. Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions[J]. Applied and Environmental Microbiology. 1991, 57 (2), 419-425.
    [34] Kamaya, Y., Takada, T., Suzuki, K. Effect of medium phosphate levels on the sensitivity of Selenastrum capricomutum to chemicals[J]. Bull. Environ. Contam.Toxicol. 2004, 73 (6), 995-1000.
    [35] Selig, U., Hubener, T., Michalik, M. Dissolved and particulate phosphorus forms in a eutrophic shallow lake[J]. Aquat. Sci. 2002, 64 (1), 97-105.
    [36]王艳,唐海溶.不同形态的磷源对球形棕囊藻生长及碱性磷酸酶的影响[J].生态科学. 2006, 25 (1), 38-40.
    [37]刑丽贞.固定化藻类去除污水中氮磷及其机理的研究[D].西安:西安建筑科技大学, 2005.
    [38] Chopin, T., Hourmant, A., Floc'h, J.-Y. et al. Seasonal variations of growth in the red alga Chondrus crispus on the Atlantic French coasts. II. Relations with phosphorus concentration in seawater and internal phosphorylated fractions[J]. Canadian Journal of Botany. 1990, 68 (3), 512-517.
    [39]朱小明,沈国英.几种浮游单细胞藻类磷代谢的初步研究[J].厦门大学学报(自然科学版). 1996, 35 (4), 619-624.
    [40] Grover, J. P. Non-steady state dynamics of algal population growth: experiments with two Chlorophytes[J]. Journal of Phycology. 1991, 27 (1), 70-79.
    [41] Passarge, J., Hol, S., Escher, M. et al. Competition for nutrients and light: Stable coexistence, alternative stable states, or competitive exclusion?[J]. Ecol Monogr. 2006, 76 (1), 57-72.
    [42]刘世名,孟海华,梁世中等.生物反应器高密度异养培养小球藻[J].华南理工大学学报(自然科学版). 2000, 28 (2), 82-87.
    [43]俞俊棠,唐孝宣,邬行彦等.新编生物工艺学[M].化学工业出版社:北京, 2005.
    [44] Umamaheswari, A., Venkateswarlu, K. Effect of three nitrophenols on carbon metabolism in Nostoc muscorum and Chlorella vulgaris[J]. Ecotox Environ Safe. 2003, 55 (2), 184-186.
    [45] Wang, P., Sun, Y. R., Li, X. et al. Rapid isolation and functional analysis of promoter sequences of the nitrate reductase gene from Chlorella ellipsoidea[J]. J.Appl. Phycol. 2004, 16 (1), 11-16.
    [46]李兴武,李元广,沈国敏等.普通小球藻异养-光自养串联培养的培养基[J].过程工程学报. 2006, 6 (2), 277-280.
    [47] Sorokin, C., Krauss, R. The effect of light intensity on the growth rates of green algae[J]. Plant Physiol. 1958, 33, 109–113.
    [48]耿红.水体富营养化和蓝藻对轮虫影响的生态毒理学研究[D].武汉:中国科学院水生生物研究所, 2006.
    [49]黄清辉.浅水湖泊内源磷释放及其生物有效性-以太湖、巢湖和龙感湖为例[D].北京:中国科学院生态环境研究中心, 2005.
    [50]刘德启.富营养化水体生态修复效果识别研究[D].上海:华东师范大学, 2005.
    [51] Stumm, W., Morgan, J. J. Aquatic chemistry[M]. 3rd ed.; John Wiley & Sons: 1996.
    [52]王弘宇,杨开,贾文辉等.废水生物除磷技术及其研究进展[J].环境技术. 2002, 20 (3), 38-42.
    [53] Abe, K., Imamaki, A., Hirano, M. Removal of nitrate, nitrite, ammonium and phosphate ions from water by the aerial microalga Trentepohlia aurea[J]. J. Appl. Phycol. 2002, 14 (2), 129-134.
    [54] Holland, D., Roberts, S., Beardall, J. Assessment of the nutrient status of phytoplankton: a comparison between conventional bioassays and nutrient-induced fluorescence transients (NIFTs)[J]. Ecol. Indic. 2004, 4 (3), 149-159.
    [55] Maher, W., Woo, L. Procedures for the storage and digestion of natural waters for the determination of filterable reactive phosphorus, total filterable phosphorus and total phosphorus[J]. Anal Chim Acta. 1998, 375 (1-2), 5-47.
    [56]王琳,李季,康文利等.污水生物除磷研究进[J].环境污染与防治. 2006, 28 (5), 348-351.
    [57]袁东星,梁英.海洋环境中痕量活性磷分析技术的研究进展[J].环境化学. 2006, 25 (3), 252-256.
    [58]康燕玉,梁君荣,高亚辉等.氮、磷比对两种赤潮藻生长特性的影响及藻间竞争作用[J].海洋学报. 2006, 28 (5), 117-122.
    [59] Malmaeus, J. M., Blenckner, T., Markensten, H. et al. Lake phosphorus dynamics and climate warming: A mechanistic model approach[J]. Ecol Model. 2006, 190 (1-2), 1-14.
    [60]裴洪平,马建义,周宏等.杭州西湖藻类动态模型研究[J].水生生物学报. 2000, 24 (2), 143-149.
    [61]刘玉生,韩梅,梁占彬等.光照、温度和营养盐对滇池微囊藻生长的影响[J].环境科学研究. 1995, 8 (6), 7-11.
    [62] Bianchi, T. S., Engelhaupt, E., Westman, P. et al. Cyanobacterial blooms in the Baltic Sea: Natural or human-induced?[J]. Limnol Oceanogr. 2000, 45 (3), 716-726.
    [63] Kruskopf, M. M., Du Plessis, S. Induction of both acid and alkaline phosphatase activity in two green-algae (Chlorophyceae) in low N and P concentrations[J]. Hydrobiologia. 2004, 513 (1-3), 59-70.
    [64]金岚.环境生态学[M].高等教育出版社:北京, 1992.
    [65] Khan, F. A., Ansari, A. A. Eutrophication: An ecological vision[J]. Bot. Rev. 2005, 71 (4), 449-482.
    [66]毕学军,赵桂芹,毕海峰.污水生物除磷原理及其生化反应机制研究进展[J].青岛理工大学学报. 2006, 27 (2), 9-13.
    [67] Pourcher, A. M., Morand, P., Picard-Bonnaud, F. et al. Decrease of enteric micro-organisms from rural sewage sludge during their composting in straw mixture[J]. J. Appl. Microbiol. 2005, 99 (3), 528-539.
    [68]贺锋,吴振斌.水生植物在污水处理和水质改善中的应用[J].植物学通报. 2003, 20 (6), 641-647.
    [69]熊国祥,罗建中,冯爱坤.废水除磷技术与研究动态[J].工业安全与环保. 2006, 32 (10), 19-21.
    [70]湖南省精细化工研究所有限公司.天然功能食品添加剂简介. http://www.wrfcn.com/jyzx_1_E.htm
    [71]潘宏斌.《大国崛起》:中国到底在哪里出了问题? . http://www.zaobao.com/special/forum/pages4/forum_us061213.html
    [72] Przytocka-Jusiak, M., Duszota, M., Matusiak, K. et al. Intensive culture of Chlorella vulgaris/AA as the second stage of biological purification of nitrogen industry wastewaters[J]. Water research. 1984, 18 (1), 1-7.
    [73] Kawai, H., Grieco, V., Jureidini, P. A study of the treatability of pollutants in high rate photosynthetic ponds and the utilization of the proteic potential of algae which proliferate in the ponds[J]. Environmental Technology Letters. 1984, 5 (11), 505-516.
    [74]余若黔,刘学铭,梁世中等.低氮异养小球藻对氨氮的去除及其成分变化[J].华南理工大学学报(自然科学版). 2000, 28 (8), 11-15.
    [75] de-Bashan, L. E., Bashan, Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003)[J]. Water Research. 2004, 38 (19), 4222-4246.
    [76] Gomez, E., Paing, J., Casellas, C. et al. Characterisation of phosphorus in sediments from waste stabilization ponds[J]. Water Sci. Technol. 2000, 42 (10-11), 257-264.
    [77]刘燕,陈银广,周琪等.强化生物除磷系统中生化机理研究进展[J].水处理技术. 2006, 32 (5), 1-4.
    [78]周岳溪,钱易,顾夏声.废水生物除磷机理研究-活性污泥混合液中微生物内聚磷酸盐含量变化特点[J].环境科学学报. 1993, 13 (2), 193-198.
    [79] Heldal, M., Norland, S., Fagerbakke, K. M. et al. The elemental composition of bacteria: a signature of growth conditions?[J]. Mar. Pollut. Bull. 1996, 33 (1-6), 3-9.
    [80] Suttle, C. A., Harrison, P. J. Rapid ammonium uptake by freshwwater phytoplankton[J]. Journal of Phycology. 1988, 24 (1), 13-16.
    [81] Gonzalez, L. E., Canizares, R. O., Baena, S. Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus[J]. Bioresource Technology. 1997, 60 (3),259-262.
    [82]严国安,谭智群.藻类净化污水的研究及其进展[J].环境科学进展. 1995, 03 (3), 45-54.
    [83]黄玉瑶,高玉荣,陈俨梅等.磷对藻类生长及污水净化的影响[J].生态学报. 1990, 10 (4), 299-304.
    [84] Peeters, J. C. H., Eilers, P. The relationship between light intensity and photosynthesis—A simple mathematical model [J]. Aquatic Ecology. 1978, 12 (2), 134-136.
    [85] Tam, N., Wong, Y. Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp.[J]. Environmental pollution. 1989, 58 (1), 19-34.
    [86] Hosetti, B. B. Application of microorganism on wastewater treatment[J]. Environment ecology. 1988, 6 (2), 508-517.
    [87]宦海琳,王一宇,韩岚等.一株椭圆小球藻对微囊藻生长的竞争抑制研究[J].生态与农村环境学报. 2006, 22 (3), 29-32.
    [88] Lavoie, A., Noue, J. l. Hyperconcentrated Cultures of Scenedesmus obliquus: A New Approach for Wastewater Biological Tertiary Treatment[J]. Water Research. 1985, 19 (11), 1437-1442.
    [89] Chen, F. High cell density culture of microalgae in heterotrophic growth[J]. Trends in Biotechnology.1996, 14 (11), 421-426.
    [90]刁俊明,罗建中.啤酒工业废水处理工艺进展及比较浅析[J].嘉应学院学报. 2004, 22 (6), 37-41.
    [91]幸响付.组合除磷技术在啤酒废水处理工程中的应用[J].酿酒. 2002, 29 (2), 79-80.
    [92]周长波,张振家.啤酒废水处理技术的应用进展[J].环境工程. 2003, 21 (6), 19-24.
    [93]陈亚平,付永胜,李湘梅等.啤酒工业废水的特点及其处理方法[J].污染防治技术. 2003, 16 (4), 146-149.
    [94]高路.啤酒厂废水处理探讨[J].酿酒. 2002, 29 (6), 46-47.
    [95]沈淞涛,杨顺生,方发龙等.啤酒工业废水的来源与水质特点[J].工业安全与环保. 2003, 29 (12), 3-5.
    [96]许为义.啤酒混合废水处理利用的生态工程系统实验研究[J].工业水处理. 2004, 24 (3), 27-30.
    [97]郑爱榕,赵立清,詹力扬等.利用啤酒废水养殖螺旋藻研究[J].海洋科学. 2004, 28 (7), 26-31.
    [98]冀贞泉,刘洪俊,勾怀亮等.啤酒工业废水处理资源化利用[J].广州食品工业科技. 1995, 11 (3), 92-95.
    [99]胡月薇,邱承光,曲春波等.小球藻处理废水研究进展[J].环境科学与技术. 2003, 26 (4), 48-49+63-67.
    [100] Kulaev, I. S., Vagabov, V., Kulakovskaya, T., The Biochemistry of Inorganic Polyphosphates[M]. 2nd ed.; John Wiley & Sons, Incorporated: chichester, 2004.
    [101] Mullan, A., Quinn, J. P., McGrath, J. W. Enhanced phosphate uptake and polyphosphate accumulation in Burkholderia cepacia grown under low-pH conditions[J]. Microb. Ecol. 2002, 44 (1), 69-77.
    [102] Eixler, S., Selig, U., Karsten, U. Extraction and detection methods for polyphosphate storage in autotrophic planktonic organisms[J]. Hydrobiologia. 2005, 533, 135-143.
    [103] Eixler, S., Karsten, U., Selig, U. Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply[J]. Phycologia. 2006, 45 (1), 53-60.
    [104] Diaz, J., Ingall, E., Benitez-Nelson, C. et al. Marine Polyphosphate: A Key Player in Geologic Phosphorus Sequestration[J]. Science. 2008, 320 (5876), 652-655.
    [105] Kornberg, A. Inorganic polyphosphate: toward making a forgotten polymer unforgettable[J]. J Bacteriol. 1995, 177 (3), 491-496.
    [106] Jacobson, L., Halmann, M., Yariv, J. The molecular composition of the volutingranule of yeast[J]. Biochemical Journal. 1982, 201 (3), 473-479.
    [107] Docampo, R., Moreno, S. N. J. The acidocalcisome[J]. Mol. Biochem. Parasitol. 2001, 114 (2), 151-159.
    [108] Bonting, C. F., Kortstee, G. J., Zehnder, A. J. Properties of polyphosphate: AMP phosphotransferase of Acinetobacter strain 210A[J]. J Bacteriol. 1991, 173 (20), 6484-6488.
    [109]任世英,肖天.聚磷菌体内多聚物的染色方法[J].海洋科学. 2005, 29 (1), 59-63.
    [110] Jan, A., John, H., Peverly, Mandayam, V., Parthasarathy. Potassium in polyphosphate bodies of Chlorella pyrenoidosa(chlorophyceae) as determined by x-ray microanalysis[J]. Journal of phycology. 1979, 15, 466-468.
    [111] Blum, J. J. Changes in orthophosphate, pyrophosphate and long-chain polyphosphate levels in Leishmania major promastigotes incubated with and without glucose[J]. J Protozool. 1989, 36 (3), 254-257.
    [112] Nishikawa, K., Yamakoshi, Y., Uemura, I. et al. Ultrastructural changes in Chlamydomonas acidophila (Chlorophyta) induced by heavy metals and polyphosphate metabolism[J]. FEMS Microbiol. Ecol. 2003, 44 (2), 253-259.
    [113] Nishikawa, K., Machida, H., Yamakoshi, Y. et al. Polyphosphate metabolism in an acidophilic alga Chlamydomonas acidophila KT-1 (Chlorophyta) under phosphate stress[J]. Plant Science. 2006, 170 (2), 307-313.
    [114] Pick, U., Bental, M., Chitlaru, E. et al. Polyphosphate-hydrolysis--a protective mechanism against alkaline stress?[J]. FEBS Lett. 1990, 274 (1-2), 15-18.
    [115] Bental, M., Pick, U., Avron, M. et al. Polyphosphate metabolism in the alga Dunaliella salina studied by 31P-NMR[J]. Biochim Biophys Acta. 1991, 1092 (1), 21-28.
    [116] Castro, C. D., Meehan, A. J., Koretsky, A. P. et al. In situ 31P nuclear magnetic resonance for observation of polyphosphate and catabolite responses of chemostat-cultivated Saccharomyces cerevisiae after alkalinization[J]. ApplEnviron Microbiol. 1995, 61 (12), 4448-4453.
    [117] Kornberg, A., Rao, N. N., Ault-Riche, D. Inorganic polyphosphate: A molecule of many functions[J]. Annu Rev Biochem. 1999, 68, 89-125.
    [118] Keim, C. N., Solorzano, G., Farina, M. et al. Intracellular inclusions of uncultured magnetotactic bacteria[J]. Int. Microbiol. 2005, 8 (2), 111-117.
    [119] Kulaev, I., Vagabov, V., Kulakovskaya, T. New aspects of inorganic polyphosphate metabolism and function[J]. J. Biosci. Bioeng. 1999, 88 (2), 111-129.
    [120] Pestov, N. A., Kulakovskaya, T. V., Kulaev, I. S. Inorganic polyphosphate in mitochondria of Saccharomyces cerevisiae at phosphate limitation and phosphate excess[J]. Fems Yeast Res. 2004, 4 (6), 643-648.
    [121] Pisoni, R. L., Lindley, E. R. Incorporation of [32P]orthophosphate into long chains of inorganic polyphosphate within lysosomes of human fibroblasts[J]. J Biol Chem. 1992, 267 (6), 3626-3631.
    [122] Komine, Y., Eggink, L. L., Park, H. S. et al. Vacuolar granules in Chlamydomonas reinhardtii: polyphosphate and a 70-kDa polypeptide as major components[J]. Planta 2000, 210 (6), 897-905.
    [123] Ruiz, F. A., Rodrigues, C. O., Docampo, R. Rapid changes in polyphosphate content within acidocalcisomes in response to cell growth, differentiation, and environmental stress in Trypanosoma cruzi[J]. J. Biol. Chem. 2001, 276 (28), 26114-26121.
    [124] Ault-Riche, D., Fraley, C. D., Tzeng, C. M. et al. Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli[J]. J Bacteriol.1998, 180 (7), 1841-1847.
    [125] Powell, N., Shilton, A. N., Pratt, S. et al. Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds[J]. Environ. Sci. Technol. 2008, 42 (16), 5958-5962.
    [126] Nagasaka, S., Yoshimura, E. External Iron Regulates Polyphosphate Content in theAcidophilic, Thermophilic Alga Cyanidium caldarium[J]. Biol. Trace Elem. Res. 2008, 125 (3), 286-289.
    [127] Sianoudis, J., Mayer, A., Leibfritz, D. Investigation of intracellular phosphate pools of the green alga Chlorella using 31P nuclear magnetic resonance[J]. Organic Magnetic Resonance. 1984, 22 (6), 364-368.
    [128] Lawrence, B. A., Suarez, C., DePina, A. et al. Two internal pools of soluble polyphosphate in the cyanobacterium Synechocystis sp. strain PCC 6308: an in vivo 31P NMR spectroscopic study[J]. Arch Microbiol. 1998, 169 (3), 195-200.
    [129] Kuesel, A. C., Sianoudis, J., Leibfritz, D. et al. P-31 in-vivo NMR investigation on the function of polyphosphates as phosphate-and energysource during the regreening of the green alga Chlorella fusca [J]. Archives of Microbiology. 1989, 152 (2), 167-171.
    [130] Ogawa, N., DeRisi, J., Brown, P. O. New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis[J]. Mol Biol Cell. 2000, 11 (12), 4309-4321.
    [131] McGrath, J. W., Quinn, J. P. Intracellular accumulation of polyphosphate by the yeast Candida humicola G-1 in response to acid pH[J]. Applied and Environmental Microbiology. 2000, 66 (9), 4068-4073.
    [132] McGrath, J. W., Cleary, S., Mullan, A. et al. Acid-stimulated phosphate uptake by activated sludge microorganisms under aerobic laboratory conditions[J]. Water Research. 2001, 35 (18), 4317-4322.
    [133] Aitchison, P. A., Butt, V. S. The Relation between the Synthesis of Inorganic Polyphosphate and Phosphate Uptake by Chlorella vulgaris [J]. Journal of Experimental Botany. 1973, 24 (3), 497-510.
    [134] Castrol, C. D., Koretsky, A. P., Domach, M. M. NMR-observed phosphate trafficking and polyphosphate dynamics in wild-type and vph1-1 mutant Saccharomyces cerevisiae in response to stresses[J]. Biotechnol. Prog. 1999, 15 (1),65-73.
    [135] Selig, U., Hubener, T., Heerkloss, R. et al. Vertical gradient of nutrients in two dimictic lakes - influence of phototrophic sulfur bacteria on nutrient balance[J]. Aquat. Sci. 2004, 66 (3), 247-256.
    [136] Goldberg, J., Gonzalez, H., Jensen, T. E. et al. Quantitative analysis of the elemental composition and the mass of bacterial polyphosphate bodies using STEM EDX[J]. Microbios. 2001, 106 (415), 177-188.
    [137] Jager, K. M., Johansson, C., Kunz, U. et al. Sub-cellular element analysis of a cyanobacterium (Nostoc sp.) in symbiosis with Gunnera manicata by ESI and EELS[J]. Bot. Acta. 1997, 110 (2), 151-157.
    [138] Keyhani, S., Lopez, J. L., Clark, D. S. et al. Intracellular polyphosphate content and cadmium tolerance in Anacystis nidulans R2[J]. Microbios. 1996, 88 (355), 105-114.
    [139] Guasch, H., Navarro, E., Serra, A. et al. Phosphate limitation influences the sensitivity to copper in periphytic algae[J]. Freshw. Biol. 2004, 49 (4), 463-473.
    [140] Yu, R. Q., Wang, W. X. Biological uptake of Cd, Se(IV) and Zn by Chlamydomonas reinhardtii in response to different phosphate and nitrate additions[J]. Aquat. Microb. Ecol. 2004, 35 (2), 163-173.
    [141] Hardoyo, Yamada, K., Shinjo, H. et al. Production and release of polyphosphate by a genetically engineered strain of Escherichia coli[J]. Appl Environ Microbiol. 1994, 60 (10), 3485-3490.
    [142] Boswell, C. D., Dick, R. E., Macaskie, L. E. The effect of heavy metals and other environmental conditions on the anaerobic phosphate metabolism of Acinetobacter johnsonii[J]. Microbiol-Uk. 1999, 145, 1711-1720.
    [143] Alvarez, S., Jerez, C. A. Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans[J]. Applied and Environmental Microbiology. 2004, 70 (9), 5177-5182.
    [144] Swift, D. T., Forciniti, D. Accumulation of lead by Anabaena cylindrica: Mathematical modeling and an energy dispersive X-ray study[J]. Biotechnol. Bioeng. 1997, 55 (2), 408-418.
    [145] Yu, R.-Q., Wang, W.-X. Biokinetics of cadmium, selenium, and zinc in freshwater alga Scenedesmus obliquus under different phosphorus and nitrogen conditions and metal transfer to Daphnia magna[J]. Environmental Pollution. 2004, 129 (3), 443-456.
    [146] Maier, S. K., Scherer, S., Loessner, M. J. Long-chain polyphosphate causes cell lysis and inhibits Bacillus cereus septum formation, which is dependent on divalent cations[J]. Applied and Environmental Microbiology. 1999, 65 (9), 3942-3949.
    [147] Jen, C. M., Shelef, L. A. Factors affecting sensitivity of Staphylococcus aureus 196E to polyphosphates[J]. Appl Environ Microbiol. 1986, 52 (4), 842-846.
    [148] Palumbo, S. A., Call, J. E., Cooke, P. H. et al. Effect of polyphosphates and NaCl on Aeromonas hydrophila K144[J]. Journal of food safety. 1995, 15 (1), 77-87.
    [149] Zhang, H., Ishige, K., Kornberg, A. A polyphosphate kinase (PPK2) widely conserved in bacteria[J]. Proc Natl Acad Sci U S A. 2002, 99 (26), 16678-16683.
    [150] Ayraud, S., Janvier, B., Salaun, L. et al. Modification in the ppk gene of Helicobacter pylori during single and multiple experimental murine infections[J]. Infect Immun. 2003, 71 (4), 1733-1739.
    [151] Kuroda, A., Nomura, K., Ohtomo, R. et al. Role of inorganic polyphosphate in promoting ribosomal, protein degradation by the ion protease in E-coli[J]. Science. 2001, 293 (5530), 705-708.
    [152] Griffith, E. J. In search of safe mineral fiber[J]. Chemtech. 1992, 22 (44), 220-226.
    [153] Nelson, S. R., Wolford, L. M., Lagow, R. J. et al. Evaluation of new high-performance calcium polyphosphate bioceramics as bone graft materials[J]. J Oral Maxillofac Surg. 1993, 51 (12), 1363-1371.
    [154] Pilliar, R. M., Filiaggi, M. J., Wells, J. D. et al. Porous calcium polyphosphatescaffolds for bone substitute applications - in vitro characterization[J]. Biomaterials. 2001, 22 (9), 963-972.
    [155] Sun, Z. Y., Zhao, L. Feasibility of calcium polyphosphate fiber as scaffold materials for tendon tissue engineering in vitro[J]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2002, 16 (6), 426-428.
    [156] Zhao, L., Sun, Z. Y. Experiment of histocompatibility and degradation in vivo of artificial material calcium polyphosphate fiber[J]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2002, 16 (5), 300-302.
    [157] Cini, R., Chindamo, D., Catenaccio, M. et al. Dissolution of calcium pyrophosphate crystals by polyphosphates: an in vitro and ex vivo study[J]. Ann Rheum Dis. 2001, 60 (10), 962-967.
    [158] Porciani, P. F., Grandini, S., Sapio, S. Anticalculus efficacy of a chewing gum with polyphosphates in a twelve-week single-blind trial[J]. J Clin Dent. 2003, 14 (2), 45-47.
    [159] Young, L. L., Buhr, R. J., Lyon, C. E. Effect of polyphosphate treatment and electrical stimulation on postchill changes in quality of broiler breast meat[J]. Poultry Sci. 1999, 78 (2), 267-271.
    [160] Sekiguchi, Y., Matsunaga, A., Yamamoto, A. et al. Analysis of condensed phosphates in food products by ion chromatography with an on-line hydroxide eluent generator[J]. J Chromatogr A. 2000, 881 (1-2), 639-644.
    [161] Matsuzaki, H., Masuyama, R., Uehara, M. et al. Greater effect of dietary potassium tripolyphosphate than of potassium dihydrogenphosphate on the nephrocalcinosis and proximal tubular function in female rats from the intake of a high-phosphorus diet[J]. Biosci Biotech Bioch. 2001, 65 (4), 928-934.
    [162]尹翠玲,梁英,冯力霞等.氮浓度对盐生杜氏藻和纤细角毛藻叶绿素荧光特性及生长的影响[J].海洋湖沼通报. 2007, 9 (1), 101-110.
    [163]施春雷.原壳小球藻中叶绿素无光合成相关基因的克隆与特征分析[D].上海:上海交通大学, 2006.
    [164]李顺兴,郑凤英,洪华生等.氮磷营养盐对微氏海链藻细胞生化组成的影响[J].海洋科学. 2006, 30 (1), 49-53.
    [165] Young, E. B., Beardall, J. Photosynthetic function in Dunaliella tertiolecta (Chlorophyta) during a nitrogen starvation and recovery cycle[J]. Journal of Phycology. 2003, 39 (5), 897-905.
    [166] Lippemeier, S., Hintze, R., Vanselow, K. H. et al. In-line recording of PAM fluorescence of phytoplankton cultures as a new tool for studying effects of fluctuating nutrient supply on photosynthesis[J]. Eur. J. Phycol. 2001, 36 (1), 89-100.
    [167] Geider, R. J., La Roche, J., Greene, R. M. et al. Response of the photosynthetic apparatus of Phaeodactylum tricornutum (Bacillariophyceae) to nitrate, phosphate, or iron starvation[J]. Journal of phycology. 1993, 29 (6), 755-766.
    [168]尹翠玲,梁英,张秋丰.磷浓度对球等鞭金藻3011和8701叶绿素荧光特性及生长的影响[J].海洋湖沼通报. 2007, 9 (3), 88-95.
    [169]尹翠玲,梁英,张秋丰.磷浓度对盐生杜氏藻和纤细角毛藻叶绿素荧光特性及生长的影响[J].水产科学. 2007, 26 (3), 154-159.
    [170]张玮,林一群,郭定芳等.不同氮、磷浓度对铜绿微囊藻生长、光合及产毒的影响[J].水生生物学报. 2006, 30 (3), 318-322.
    [171]王永华.隐甲藻高密度发酵培养和油脂改性研究[D].广州:华南理工大学, 2002.
    [172]王建龙,文湘华.现代环境生物技术[M]. 1st ed.;清华大学出版社:北京, 2001.
    [173] Lee, Y. K. Commercial production of microalgae in the Asia-Pacific rim[J]. J. Appl. Phycol. 1997, 9 (5), 403-411.
    [174] Chen, F., Zhang, Y. M., Guo, S. Y. Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture[J]. Biotechnol. Lett. 1996, 18 (5), 603-608.
    [175] Shi, X. M. High yield production of lutein by Chlorella protothecoides underheterotrophic conditions of growth[D]. Hong kong: University of Hong kong, 1998.
    [176]刘学铭,余若黔,梁世中.分批异养培养小球藻光密度值与干重的关系[J].微生物学通报. 1999, 26 (5), 339-341.
    [177]王志坚,杨桂茹.啤酒废水处理技术[J].酿酒. 2002, 29 (3), 75.
    [178] Kim, M. K., Park, J. W., Park, C. S. et al. Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater[J]. Bioresource Technology. 2007, 98 (11), 2220-2228.
    [179]刘建龙,申文波,周焕祥等.啤酒厂废水的生物分质处理效果[J].酿酒. 2004, 31 (4), 35-37.
    [180]国家环保局,《水和废水监测分析方法》编委会.水和废水监测分析方法[M]. 3rd ed.;中国环境科学出版社:北京, 1998.
    [181]刘学铭,余若黔,梁世中等.味精废水异养培养小球藻的初步研究[J].环境污染与防治. 1999, 21 (6), 8-11.
    [182] Ip, P. F., Wong, K. H., Chen, F. Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture[J]. Process Biochemistry. 2004, 39 (11), 1761-1766.
    [183]朱小明,沈国英,林均民.中华盒形藻对可溶性活性磷吸收动力学的研究[J].厦门大学学报(自然科学版). 1993, 32 (2), 230-235.
    [184]加滕荣.光合作用研究方法[M]. 1st ed.;能源出版社:北京, 1985.
    [185]方涛,李道季,余立华等.光照和营养盐磷对微型及微微型浮游植物生长的影响[J].生态学报. 2006, 26 (9), 2783-2790.
    [186]马宇翔,李建宏,浩云涛.自养与异养条件下小球藻对氮、磷的利用[J].南京师大学报(自然科学版). 2002, 25 (2), 37-41.
    [187]吕福荣,杨海波,李英敏等.自养条件下小球藻净化氮磷能力的研究[J].生物技术. 2003, 13 (6), 46-47.
    [188]吕福荣,杨海波,李英敏.小球藻净化污水中氮磷能力的研究[J].生物学杂志. 2003, 20 (2), 25-26.
    [189] Nurdogan, Y., Oswald, W. J. Enhanced nutrient removal in high-rate ponds[J]. water science technology. 1995, 31 (12), 33-43.
    [190]薛嵘,黄国兰,毛宇翔.改进的PVA一硫酸盐法固定蛋白核小球藻除磷研究[J].中国环境科学. 2002, 22 (4), 351-354.
    [191] Litchman, E., Klausmeier, C. A., Bossard, P. Phytoplankton nutrient competition under dynamic light regimes[J]. Limnol Oceanogr. 2004, 49 (4), 1457-1462.
    [192]孙霞.光照对东海赤潮高发区赤潮藻类生长的影响[D].青岛:中国海洋大学, 2005.
    [193] Borowitzka, M. A. Large-scale algal culture systems: the next generation[J]. Australas Biotechnol. 1994, 4 (4), 212-215.
    [194] Panswad, T., Doungchai, A., Anotai, J. Temperature effect on microbial community of enhanced biological phosphorus removal system[J]. Water Research. 2003, 37 (2), 409-415.
    [195] Brdjanovic, D., Logemann, S., Van Loosdrecht, M. C. M. et al. Influence of temperature on biological phosphorus removal: Process and molecular ecological studies[J]. Water Research. 1998, 32 (4), 1035-1048.
    [196] Baetens, D., Vanrolleghem, P. A., Van Loosdrecht, M. C. M. et al. Temperature effects in bio-P removal[J]. Water Sci. Technol. 1999, 39 (1), 215-225.
    [197] Sigee, D. C., Krivtsov, V., Bellinger, E. G. Elemental concentrations, correlations and ratios in micropopulations of Ceratium hirundinella (Pyrrhophyta): an X-ray microanalytical study[J]. Eur. J. Phycol. 1998, 33 (2), 155-164.
    [198] Reynolds, C. S., Vegetation Processes in the Pelagic:A Model for Ecosystem Theory. In Excellence in Ecology, Oldendorf/Luhe, 1997; p 371.
    [199] Van der Grinten, E., Janssen, M., Simis, S. G. H. et al. Phosphate regime structures species composition in cultured phototrophic biofilms[J]. Freshw. Biol. 2004, 49 (4), 369-381.
    [200] McGrath, J. W., Quinn, J. P., Microbial phosphate removal and polyphosphateproduction from wastewaters. In Advances in Applied Microbiology, Vol 52, Academic Press Inc: San Diego, 2003; Vol. 52, pp 75-100.
    [201] Kimura, T., Watanabe, M., Kohata, K. et al. Phosphate metabolism during diel vertical migration in the raphidophycean alga, Chattonella antiqua[J]. J. Appl. Phycol. 1999, 11 (3), 301-311.
    [202] Grover, J. Resource competition in a variable environment: Phytoplankton growing according to the variable-internal-stores model[J]. American Naturalist. 1991, 138 (4), 811-835.
    [203] Morel, F. M. M. Kinetics of nutrient uptake and growth in phytoplankton[J]. Journal of Phycology. 1987, 23 (1), 137-150.
    [204]董双林,刘静雯.海藻营养代谢研究进展—海藻营养代谢的调节[J].青岛海洋大学学报. 2001, 31 (1), 21-28.
    [205]刘志礼,刘雪娴,王永军.藻细胞的聚磷作用及其成矿意义[J].植物学报. 1994, 36 (12), 957-962.
    [206] Seufferheld, M., Vieira, M. C. F., Ruiz, F. A. et al. Identification of organelles in bacteria similar to acidocalcisomes of unicellular eukaryotes[J]. J. Biol. Chem. 2003, 278 (32), 29971-29978.
    [207] Sianoudis, J., Küsel, A. C., Mayer, A. et al. Distribution of polyphosphates in cell-compartments of Chlorella fusca as measured by 31P-NMR-spectroscopy[J]. Archives of Microbiology. 1986, 144 (1), 48-54.
    [208] Ruiz, F. A., Marchesini, N., Seufferheld, M. et al. The polyphosphate bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and axe similar to acidocalcisomes[J]. J. Biol. Chem. 2001, 276 (49), 46196-46203.
    [209] Rangsayatorn, N., Upatham, E. S., Kruatrachue, M. et al. Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium[J]. Environmental Pollution. 2002, 119 (1), 45-53.
    [210] Hauck, M., Paul, A., Mulack, C. et al. Effects of manganese on the viability ofvegetative diaspores of the epiphytic lichen Hypogymnia physodes[J]. Environ. Exp. Bot. 2002, 47 (2), 127-142.
    [211] Lee, T. M. Phosphate starvation induction of acid phosphatase in Ulva lactuca L. (Ulvales, Chlorophyta)[J]. Bot. Bul. Acad. Sin. 2000, 41 (1), 19-25.
    [212] Seufferheld, M., Lea, C. R., Vieira, M. et al. The H+-pyrophosphatase of Rhodospirillum rubrum is predominantly located in polyphosphate-rich acidocalcisomes[J]. J. Biol. Chem. 2004, 279 (49), 51193-51202.
    [213] Phillips, N. F., Horn, P. J., Wood, H. G. The polyphosphate- and ATP-dependent glucokinase from Propionibacterium shermanii: both activities are catalyzed by the same protein[J]. Arch Biochem Biophys. 1993, 300 (1), 309-319.
    [214]韩兴梅,李元广,魏晓东等.氮源对转基因小球藻异养生长及兔防御素表达的影响[J].过程工程学报. 2004, 4 (1), 16-21.
    [215]潘欣,李建宏,浩云涛等. DMF提取微藻叶绿素a方法的改进[J].生物技术. 2001, 11 (1), 39-41.
    [216] Gainswin, B. E., House, W. A., Leadbeater, B. S. C. et al. The effects of sediment size fraction and associated algal biofilms on the kinetics of phosphorus release[J]. Sci. Total Environ. 2006, 360 (1-3), 142-157.
    [217] Tuncel, S. G., Tugrul, S., Topal, T. A case study on trace metals in surface sediments and dissolved inorganic nutrients in surface water of Oludeniz Lagoon-Mediterranean, Turkey[J]. Water Research. 2007, 41 (2), 365-372.
    [218] Guillaud, J. F., Andrieux, F., Menesguen, A. Biogeochemical modelling in the Bay of Seine (France): an improvement by introducing phosphorus in nutrient cycles[J]. J Marine Syst. 2000, 25 (3-4), 369-386.
    [219] Cromar, N. J., Fallowfield, H. J. Effect of nutrient loading and retention time on performance of high rate algal ponds[J]. J. Appl. Phycol. 1997, 9 (4), 301-309.
    [220]郭沛涌,沈焕庭,张利华.流式细胞术在水体微型生物研究中的应用[J].生物物理学报. 2002, 18 (3), 359-364.
    [221]王海英,蔡妙颜,郭祀远.微藻与环境监测[J].环境科学与技术. 2004, 27 (3), 98-101.
    [222] Jeanfils, J., Canisius, M.-F., Burlion, N. Effect of high nitrate concentrations on growth and nitrate uptake by free-living and immobilized Chlorella vulgaris cells[J]. J. Appl. Phycol. 1993, 5 (3), 369-374.
    [223] Chen, F., Johns, M. Effect of C/N ratio and aeration on fatty acid composition of heterotrophic Chlorella sorokiniana[J]. J. Appl. Phycol. 1991, 3, 203-209.
    [224] Mayo, A. W., Noike, T. Effect of glucose loading on the growth behavior of Chlorella vulgaris and heterotrophic bacteria in mixed culture[J]. Water research. 1994, 28 (5), 1001-1008
    [225] Villarejo, A., Orus, M. I., Martinez, F. Coordination of photosynthetic and respiratory metabolism in Chlorella vulgaris UAM 101 in the light[J]. Physiologia Plantarum. 1995, 94 (4), 680-686.
    [226]刘世名,梁世中. La~(3+)对小球藻异养生长及叶绿素含量的影响[J].稀土. 1999, 20 (3), 53-56.
    [227]刘学铭,王菊芳,余若黔等.不同氮水平下异养小球藻生物量和叶绿素含量的变化(简报)[J].植物生理学通讯. 1999, 35 (3), 198-201.
    [228]沈颂东.氮磷比对小球藻吸收作用的影响[J].淡水渔业. 2003, 33 (1), 23-25.
    [229] Oh-hama, T., Hase, E. Syntheses of aminolevulinic acid and chlorophyll during chloroplast formation in Chlorella protothecoides[J]. Plant and Cell Physiology 1975, 16 (2), 297-303.
    [230] Jarvie, H. P., Neal, C., Warwick, A. et al. Phosphorus uptake into algal biofilms in a lowland chalk river[J]. Sci. Total Environ. 2002, 282, 353-373.
    [231]胡开辉,朱行,汪世华等.小球藻对水体氮磷的去除效率[J].福建农林大学学报(自然科学版). 2006, 35 (6), 648-651.
    [232] Kozlowska-Szerenos, B., Zielinski, P., Maleszewski, S. Involvement of glycolate metabolism in acclimation of Chlorella vulgaris cultures to low phosphate supply[J].Plant Physiol. Biochem. 2000, 38 (9), 727-734.
    [233] Waters, M. N., Schelske, C. L., Kenney, W. F. et al. The use of sedimentary algal pigments to infer historic algal communities in Lake Apopka, Florida[J]. J. Paleolimn. 2005, 33 (1), 53-71.
    [234] Vrede, K. Nutrient and temperature limitation of bacterioplankton growth in temperate lakes[J]. Microb. Ecol. 2005, 49 (2), 245-256.
    [235]张丽君,杨汝德,肖恒.小球藻的异养生长及培养条件优化[J].广西植物. 2001, 21 (4), 353-357.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700