鱼蛋白水解物对大黄鱼生长代谢、肌肉品质、免疫及抗氧化性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大黄鱼属于肉食性鱼类,是我国重要的海水经济鱼类品种之一。由于营养价值高、味道鲜美,深受消费者欢迎。由于过度捕捞,野生大黄鱼资源已基本枯竭。自上世纪80年代人工育苗的成功,大黄鱼养殖业得到了迅速发展。本研究对传统网箱养殖大黄鱼的肌肉生化组分进行分析,比较饲喂冰鲜鱼和配合饲料的大黄鱼肌肉氨基酸、脂肪酸含量差异;并在日粮中添加不同水平鱼蛋白水解物(FPH),探讨其对大黄鱼生长、血液生化指标、肌肉品质和免疫性能的影响。试验共分5个部分进行。
     1传统网箱养殖大黄鱼肌肉成分分析
     本研究测定了传统网箱养殖条件下饲喂冰鲜鱼和配合饲料的大黄鱼肌肉组成成分,研究两种日粮对肌肉氨基酸、脂肪酸组成的影响。研究发现,两组鱼肌肉蛋白质、粗灰分含量没有显著性差异;饲喂配合饲料的大黄鱼脂肪含量显著低于冰鲜鱼组(P<0.05)。饲喂配合饲料的大黄鱼肌肉苏氨酸、谷氨酸和丙氨酸含量显著高于冰鲜鱼组(P<0.05),而甘氨酸、蛋氨酸、亮氨酸、苯丙氨酸、赖氨酸、精氨酸和脯氨酸含量则显著低于冰鲜鱼组(P<0.05)。与冰鲜鱼组相比,饲喂配合饲料大黄鱼肌肉饱和脂肪酸及单不饱和脂肪酸含量升高,而多不饱和脂肪酸含量降低,两组之间的差异显著(P<0.05)。在多不饱和脂肪酸中,冰鲜鱼组n-3 PUFA和n-6 PUFA含量显著高于配合饲料组(P<0.05);但n-3/n-6比值则显著低于配合饲料组(P<0.05)。
     2日粮FPH水平对大黄鱼生长性能、消化酶活性的影响
     以基础日粮为对照,FPH添加水平分别为5%,10%,15%(试验1-3组)。经过10周的饲喂,结果显示如下:试验2组、3组大黄鱼的TWG、RWG和SGR显著高于对照组(P<O.05),在所有试验组中,以试验2组的添加水平为最佳,TWG、RWG和SGR达到最高,分别为:101.9±11.89g、62.41±7.62%、0.86±0.08%。三种添加水平FPH对大黄鱼的肥满度和脏体指数没有显著影响,与对照组比较,试验2组、3组的大黄鱼肝体指数显著性降低(P<0.05)。
     与对照组相比,试验各组鱼胃、幽门盲囊、前肠和后肠蛋白酶活性显著提高(P<0.05)。其中试验2组和3组胃、后肠蛋白酶活性达到最高,两组之间差异不显著(P>0.05)。各组大黄鱼肝胰脏蛋白酶活性没有随着FPH的添加而发生显著变化(P>0.05)。研究表明,FPH对大黄鱼各消化器官的淀粉酶、脂肪酶活性没有显著影响。
     3日粮FPH水平对大黄鱼血清生化指标的影响
     日粮FPH对大黄鱼血清生化指标影响的研究结果表明,与对照组相比,试验各组大黄鱼血清总蛋白含量显著增加(P<0.05),尿素氮、总胆固醇水平显著下降(P<0.05),谷丙转氨酶、高密度脂蛋白胆固醇和镁的水平没有显著变化。试验2组、3组血清钙含量显著提高(P<0.05),而甘油三酯含量显著降低(P<0.05),组间差异不显著。
     4日粮FPH水平对大黄鱼肌肉品质的影响
     试验各组大黄鱼肌肉的水分、粗蛋白含量高于对照组,而粗脂肪含量低于对照组,差异均显著(P<0.05)。随着日粮FPH水平的增加,大黄鱼必需氨基酸和呈味氨基酸的总含量得到了显著性提高(P<0.05),但试验各组之间没有显著差异。试验组大黄鱼肌肉饱和脂肪酸含量显著低于对照组(P<0.05),而单不饱和脂肪酸和多不饱和脂肪酸含量显著高于对照组(P<0.05)。在试验各组的多不饱和脂肪酸中,EPA和DHA含量均得到了显著性提高(P<0.05)。与对照组相比,饲喂添加三种不同水平FPH日粮的大黄鱼肌肉SOD活性和MDA含量没有显著差异(P>0.05);试验各组大黄鱼肌肉中肌苷酸的含量显著提高(P<0.05),各组之间差异不显著(P>0.05)。
     采用微波蒸馏-固相微萃取技术萃取大黄鱼肌肉中的挥发性成分,并通过气相色谱质谱联用法来分析、鉴定,共检出54种化合物,其中主要为挥发性醇类和羰基化合物。通过比较发现,日粮FPH水平对挥发性成分的百分含量没有影响。5日粮FPH水平对大黄鱼免疫及抗氧化性能的影响
     不同添加水平的FPH对大黄鱼肾体指数和脾体指数没有显著影响。FPH对血清溶菌酶、补体C3和C4、IgM含量的影响研究表明:试验2组和试验3组的效果最好,除血清补体C3外,各指标均显著高于对照组和试验1组(P<0.05),且组间差异不显著;与对照组相比,试验1组大黄鱼血清溶菌酶、补体C4、IgM含量没有显著变化,补体C3水平显著提高(P<0.05)。各组大黄鱼外周血液NBT阳性细胞数量没有显著变化(P>0.05)。试验各组大黄鱼肝脏SOD活性显著高于对照组(P<0.05),组间差异不显著;肝脏GPX和CAT活性没有显著变化(P>0.05);试验各组的CAT/SOD比值均低于对照组。
Large yellow croaker (Pseudosciaena crocea) belongs to predatory fish species, and is one kind of economically important marine fish species in China. With high nutritive value and better flavor, it is popularly consumed by people. Due to excessive harvest, wild large yellow croaker has nearly been depleted. Since the success of artificial hatchery in the 1980s, its culturing has been developed rapidly. The purpose of the present study was to determine biochemical composition of large yellow croaker cultured in traditional sea-cages. Comparison of amino acid, fatty acid composition in muscle was conducted between this species fed different diets (raw fish and commercial feed). The effects of dietary fish protein hydrolysate on growth performance, metabolism, flesh quality, immunity performance were also evaluated. This dissertation was described in the following five sections.
     1 The analysis of biochemical composition in muscle from large yellow croaker cultured in traditional sea-cages
     The biochemical composition of fillets in large yellow croaker cultured in traditional sea-cages was determined. The comparison of amino acid and fatty acid composition was made between the fish fed with raw fish (RF) and commercial feed (CF). The analysis results showed that there were no significant differences in crude protein and ash content between two groups. Fish in CF group had lower level of crude fat content (P<0.05). Threonine, glutamic acid and alanine levels were significant higher, while glycine, methionine, leucine, phenylalanine, lysine, arginine and praline levels were significant lower in CF group (P<0.05). The percentages of total saturated fatty acids and monounsaturated fatty acids were significantly higher, while the corresponding total polyunsaturated fatty acids content was significantly lower in CF group (P<0.05). Among polyunsaturated fatty acids, n-3 PUFA and n-6 PUFA contents in RF group were higher. And large yellow croaker fed raw fish had the lower value of n-3/ n-6 ratio (P<0.05).
     2 Effects of dietary FPH on growth performance and digestive enzyme activity in large yellow croaker
     The study was conducted to investigate the effects of dietary supplementation with fish protein hydrolysate (FPH) on growth performance and digestive enzyme activity of large yellow croaker (Pseudosciaena crocea). Fish were fed 4 diets: basal diet only (control group, CG) or diets supplemented with FPH at doses of 5%, 10%, and 15% (treatment group, TG 1-3). The trial lasted for 10 weeks.
     Compared with the control group, total weight gain (TWG), relative weight gain (RWG) and specific growth rate (SCR) in TG2 and TG3 were significantly increased (P<0.05). Among all treatment groups, the results in TG2 were best: 101.9±11.89g, 62.41±7.62% and 0.86±0.08%, respectively. No significant differences were observed in the condition factor and visceral index of fish in four groups. Hepatosomatic indices of fish in TG2 and TG3 were significantly lower than CG (P<0.05).
     The protease activity of stomach, pylorus cecum, foregut and hindgut in all treatment groups were significantly higher than CG (P<0.05). Protease activity of stomach in TG2 and TG3 peaked, no significant difference was observed between two groups (P<0.05).There were no significant differences in protease activity of hepatopancreas among all groups (P<0.05). FPH had no significant effects on lipase and amylase activity of large yellow croaker.
     3 Effects of dietary FPH on serum biochemical indices in large yellow croaker
     The results showed that serum total protein level in treatment groups were significantly higher (P<0.05), while urea nitrogen and total cholesterol levels were significantly lower than control group (P<0.05). No significant differences were found in glutamate-pyruvate transaminase, high density lipoprotein- cholesterol and magnesium levels among all groups. Serum calcium levels in TG2 and TG3 were significantly increased (P<0.05), triacylglycerol levels were significantly decreased (P<0.05). The differences between TG2 and TG3 were not significant.
     4 Effects of dietary FPH on flesh quality in large yellow croaker
     The effects of dietary supplementation with FPH on body composition, IMP and volatile flavor components of large yellow croaker (Pseudosciaena crocea) were investigated. Moisture and crude protein content in treatment groups were significantly higher, while crude lipid content were significantly lower than control group. With the increasing levels of dietary FPH, essential amino acids and flavour amino acids contents in fillets of large yellow croaker increased significantly (P<0.05). The differences among treatment groups were not significant. Fish in all treatment groups contained lower SFA contents and higher MUFA, PUFA contents. Among PUFAs in treatment groups, EPA and DHA levels were significantly increased (P<0.05). The differences of SOD activity and MDA content among all groups were not significant. IMP content in fillets of large yellow croaker was significantly increased by supplementing FPH into basal diets (P<0.05).
     Volatile flavour compounds from muscle of large yellow croaker were extracted by microwave distillation and solid phase microextraction. The technique of gas chromatography-mass spectrometry was employed to analyze the components, and 54 compounds (alcohols, aldehydes, and ketones mostly) were identified. By comparing the results of all groups, the percentage profiles of components were not affected by dietary FPH levels.
     5 Effects of dietary FPH on immunity and antioxidation in large yellow croaker
     The results showed that dietary FPH levels had no significant influence on KBI and SBI in large yellow croaker. Positive results were observed in immune parameters (lysozyme activity, serum complement, IgM). Lysozyme activity, complement C4 and IgM levels were significantly increased (P<0.05) in TG2 and TG3. Compared with CG, complement C3 level in TG1 were significantly increased (P<0.05), while no significant difference was shown in levels of lysozyme activity, complement C4 and IgM between two groups. The number of NBT-positive cells in peripheral blood among all groups were not significantly different (P>0.05).
     Hepatic SOD activities in treatment groups were all significantly higher than control group (P<0.05). The differences among three treatment groups were not significant. No significant differences were found in hepatic GPX and CAT activities among all groups. And the ratios of CAT/SOD in treatment groups were lower than control group.
引文
陈慧,陈武,林国文等.官井洋种群网箱养殖大黄鱼的形态特征与生长式型.海洋渔业,2007,29(4):331-336.
    方家仲,褚茂兵,肖勤.大黄鱼早期发育的形态学研究.海洋科学,2003,27(6):1-6.
    林利民,王秋荣,王志勇等.不同家系大黄鱼肌肉营养成分的比较.中国水产科学,2006,13(2):286-291.
    林新濯.中国近海三种主要经济鱼类的生物学特性与资源现.水产学报,1987,11(3):187-194.
    王军,鄢庆枇,苏永全等.免疫添加物对大黄鱼血液白细胞熟练及其吞噬功能的影响.海洋科学,2001,25(9):44-46.
    吴鹤洲.浙江近海大黄鱼性成熟与生长的关系.海洋与湖沼,1965,7(3):220-234.
    席峰,林利民,王志勇.大黄鱼发育进程中消化酶的活力变化.中国水产科学.2003,10(4):301-304.
    徐继林,朱艺峰,严小军.养殖与野生大黄鱼肌肉脂肪酸组成的比较.营养学报,2005,27(3):256-258.
    鄢庆枇,苏永全,王军等.口服免疫添加剂对养殖大黄鱼免疫机能影响的初步研究.集美大学学报(自然科学版),2001,6(2):134-137.
    杨文鸽,黄晓春,李花霞等.葡聚糖与其羧甲基衍生物对养殖大黄鱼非特异免疫作用.浙江农业学报,2006,18(1):16-20.
    郑斌,徐君卓,刘士忠.大黄鱼肌肉和血液生化组分的分析.集美大学学报(自然科学版),2003,8(4):295-300.
    张雅芝,王志勇,林利民等.养殖条件下闽-粤东族大黄鱼不同群体形态特征的比较研究.集美大学学报(自然科学版),2005,10(3):193-199.
    Ai~a,Q.,Mai,K.,Tan,B.,et al.Replacement of fish meal by meat and bone meal in diets for large yellow croaker,Pseudosciaena crocea.Aquaculture,2006,260:255-263.
    Ai~b,Q.,Mai,K.,Tan,B.,et al.Effects of dietary vitamin C on survival,growth,and immunity of large yellow croaker,Pseudosciaena crocea.Aquaculture,2006,261:327-336.
    Ai, Q., Mai, K., Zhang, L., et al. Effects of dietary β-1,3 glucan on innate immune response of large yellow croaker, Pseudosciaena crocea. Fish Shellfish Immunol., 2007,22: 394-402.
    Jian, J., Wu, Z. Effects of traditional Chinese medicine on nonspecific immunity and disease resistance of large yellow croaker, Pseudosciaena crocea (Richardson). Aquaculture, 2003, 218:1-9.
    Mai~a, K., Wan, J., Ai, Q., Xu, W., Liufu, Z., Zhang, L, Zhang, C., Li, H. Dietary methionine requirement of large yellow croaker, Pseudosciaena crocea R. Aquaculture, 2006,253(1-4): 564-572.
    Mai~b, K., Zhang, C., Ai, Q., et al. Dietary phosphorus requirement of large yellow croaker, Pseudosciaena crocea R. Aquaculture, 2006,251: 346-353.
    Weston, D. P. Envorimental consideration in the use of antibiotics drugs in aquaculture. In aquaculture and water resource management. Oxford; Blakwell, 1996, pp.140-165.
    Zhang, X-D., Zhu, Y-F., Cai, L-S., et al. Effects of fasting on the meat quality and antioxidant defenses of market-size farmed large yellow croaker (Pseudosciaena crocea). Aquaculture, 2008, in press
    邓岳松.饲料中添加植物活性小肽对史氏鲟稚鱼生长的影响.内陆水产,2004,10:22.
    冯健,高玲,刘永坚等.草鱼日粮中虾蛋白肽对幼龄草鱼生长性能的影响.中山大学学报(自然科学版),2004,43(2):100-103.
    胡梦红,王有基,熊邦喜.小肽的吸收机制及其对鱼类的营养生理学效应.长江大学学报(自科版),2007,4(1):39-44.
    李清,毛华明,肖调义.小肽对鲤鱼免疫力的影响.饲料研究,2005,5:1-3.
    王碧莲,徐加锐,钱雪桥.小肽制品对欧鳗生长特征的影响.淡水渔业,2001,31(2):42-43.
    许培玉,周洪琪.小肽制品对南美白对虾蛋白酶和淀粉酶活力的影响.中国饲料,2004.23:30-31.
    Adibi,S.A.Intestinal transport of dipeptides in man,relative importance of hydrocysis and intact absorption.J.Clinic.Invest.,1971,50:22-26.
    Bamba,T.,et al.Effets of small peptides as intraluminal abastrates on transport carriers for amino acids and peptides.J.Clinic.Bioehem.Nutri.,1993,15:33-42.
    Chen,H.,Pan,Y.X.Molecular cloning and functional expression of a chicken intestinal peptide transporter(cPepT1) in Xenopus Oocytes and Chinese hamster ovary cells.Nutr.,2002,132:387-393.
    Fei,Y.J.,Kanal,Y.,Nussberger,S.Expression cloning of a mammalian protoncoupled oligopeptide transporter.Nature(Lood),1994,68:563-566.
    Ganapathy,V.,Leiback,F.H.Is intestinal transport energized by a proton gradient?Am.J.Physiol.,1985,249:153-160.
    Gewittz, A.T., Liu, Y., Sitaraman, S.V., et al. Intestinal epithelial pathobiology: past, present and future. Best pract. Res. Clinic. Gastroenterol., 2002,16: 851-867.
    Hellstrom, P. M, Gryback, P., Jacobsson, H. The physiology of gastric emptying. Best Pract. Res. Clinic. Anaesthesiol., 2006, 20: 397-407.
    Hironori, I., Mitsuru, E., Yoichi, E., et al. Association of a Trpl6Ser variation in the gonadotropin releasing hormone signal peptide with bone mineral density, revealed by SNP2 dependent PCR typing. Bone, 2003,32: 185-190.
    Julio, H., Cordova-Murueta, Fernando, L., et al. Nutritive value of squid and hydrolyzed protein supplement in shrimp feed. Aquaculture, 2002,210: 371-384
    Liou, S. T., Wang, C. Small glutamine-rich tetratricopeptide repeat-containing protein is composed of three structural units with distinct functions. Arch. Biochem. Biophys., 2005,435: 253-263.
    
    Matthews, D. M. Intestinal absorption of peptides. Physiol. Rev., 1975,55: 537-608
    Mclean, E., Rnsholdt, B., Najamuddin, C.S. Gastrointestinal delivery of peptide and protein drugs to aquacultured teleosts. Aquaculture, 1999,177: 231-247.
    Meister, A., Tate, S.S. Glutathione and related gamma-glutamy compounds: Biosynthesis and utilization. Annu. Rev. Physio., 1989,21: 559.
    Neway, J. M, Smith, M. W.Amino acid and peptide transport across the mammallion small intestine. Protein Melab. Nutr., 1960, 213-219.
    Pedro, F. M., Pablo, H., Andrea, S., et al. Peptide degradation: Effect of substrate phosphorylation on aminopeptidasic hydrolysis. The International Journal of Biochem. Cell Biol., 1996,28:451-456.
    Rubino, A., Field, M., Shwachman, H. Intestinal transport of amino acid residues of dipeptides I. Influx of the glycine residue of glycyl-L-proline across mucosal border. J. Biol. Chem., 1971,246: 3542-3550.
    Saito, H.,Terada, T., Okuda, M., et al. Molecular cloning and tissue distribution of rat peptide transporter PepT2. Biochim. Biophys. Acta, 1996,1280: 173-177.
    San, E.D., Suzan, M., Jeffrey, W.G. Molecular analysis of the amylase gene and its expression during development in the winter flounder, Pleuronectes americanus. Aquaculture, 2000,190: 247-260.
    Takii, K., Shimeno, S., Tkeda, M., Kamekawa, S. The effect of feeding stimulants in diet on digestive enzyme activities of eel. Bull. Jap. Soc. Sci. Fisheries, 1986, 52: 1449 -1454.
    Webb, K.E. Jr. Intestinal absorption of protein hydrolysis products: A Review. J. Anim. Sci, 1990,68:3011-3022.
    Webb, K.E., Dirienzo, D.B., Matthews, J.C. Recent developments in gastrointestinal absorption and tissue utilization of peptides: a review. J. Diet Sci, 1993, 76: 351-357.
    Zambonino, Infante, J, Cahu, C., et al. Partial substitution of diet and tripeptides for native proteins in sea bass diets improves Dicentrarchus labrax larval development. J. Nutri, 1997,127: 608-614.
    Zelezetsky, I, Pag, U, Sahl, H.G, et al. Tuning the biological properties of amphipathic α-helical antimicrobial peptides: Rational use of minimal amino acid substitutions. Peptides, 2005, 26:2368-2376.
    Ziegler, T.R, Estivariz, C.F, Gu, L. Expression of Ioigopeptide transporter PepT1 messenger RNA in human gut mucosa and colonic up-regulation in short bowel syndrome.Gastroenterol, 1998,114:A436.
    黄国宏,沈要林,钟华锋.罗非鱼肉酶解液美拉德反应产物风味成分的分析.中国调味品,2007,8:68-70.
    刘峰,麦康森,艾庆辉等.鱼肉水解蛋白对大黄鱼稚鱼存活、生长以及体组成的影响.水产学报,2006,30(4):502-508.
    易美华,王斌,刘石生等.罗非鱼加工下脚料酶法制备液化蛋白的研究.中国热医学,2007,7(7):1078-1097.
    王家林,梁萌青,常青.饲料中蛋白寡聚肽对鲈鱼和小白鼠白消化率和蛋白沉积率的影响.海洋水产研究,2006,27(5):68-73.
    王龙,叶克难.水产蛋白资源的酶解利用研究现状与展望.食品科学,2006,27(12):807-812.
    赵利,苏伟,胡火根.胶原蛋白生物活性肽的研究进展.食品科学,2005,26(9):578-581.
    赵玉红,孔宝华,张立钢.酶解鲢鱼副产物中蛋白质制备含肽运动饮料.食品工业,2003,13(2):24-25.
    Barrias,C.,Oliva-Teles,A.The use of locally produced fish meal and other dietary manipulations in practical diets for rainbow trout Oncorhynchus mykiss (Walbaum).Aqua.Res.,2000,31:213-218.
    Berge,G.M.,Storebakken,T.Fish protein hydrolyzate in starter diet for Atlantic salmon(Salmo salar) fry.Aquaculture,1996,14:205-212.
    Byun,H.-G.,Kim S.-K.Purification and characterization of angiotensin I converting enzyme(ACE) inhibitory peptides from Alaska pollack(Theragra chalcogramma) skin. Process Biochem., 2001,36(12): 1155-1162.
    Cahu, C., Zambonino, J., Infante, J., et al. Protein hydrolysate VS, fish meal in compound diets for 10-day old sea bass Dicentrarchus labrax larvae. Aquaculture, 1999,17:109-119.
    Gildberg, A., Bogwald, J., Johansen, A., Stenberg, E. Isolation of acid peptide fractions from a fish protein hydrolysate with strong stimulatory effect on Atlantic salmon (Salmo salar) head kidney leucocytes. Comp. Biochem. Physiol. B, Biochem. Mol. Biol, 1996,114(1): 97-101.
    Imm, J.Y., Lee, C.M. Production of seafood flavor from red hake (Urophycis chuss) by enzymatic hydrolysis. J. Agric. Food Chem., 1999,47: 2360-2366.
    Je, J.Y., Park, P.J., Kim, S.K. Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Res. Int., 2005, 38:45-50.
    Klompong, V., Benjakul, S., Kantachote, D., et al. Comparative study on antioxidative activity of yellow stripe trevally protein hydrolysate produced from Alcalase and Flavourzyme. Int. J. Food Sci. Technol., 2008,43(6): 1019-1026.
    Kristinsson~a, H.G, Rasco, B.A. Kinetics of the hydrolysis of Atlantic salmon (Salmo salar) muscle proteins by alkaline proteases and a visceral serine protease mixture. Process Biochem., 2000, 36: 131-139.
    Kristinsson~b, H.G., Rasco, B.A. Fish Protein Hydrolysates: Production, Biochemical, and Functional Properties. Crit. Rev. Food Sci. Nutri., 2000,40 (1): 43-81.
    Liaset, B., Nortvedt, R., Lied, E., et al. Studies on the nitrogen recovery in enzymic hydrolysis of Atlantic salmon (Salmo salar L.) frames by Protamex~(TM)protease. Process Biochem., 2002, 37: 1263-1269.
    Liceaga-Gesualdo, A.M., Li-Chan, E.C.Y. Functional properties of fish protein hydrolysate from Herring (Clupea harengus). J. Food Sci., 1999, 64(6): 1000-1004.
    Murray, A.L., Ponald, J.P., Alcorn, S.W., et al. Effects of various feed supplements containing fish protein hydrolysate or fish processing by-products on the innate immune functions of juvenile coho salmon (Oncorhynchus kisutch). Aquaculture, 2003,220:643-653
    Oliva-Teles, A., Cerqueira, A.L., Gon9alves, P. The utilization of diets containing high levels of fish protein hydrolysate by turbot (Scophthalmus maximus) juveniles. Aquaculture, 1999,179: 195-201.
    Rajapakse, N., Jung, W. K., Mendis, E., Moon, S.H., Kim, S.K. A novel anticoagulant purified from fish protein hydrolysate inhibits factor Xfla and platelet aggregation. Life Sci., 2005, 76: 2607-2619.
    Shahidi, F., Han, X., Synowiecki, J. Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chem., 1995, 53(3): 285-293.
    Suetsuna, K., Chen, J. R.,Yamauchi, F. Immunostimulating peptides derived from sardine muscle and soybean protein, amino acid sequence, synthesis and biological properties. Clin. Rep., 1991,25(15): 75-86.
    Wu, H.C., Chen, H.M., Shiau, C.Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int., 2003, 36: 949-957.
    Zambonino-infante, J., Cahu, C., Peres, A. Partial substitution of di- and tripeptides for native proteins in sea bass diets improves dicentrarchus labrax larval development. J. Nutr., 1997,127: 608-614.
    段青源,钟惠英,斯列钢等.网箱养殖大黄鱼与天然大黄鱼营养成分的比较分析.浙江海洋学院学报(自然科学版),2000,19(2):125-128.
    郑斌,徐君卓,刘士忠.大黄鱼肌肉和血液生化组分的分析.集美大学学报(自然科学版),2003,8(4):295-300.
    Alasalvar,C.,Taylor,K.D.A.,Zubcov,E.,Shahidi,F.,Alexis,M.Differentiation of cultured and wild sea bass(Dicentrarchus labrax):total lipid content,fatty acid and trace mineral composition.Food Chem.,2002,79:145-150.
    AOAC 1995.Official Methods of Analysis of Official Analytical Chemists International,16th edn.Association of Official Analytical Chemists,Arlington,VA,USA.
    Bandana,N.M.,Batista,I.,Nunes,M.L.,Empis,J.M.,Christie,W.W.Seasonal changes in lipid composition of Sardine(Sardine pilchardus).J.Food Sci.,1997,62:40-42.
    Campos,P.,Martino,R.C.,Trugo,L.C.Amino acid composition of Brazilian surubim fish(Pseudoplatystoma coruscans) fed diets with different levels and sources of fat.Food Chem.,2006,96:126-130.
    Chen,I.-C.,Chapman,F.A.,Wei,C.-I.,Portier,K.M.,O'Keefe,S.F.Differentiation of cultured and wild sturgeon(Acipenser oxyrinchus desotoi) based on fatty acid composition.J.Food Sci.,1995,60:631-635.
    Conner,W.E.Importance of n-3 fatty acids in health and disease.Am.J.Cli.Nutr.,2000,17(1):171S-175S.
    Cowey,C.B.,Pope,J.A.,Andron,J.W.,Blair,A.Studies on the nutrition of marine flatfish,The protein requirements of plaice,Pleuronectes platessa.Br.J.Nutr.,1972,28:447-456.
    Haliloglu,H.I.,Aras,N.M.Comparison of muscle fatty acids of three trout species (Salvelinus alpinus,Salmo trutta fario,Oncorhynchus mykiss) raised under the same conditions.Turk.J.Vet.Anim.Sci.,2002,26:1097-1102.
    Justi,K.C.,Hayashi,C.,Visentainer,J.V.,de Souza,N.E.,Matsushita,M.The influence of feed supply time on the fatty acid profile of Nile tilapia (Oreochromis niloticus) fed on a diet enriched with n-3 fatty acids. Food Chem., 2003, 80: 489-493.
    Kiessling, A., Pickova, J., Johansson, L., Asgard, T., Storebakken, T, Kiessling, K-H. Changes in fatty acid composition in muscle and adipose tissue of farmed rainbow trout (Oncorhynchus mykiss) in relation to ration and age. Food Chem., 2001, 73: 271-284.
    Kim, J-D., Lall, S.P. Amino acid composition of whole body tissue of Atlantic halibut (Hippoglossus hippoglossus), yellowtail flounder (Pleuronectes ferruginea) and Japanese flounder (Paralichthys olivaceus). Aquaculture, 2000,187: 367-373.
    Lanari, D., Poli, B. M., Ballestrazzi, R., Lupi, P., D'Agaro, E., Mecatti, M The effects of dietary fat and NFE levels on growing European sea bass (Dicentrarchus labrax L). Growth rate, body and fillet composition, carcass traits and nutrient retention efficiency. Aquaculture., 1999,179:351-364.
    Limin, L., Feng, X., Jing, H. Amino acids composition difference and nutritive evaluation of the muscle of five species of marine fish, Pseudosciaena crocea (large yellow croaker), Lateolabrax japonicus (common sea perch), Pagrosomus major (red seabream), Seriola dumerili (Dumeril's amberjack) and Hapalogenys nitens (black grunt) from Xiamen Bay of China. Aquaculture Nutr., 2006, 12 (1): 53-59.
    Mai, K., Wan, J., Ai, Q., et al. Dietary methionine requirement of large yellow croaker, Pseudosciaena crocea R. Aquaculture, 2006, 253: 564-572.
    Mnari, A., Bouhlel, I., Chraief, I., Hammami, M., Romdhane, M.S., El Cafsi, M., Chaouch, A. Fatty acids in muscles and liver of Tunisian wild and farmed gilthead sea bream, Sparus aurata. Food Chem., 2007,100: 1393-1397.
    Muskiet, F. A., Kemperman, R. F. Folate and long-chain polyunsaturated fatty acids in psychiatric disease. J. Nutr. Biochem., 2006,17: 717-727.
    Nose, T., Arai, S. Optimum level of protein in purified diet for eel, Anguilla japonica. Bull. Freshwater. Fish. Res. Lab., 1972,22: 145-155.
    Okland, H.M., Stoknes, I.S., Remme, J.F., Kjerstad, M., Synnes, M. Proximate composition, fatty acid and lipid class composition of the muscle from deep-sea teleosts and elasmobranchs. Comp. Biochem. Physiol. (Part B) 2005, 140: 437-443.
    Osman, H., Suriah, A. R, Law, E. C. Fatty acid composition and cholesterol content of selected marine fish in Malaysian waters. Food Chem., 2001, 73: 55-60.
    Pardini, R. S. Nutritional intervention with omega-3 fatty acids enhances tumor response to anti-neoplastic agents. Chem. Biol. Interact., 2006,162(2): 89-105
    Rahman, S. A., Huah, T. S., Hassan, O., Daud, N. M. Fatty acid composition of some Malaysian freshwater fish. Food Chem., 1995,54:45-49.
    Raksakulthai, N., Haard, N. F. Correlation between the concentration of peptides and amino acids and the flavor of fish sauce. J. Asian Food, 1992, 7: 86-90.
    Saito, H., Yamashiro, R., Alasalvar, C., Konno, T. Influence of diet on fatty acids of three subtropical fish, subfamily caesioninae (Caesio diagramma and C. tile) and family siganidae (Siganus canaliculatus). Lipids, 1999, 34(10): 1073-1082.
    Shearer, K. D. Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture, 1994,119(1): 63-88.
    Simidu, W., Hibiki, S., Sabata, S., Takeda, K. Studies on muscle of aquatic animals. XVI. Distribution of extractive nitrogen in muscle of several kinds of gastropod. Bull. Jpn. Soc Sci. Fish, 1983,19: 871-881.
    Simopoulos, A. P. Omega-3 Fatty Acids in Inflammation and Autoimmune Diseases. J. Am. Coll. Nutr., 2002,21:495-505.
    Tanaka, T., Iwawaki, D., Sakamoto, M. Mechanisms of accumulation of arachidonate in phosphatidylinositol in yellowtail: a comparative study of acylation systems of phospholipids in rat and the fish species Seriola quinqueradiata. Eur. J. Biochem., 2003,270:1466-1473.
    Vaccaro, A. M., Buffa, G, Messina, C. M., Santulli, A., Mazzola, A. Fatty acid composition of a cultured sturgeon hybrid (Acipensernaccarii. × A. baerii). Food Chem., 2005, 93: 627-631.
    Wang, Y., Guo, J., Li, K., Dominique P. B. Effects of dietary protein and energy levels on growth, feed utilization and body composition of cuneate drum (Nibea miichthioides).Aquaculture,2006,252:421-428.
    Zeitler,M.H.,Kirchgessner,M.,Schwarz,F.J.Effects of different protein and energy supplies on carcass composition of carp(Cyprinus carpio L.).Aquaculture,1984,36:37-48.
    Zlatanos,S.,Laskaridis,K.Seasonal variation in the fatty acid composition of three Mediterranean fish-sardine(Sardina pilchardus),anchovy(Engraulis encrasicholus) and picarel(Spicara smaris).Food Chem.,2007,103:725-728.
    陈鹏飞,毛江,黄剑飞等.光合细菌(PsB)在西伯利亚鲟鱼饲料中的作用及其对主要消化酶活性的影响.粮食与饲料工业,2003,11:27-29.
    刘峰,麦康森,艾庆辉等.鱼肉水解蛋白对大黄鱼稚鱼存活、生长以及体组成的影响.水产学报,2006,30(4):502-508.
    王广军,吴锐全,谢骏,余德光.饲料中矿物质添加量对军曹鱼生长的影响.渔业现代化,2004,6:36-38.
    王家林,梁萌青,常青.饲料中蛋白寡聚肽对鲈鱼和小白鼠白消化率和蛋白沉积率的影响.海洋水产研究,2006,27(5):68-73.
    朱爱意,褚学林.大黄鱼(Pseudosciaena crocea)消化道不同部位两种消化酶的活力分布及其受温度、pH的影响.海洋与湖沼,2006,37(6):561-567.
    周景祥,陈勇,黄权,孙云农等.鱼类消化酶的活性及环境条件的影响.北华大学学报(自然科学版),2001,2(1):70-73.
    Adibi,S.A.The oligopeptide transporter(Pept-1) in human intestine:biology and function.Gastroenterol.,1997,113:332-340.
    Adler-Nissen,J.Enzymatic hydrolysis of food proteins.Elsevier,London,UK.,1986,427pp.
    Aguila,J.,Cuzon,G.,Pascual,C.,Dominguesd,P.M.,Gaxiolac,G.,Sanchezc,A.,Maldonadoe,T.,Rosas,C.The effects of fish hydrolysate(CPSP) level on Octopus maya(Voss and Solis) diet:Digestive enzyme activity,blood metabolites,and energy balance.Aquaculture,2007,273(4):641-655.
    Aksnes,A.,Hope,B.,J(o|¨)nsson,E.,Bj(o|¨)rnsson,BT.,Albrektsen,S.Size-fractionated fish hydrolysate as feed ingredient for rainbow trout(Oncorhynchus mykiss) fed high plant protein diets.Ⅰ:Growth,growth regulation and feed utilization.Aquaculture,2006,261:305-317.
    Barrias,C.,Oliva-Teles,A.The use of locally produced fish meal and other dietary manipulations in practical diets for rainbow trout Oncorhynchus mykiss (Walbaum).Aquac.Res.,2000,31:213-218.
    Berge,G.M.,Storebakken,T.Fish protein hydrolyzate in starter diets for Atlantic salmon(Salmo salar) fry.Aquaculture,1996,145(1-4):205-212.
    Bureau,D.P.,Harris,A.M.,Bevan,D.J.,et al.Feather meals and meat and bone meals from different origins as protein sources in rainbow trout(Oncorhynchus mykiss)diets.Aquaculture,2000,181:281-291.
    Cahu, C.L., Zambonino Infante, J.L., Quazuguel, P., Le Gall, M.M. Protein hydrolysate vs. fish meal in compound diets for 10-day old sea bass Dicentrarchus labrax larvae. Aquaculture, 1999,171(1-2): 109-119.
    Cahu, C., Zambonino-Infante, J. Substitution of live food by formulated diets in marine fish larvae. Aquaculture, 2001,200:161-180.
    Carvalho, A.P., Escaffre, A.-M., OlivaTeles, A., Bergot, P. First feeding of common carp larvae on diets with high levels of protein hydrolysates. Aquac. Int., 1997, 5(4), 361-367.
    Das, K.M., Tripathi, S.D. Studies on the digestive enzymes of grass carp, Ctenopharyngodon idella (Val). Aquaculture, 1991,92: 21-32.
    Day, O.J., Howell, B.R., Jones, D.A. The effect of dietary hydrolysed fish protein concentrate on the survival and growth of juvenile Dover sole, Solea solea (L.), during and after weaning. Aquac. Res., 1997,28: 911-921.
    Espe, M, Sveier, H., Hogoy, I., Lied, E. Nutrient absorption and growth of Atlantic salmon (Salmo solar L.) fed fish protein concentrate. Aquaculture, 1999, 174:119- 137
    Gangadhara, B., Nandeesha, M.C., Varghese, T. J., Keshavanath, P. Effect of varying protein and lipid levels on the growth of Rohu, Labeo rohita. Asian Fish Sci., 1997,10(2): 139-147
    Guerard, F., Guimas, L., Binet,A., 2002. Production of tuna waste hydrolysates by a commercial neutral protease preparation. J. Mol. Catal., B Enzym., 19-20, 489-498.
    Hardy, R.W. Fish hydrolysates: production and use in aquaculture feeds. In: Akiyama, D.M., Tan, R.K. (Eds.). Proc Aquaculture Feed Processing and Nutrition Workshop. Singapore: American Soybean Association, 1991, 109-115.
    Hertrampf, J.W., Piedad-Pascual, F. Handbook on Ingredients for Aquaculture Feeds. Kluwer Academic, Dordrecht, The Netherlands.573 pp. 2000.
    Hevroy, E.M., Espe, M., Waagbo, R., Sandnes, K., Ruud, M., Hemre, G.I. Nutrient utilization in Atlantic salmon (Salmo salar L.) fed increased levels of fish protein hydrolysate during a period of fast growth. Aquac.Nutr., 2005,11: 301-313.
    Hidalgo, M.C., Urea, E., Sanz, A. Comparative study of digestive enzymes in fish with diferent nutritional habits. Proteolytic and amylase activities. Aquaculture, 1999,170:267-283.
    Kaiya, H., Kojima, M., Hosoda, H., Moriyama, S., Takahashi, T., Kawauchi, K., Kangawa, K. Peptide purification, cDNA and genomic DNA cloning, and functional characterization of ghrelin in rainbow trout. Endocrinol., 2003, 144: 5215-5226.
    Kawai, S., Ikeda, S. Studies on digestive enzymes of fish. II. Effects of dietary changes on the activities of digestive enzymes in carp intestine. Bull. Jpn. Soc. Sci. Fish, 1972,38(3): 265-269.
    Kolkovski, S., Tandler, A. The use of squid protein hydrolysate as a protein source in microdiets for gilthead seabream Sparus aurata larvae. Aquae. Nutr., 2000, 6(1): 11-15.
    Liaset, B., Lied, E., Espe, M. Enzymatic hydrolysis of by-products from the fish-filleting industry; chemical characterization and nutritional evaluation. J. Sci. Food Agric, 2000, 80: 581-589.
    Lou, Z., Liu, Y., Mai, K. Partial replacement of fish meal by soybean protein in diets for grouper Epinephelus coioides juveniles. Fishery China, 2004,28(2): 175-181.
    Oliva-Teles, A.,Cerqueira, A.L., Goncalves, P. The utilization of diets containing high levels of fish protein hydrolysate by turbot (Scophthalamus maximus) juveniles. Aquaculture, 1999,179(1-4): 195-201.
    Ouellet, D.R., Seoane, J.R., Veira, D.M., Proulx, J.G. Effects of supplementation with fish meal or fish protein hydrolysate on growth, nutrient digestibility and rumen fermentation of growing cattle fed grass silage. Ani. Feed Sci. Technol., 1997, 68: 307-326.
    Refstie, S., Olli, J. J., Standal, H. Feed intake, growth, and protein utilisation by post-smolt Atlantic salmon (Salmo salar) in response to graded levels of fish protein hydrolysate in the diet. Aquaculture, 2004,239(1-4): 331-349.
    Refstie, S., Storebakken, T., Roem, A.J. Feed consumption and conversion in Atlantic salmon (Salmo solar) fed diets with fish meal, extracted soybean meal or soybean meal with reduced content of oligosaccharides,trypsin inhibitors,lectins and soya antigens.Aquaculture,1998,162:301-312.
    Savoie,A.,Le Francois,N.R.,Cahu,C.et al.Do protein hydrolysates improve survival and growth of newly-hatched spotted wolffish(Anarhichas minor),a non-metamorphic aquaculture fish species? Aquaculture,2006,261(2):782-788.
    Tengjaroenkul,B.,Smith,B.J.,Caceci,T.,Smith,S.A.Distribution of intestinalenzyme activities along the intestinal tract of cultured Nile tilapia,Oreochromis Nilotieus.Aquaculture,2000,82:17-27.
    Tesser,M.B.,Terjesen,B.F.,Zhang,Y.,Portella,M.C.,Dabrowski,K.Free- and peptide-based dietary arginine supplementation for the South American fish pacu (Piaractus mesopotamicus).Aquac.Nutr.,2005,11:443-453.
    Toften,H.,Jorgensen,E.H.,Jobling,M.The study of feeding preferences using radiography:oxytetracycline as a feeding deterrent and squid extract as a stimulant in diets for Atlantic salmon.Aquacult.Nutr.,1995,1:145-149.
    Tovar,D.,Zambonino,J.,Cahu,C.et al.Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass(Dicentrarchus labrax)larvae.Aquaculture,2002,204:113-123.
    Wang,Y.B.,Xu,Z.R.Effect of probiotics for common carp(Cyprinuscarpio) based on growth performance and digestive enzyme activities.Ani.Feed.Sci.Technol.,2006,127:283-292.
    Zambonino-Infante,J.,Cahu,C.,et al.Partial substitution of di- and tripeptides for native proteins in sea bass diets improves Dicentrarchus labrax larval development.J.Nutr.,1997,127:608-614.
    康格菲.临床生物化学.人民出版社,北京,1989
    沈同、王镜岩、赵邦梯主编,《生物化学》(第二版),高等教育出版社,1991
    石岗,高翠.生物活性肽在功能食品中的应用.食品科技,2002,32(6):6-77.
    王家林,梁萌青,常青.饲料中蛋白寡聚肽对鲈鱼和小白鼠白消化率和蛋白沉积率的影响.海洋水产研究,2006,27(5):68-73.
    Aguila,J.,Cuzon,G.,Pascual,C.,Dominguesd,P.M.,Gaxiolac,G.,Sanchezc,A.,Maldonadoe,T.,Rosas,C.The effects of fish hydrolysate(CPSP) level on Octopus maya(Voss and Solis) diet:Digestive enzyme activity,blood metabolites,and energy balance.Aquaculture,2007,273(4):641-655.
    Atamanalp,M.,Yanik,T.Alterations in hematological parameters of rainbow trout (Oncorhynchus mykiss) exposed to mancozeb.Turk.J.Vet.Anim.Sci.,2003,27:1213-1217.
    Baldi,A.,Bontempo,V.,Dell'Orto,V.,Cheli,F.,Fantuz,F.,Savoini,G.Effects of dietary chromium-yeast in weaning-stressed piglets.Can.J.Anim.Sci.,1999,79(7):369-374.
    Barrias,C.,Oliva-Teles,A.The use of locally produced fish meal and other dietary manipulations in practical diets for rainbow trout Oncorhynchus mykiss (Walbaum).Aquac.Res.,2000,31:213-218.
    Eisenbrg,S.High density lipoprotein metabolism.J.Lipid Res.,1984,25:1017.
    Hevrφy,E.M.,Espe,M.,Waagbo,R.,Sandnes,K.,Ruud,M.,Hmemre,G.I.Nutrient utilization in Atlantic salmon(Salmo salar L.) fed increased levels of fish protein hydrolysate during a period of fast growth.Aquac.Nutr.,2005,11:301-313
    Hiraoka,Y.,Nakagawa,H.,Murachi,S.Blood properties of rainbow trout in acute hepato toxity(sic) by carbon tetrachloride.Bull.Japan.Soc.Fish,1979,45:527-532
    Langar,H.,Guillaume,J.,Metailler,R.,Fauconneau,B.Augmentation of protein synthesis and degradation by poor dietary amino acid balance in European sea bass(Dicentrarchus labrax).J.Nutr.,1993,123:1754-1761.
    Malmlof,K.Amino acid in farm animal nutrition metabolism,partition and consequences of imbalance.Swid.J.Agric.Res.,1988,18(4):191-193.
    Nakagawa,H.Classification of an album in and globulin in yellow tail plasma.Bull.Jpn.Soc.Fish,1978,44:251-257.
    Zambonino-infante,J.,Cahu,C.,Peres,A.Partial substitution of di-and tripeptides for native proteins in sea bass diets improves dicentrarchus labrax larval development.J.Nutr.,1997,127:608-614.
    段青源,钟惠英,斯列钢等.网箱养殖大黄鱼与天然大黄鱼营养成分的比较分析.浙江海洋学院学报(自然科学版),2000,19(2):125-128.
    林利民,王秋荣,王志勇等.不同家系大黄鱼肌肉营养成分的比较.中国水产科学,2006,13(2):286-291.
    徐恭昭,邹文莲,王玉珍.大黄鱼种群生殖力的比较研究.海洋科学刊.1980,16:71-80.
    徐继林,朱艺峰,严小军.养殖与野生大黄鱼肌肉脂肪酸组成的比较。营养学报,2005,27(3):256-258.
    郑斌,徐君卓,刘士忠.大黄鱼肌肉和血液生化组分的分析.集美大学学报(自然科学版),2003,8(4):295-300.
    Alasalvar,C.,Taylor,K.D.A.,Zubcov,E.,Shahidi,F.,Alexis,M.Differentiation of cultured and wild sea bass(Dicentrarchus labrax):total lipid content,fatty acid and trace mineral composition.Food Chem.,2002,79:145-150.
    Ackman,R.G.,Takeuchi,T.Comparison of fatty acids and lipids of smolting hatchery fed and wild Atlantic salmon Salmo salar.Lipids,1986,21(2):117-120.
    Baker,R.T.M.The effect of certain micronutrients on fish flesh quality.In:Farmed Fish Quality(Kestin,S.C.and Warriss,P.D.eds),Blackwell Science Ltd,Oxford,UK.2001,p.180-191.
    Bergstrom,E.Effect of natural and artificial diets on seasonal changes in fatty acid composition and total body lipid content of wild and hatchery reared Atlantic salmon(Salmo salar L.) parr-smolt.Aquaculture,1989,82(1-4):205-217.
    Bosisclair,Y.R.,Bell,A.W.,Dunshea,F.R.,Harkins,M.,Dunshea,D.E.Bauman.Evaluation of the arteriovenous difference technique to simultaneously estimate protein synthesis and degradation in the hindlimb of fed and chronically underfed steers. J.Nutr, 1993,123(6):1076-1088.
    Boza, J.J., Martinez-Augustin, O., Baro, L., et al. Protein v. enzymic proteinhydrolysates. Nitrogen utilization in starved rats. Brit. J. Nutr., 1995, 73: 65-71.
    Chen, H.M., Muramoto, K., Yamauchi, F. Structural analysis of antioxidative peptides from soybean beta-conglycinin. J. Agric. Food Chem., 1995,43: 574-578.
    Chen, H., Pan, Y., Wong, E.A., Bloomquist, J.R., Webb, KE Jr. Molecular cloning and functional expression of a chicken intestinal peptide transporter (cPepT1) in Xenopus oocytes and Chinese hamster ovary cells. J. Nutr., 2002, 132(3): 387-393.
    Espe, M., Sveier, H., Hogoy, I., Lied, E. Nutrient absorption and growth of Atlantic salmon (Salmo solar L.) fed fish protein concentrate. Aquaculture, 1999,174:119- 137.
    Frigg, M, Prabucki, A.L., Ruhdel, E.U. Effect of dietary vitamin E levels on oxidative stability of trout fillets. Aquaculture, 1990,84(2):145-158.
    Folch, J., Lee, M., Sloane-Stanley, G.H.S. A simple method for the isolation and purification of total lipid from animal tissue. J. Biol. Chem., 1957, 226: 497-509.
    George, R., Bhopal, R. Fat composition of free living and farmed sea species: implications for human diet and sea-farming techniques. Bri. Food J., 1995, 97(8): 19-22.
    Grigorakis, K., Alexis, M.N., Taylor, K.D.A., Hole, M. Comparison of wild and cultured gilthead sea bream (Sparus aurata); composition, appearance and seasonal variations. Int. J. Food Sci. Technol., 2002,37(5): 477-484.
    Johnston, I.A. Muscle development and growth: potential implications for flesh quality in fish. Aquaculture, 1999,177: 99-105.
    Justi, K.C., Hayashi, C., Visentainer, J.V., et al. The influence of feed supply time on the fatty acid profile of Nile tilapia (Oreochromis niloticus) fed on a diet enriched with n-3 fatty acids. Food Chem., 2003, 80: 489-493.
    
    Kiessling, A., Pickova, J., Johansson, L., Asgard, T., Storebakken, T, Kiessling, K-H. Changes in fatty acid composition in muscle and adipose tissue of farmed rainbow trout (Oncorhynchus my kiss) in relation to ration and age. Food Chem., 2001, 73: 271-284.
    Lepage, G, Munoz, G, Champagne, J., Roy, C.C. Preparative steps for the accurate measurement of malondial-dehyde by high-performance liquid chromatography, Anal. Biochem., 1991, 197: 277-283.
    Mai, K., Wan, J., Ai, Q., et al. Dietary methionine requirement of large yellow croaker, Pseudosciaena crocea R. Aquaculture, 2006,253: 564-572.
    Mnari, A., Bouhlel, I., Chraief, I., Hammami, M, Romdhane, M.S., El Cafsi, M., Chaouch, A. Fatty acids in muscles and liver of Tunisian wild and farmed gilthead sea bream, Sparus aurata. Food Chem., 2007,100: 1393-1397.
    Nestel, P., Shige, H., Pomeroy, S., et al. The n-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid increase systemic arterial compliance in humans. Am. J. Clinical Nutr, 2002, 76: 326-330.
    Rueda, KM., Lopez, J.A., Martinez, F.J., et al. Fatty acids in muscle of wild and farmed red porgy, Pagrus pagrus. Aquac. Nutr., 1997, 3(3): 161-165.
    Sampaio, F.G, Boijink, C.L., Oba, E.T., et al. Antioxidant defenses and biochemical changes in pacu (Piaractus mesopotamicus) in response to single and combined copper and hypoxia exposure. Comp. Biochem. Physiol., Part C, 2008, 147: 43-51.
    Steffens, W. Effect of variation in essential fatty acid in fish feeds on nutritive value of freshwater fish for humans. Aquaculture, 1997,151: 97-119.
    Tesser, M.B., Terjesen, B.F., Zhang, Y., et al. Free- and peptide-based dietary arginine supplementation for the South American fish pacu (Piaractus mesopotamicus). Aquac. Nutri., 2005,11: 443-453.
    Thakur, D.P., Morioka, K., Itoh, Y. et al. Influence of muscle biochemical constituents on the meat texture of cultured yellowtail (Seriola quinqueradiata) at different anatomical locations. J. Sci. Food Agric, 2002, 82 (13): 1541-1550.
    Oliva-Teles, A., Cerqueira, A.L., Goncalves, P. The utilization of diets containing high levels of fish protein hydrolysate by turbot (Scophthalamus maximus) juveniles. Aquaculture,1999,179:195-201.
    Osman,H.,Suriah,A.R.,Law,E.C.Fatty acid composition and cholesterol content of selected marine fish in Malaysian waters.Food Chem.,2001,73:55-60.
    Waagbφ,R.,Sandnes,K.,Torrisen,O.J.et al.Chemical and sensory evaluation of fillets from Atlantic salmon(Salmo salar) fed three levels on n-3polyunsaturated fatty acids at two levels of vitamin E.Food chem.,1993,46(4):361-366.
    Winston,G.W.,Di Giulio,R.T.Prooxidant and antioxidant mechanisms in aquatic organisms.Aquat.Toxicol.,1991,19(2):137-161.
    Wu,H.C.,Chen,H.M.,Shiau,C.Y.Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel(Scomber austriasicus).Food Res.Int.,2003,36:949-957.
    Yokoyama,Y.,Sakaguehi,M.,Kawai,F.,et al.Changes in Concentration of ATP-related ompocants in various tissues of oyster during ice storage.Nippon Suisan Gakkaishi,1992,58(11):2125-2136.
    陈俊卿,王锡昌.顶空固相微萃取-气相色谱-质谱法分析白鲢鱼中的挥发性成分.质谱学报,2005,26(2):76-80.
    赵庆喜,薛长湖,盛文静等.固相微萃取技术(sPME)及其在水产品分析中的应用.水产科学,2006,25(12):656-660.
    赵庆喜,薛长湖,徐杰等.微波蒸馏.固相微萃取-气相色谱-质谱-嗅觉检测器联用分析鳙鱼鱼肉中的挥发性成分.色谱,2007,25(2):267-271.
    占秀安,钱利纯等.甜菜碱对中华鳖肌肉和裙边食用品质指标的影响.水产科学,2001,20(4):4-6.
    张海艳,于太永,关伟军.肌苷酸形成机理及其含量影响因素浅析.中国农业科技导报,2004,6(3):17-21.
    Arthur,C.L.,Pawliszyn,J.Solid phase microextraction with thermal desorption using fused silica optical fibers.Anal.Chem.,1990,62:2145-2148.
    Cha,Y.J.,Cadwallader,K.R.,Baek,H.H.Volatile flavor components in snow crab cooker effluent and effluent concentrate.J Food Sci.,1993,58:525-530.
    Drumm,T.D.,Spanier,A.M.Changes in the content of lipid autoxidation and sulfur-containing compounds in cooked beef during storage.J.Agric.Food Chem.,1991,39(2):336-343.
    Fuijmura S.Identification of tuste active component components in the meat of the Japanese native chicken,Hinaidori and broilers and the effect of feeding treatments on taste-active components.Ani.Food Sci.,1998,50(2):99-158.
    Grimm,C.C.,Lloyd,S.W.,Batista,R.,Zimba,P.V.Using microwave distillation solid-phase microextration-gas chromatography-mass spectrometry for analyzing fish tissue.J.Chromatogr.Sci.,2000,38:289-296.
    Heath H.B.,Reineccius,G.Flavor Chemistry and Technology.1986,AVI Publishing Company,Inc.
    Josephson,D.B.,Lindsay,R.C.,Stuiber,D.A.Identification of compounds characterizing the aroma of fresh white fish.J.Agric.Food Chem.,1983,31:326-330.
    Josephson, D. Enzymic hydroperoxide initiated effects in fresh fish. J. Food Sci., 1985,52: 596-600.
    Josephson, D.B., Lindsay, R.C. Volatile compounds characterizing the aroma of fresh Atlantic and Pacific Oysters. J. Food Sci., 1987,50: 5-9.
    Refsgaard, H., Haahr, A.M., Jensen, B. Isolation and quantification of volatiles in fish by dynamic headspace sampling and mass spectrometry. J. Agric. Food Chem., 1997,47:1114-1118.
    Song, X.A., Hirata, T., Kawai, T., et al. Volatile compounds in the hepatic and muscular tissues of common carp, Japanese flounder, Spanish mackerel and skipjack [G]//More efficient utilization of fish and fisheries products. Edited by Sakaguchi, M., Kyoto, Japan, 2001: 209-222
    Shahidi, F. Flavor of meat and meat products, Glasgow: Blackie Academic and Professional, 1994: 1-70.
    Shahidi, F. Translated by Li J., Zhu, G. B. Flavor of meat, meat products and aquatic products. China Light Industry Press, Beijing, 2001,278-296 (in Chinese)
    Suzuki A., Homma N., Fukuda A., et al. Effect of high pressure treatment on flavor related components in meat. Meat Sci., 1994,37(3): 369-379.
    聂芬,石小涛,李大鹏等.拥挤胁迫对史氏鲟稚鱼血浆溶茵酶活性和补体水平的影响.水生生物学报,2007,31:581-584.
    王芳,乐国伟,施用晖,陈征松.甘露寡糖对小鼠肝脏中自由基的清除及抗氧化酶活性的影响.营养学报,2007,29(5):466-469.
    鄢庆枇,苏永全,王军等.口服免疫添加剂对养殖大黄鱼免疫机能影响的初步研究.集美大学学报(自然科学版),2001,6(2):134-137.
    杨文鸽,黄晓春,李花霞等.葡聚糖与其羧甲基衍生物对养殖大黄鱼非特异免疫作用.浙江农业学报,2006,18(1):16-20.
    Ai,Q.,Mai,K.,Tan,B.,et al.Effects of dietary vitamin C on survival,growth,and immunity of large yellow croaker,Pseudosciaena crocea.Aquaculture,2006,261:327-336.
    Ai,Q.,Mai,K.,Zhang,L.,et al.Effects of dietary β-1,3 glucan on innate immune response of large yellow croaker,Pseudosciaena crocea.Fish Shellfish Immunol.,2007,22:394-402.
    Amarowicz,R.,Shahidi,F.Antioxidant activity of peptide fractions of capelin protein hydrolysates.Food Chem.,1997,58:355-359.
    Avanzo,J.L.,Mendonca,Jr.,Pugine,C.X.Effect of vitamin E and selenium on resistance to oxidative stress in chicken superficial pectoralis muscle.Comp.Biochem.Physiol.,2001,Part C,129:163-173.
    Bachere,E.Shrimp immunity and disease control.Aquaculture,2000,191(1-3):3-11.
    Bayne C.J.,Gerwick L.The acute phase response and innate immunity of fish.Dev.Comp.Immunol.,2001,25:725-743.
    Begwald,J.,Dalmo,R.,Leifson,R.M.,Stenbern,E.,GildBerg A.The stimulatory effect of a muscle protein hydrolysate from Atlantic cod,Gadus morhua L.on Atlantic salmon,Salmo salar L.,head kidney leucocytes.Fish Shellfish Immunol.,1996,6(1):3-16.
    Blazer,V.S.Nutrition and disease resistance in fish.Ann.Rev.Fish Dis.,1992,2:309-323.
    Chipman, D.M., Sharon, N. Mechanism of lysozyme action. Science, 1969, 165: 454-465.
    Claire, M., Holland, H., Lambris, J. D. The complement system in teleosts. Fish Shellfish Immunol., 2002,12(5): 399-420.
    Cohen, G.M, Doherty, M. Free radical mediated cell toxicity by redox cycling chemicals. Brit. J. Cancer, 1987,55(Suppl.VIII): 46-52.
    Cuesta, A., Esteban, M.A., Ortuno, J., et al. Vitamin E increases natu ral cytotoxic activity in seabream (Spaces aurata L.). Fish Shellfish Immunol., 2001, 11: 293-302.
    Cuesta, A., Meseguer, J., Esteban, M.A. Total serum immunoglobulin M levels are affected by immunomodulators in seabream (Sparus aurata L). Vet. Immunol. Immunopathol., 2004, 101:203-210.
    Duarte, J., Vinderola, G., Ritz,B., Perdigon, G., Matar, C. Immunomodulating capacity of commercial fish protein hydrolysate for diet supplementation. Immunobio., 2006,211(5): 341-350.
    
    Ellis, A.E. Immunity to bacteria in fish. Fish Shellfish Immunol., 1999,9: 291-308
    Grant, J.J., Loake, G.J. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance, Plant Physiol., 2000,124: 21-30
    Grinde, B., Lie, Poppe, T, Salte, R. Species and individual variation in lysozyme activity in fish of interest in aquaculture. Aquaculture, 1988, 68: 299-304.
    Guo, H.Y., Chen, L., Wang, X.R., et al. The effects of ytterbium on the enzymes activities of crucian (Carassiu anratus) liver. J. Nanjing Univ. (Natural Sciences), 2001, 37(6): 665-670.
    Halliwell, B.,Gutteridge, J.M.C. Free Radicals in Biology and Medicine,2~(nd) edition. 1989, Clarendon Press, Oxford.
    Jeon, Y. J., Byun, H.G., Kim, S.K. Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes. Process Biochem., 1999, 35: 471-478.
    Jian, J., Wu, Z. Effects of traditional Chinese medicine on nonspecific immunity and disease resistance of large yellow croaker, Pseudosciaena crocea (Richardson). Aquaculture, 2003, 218:1-9.
    Kotzamanis, Y.P., Gisbert, E., Gatesoupe, F.J., Zambonino Infante, J., Cahu C. Effects of different dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut microbiota, and resistance to Vibrio anguillarum in European sea bass (Dicentrarchus labrax) larvae. Comp. Biochem. Physiol., Part A, 2007, 147(1): 205-214.
    Lall, S.P., Olivier, G. Role of micronutrients in immune response and disease resistance in fish. Fish Nutr. Pract., 1993, 61: 101-118.
    Liang, M., Wang, J., Chang, Q., Mai, K. Effects of different levels of fish protein hydrolysate in the diet on the nonspecific immunity of Japanese sea bass, Lateolabrax japonicus (Cuvieret Valenciennes, 1928). Aquac. Res., 2006, 37: 102-106.
    Lin, C.T., Lin, M.T. The distribution and properties of superoxide dismutase in different Tilapia tissues. J. Chin. Agric. Chem. Soc., 1997, 35: 107-111.
    Mohamed, A.M.D. Essential and toxic trace elements in human health and diease. Alan R: Liss Inc, 1988: 409-414.
    Mourente, G, Tocher, D. R., Diaz-Salvago E., et al. Relationships between antioxidants, antioxidant enzyme activities and lipid peroxidation products during early development in Dentex dentex eggs and larvas. Aquaculture, 1999, 179:309-324.
    Mourente, G, Diaz-Salvago, E., Bell, J. G. Increased activities of hepatic antioxidant defence enzymes in juvenile gilthead sea bream (Sparus aurata L.) fed dietary oxidized oil: attenuation by dietary vitamin E. Aquaculture, 2002,214: 343-361.
    Murray, A.L., Ponald, J.P., Alcorn, S.W., Fairgrieve, W.T., Shearer, K.D., Roley, D. Effects of various feed supplements containing fish protein hydrolysate or fish processing by products on the innate immune functions of juvenile coho salmon (Oncorhynchus kisutch). Aquaculture, 2003,220: 643-653.
    Pascual, C, Zenteno, E., Cuzon, G, Sanchez, A., Gaxiola, G, Taboada,G, Suarez, J., Maldonado, T., Rosas, C. Litopenaeus vannamei juveniles energetic balance and immunological response to dietary protein. Aquaculture, 2004,236(1-4): 431-450.
    Puangkaew, J., Kiron, V., Somamoto, T., Okamoto, N., Satoh, S., Takeuchi, T., Watanabe, T. Nonspecific immune response of rainbow trout (Oncorhynchus mykiss Walbaum) in relation to different status of vitamin E and highly unsaturated fatty acids. Fish Shellfish Immunol., 2004,16: 25-39.
    Reyes-Becerril, M., Tovar-Ramirez, D., Ascencio-Valle, F., et al. Effects of dietary live yeast Debaryomyces hansenii on the immune and antioxidant system in juvenile leopardgrouper Mycteroperca rosacea exposed to stress. Aquaculture, 2008,doi:10.1016/j.aquaculture.2008.03.056
    
    Ross, D.A., Wilson, M. R., Miller, N.W, Clem, L.W., Warr, G.W. Evolutionary variation of immunoglobulin μ-heavy chain RNA processing pathways: origins, effects, and implications. Immunol. Rev., 1998, 166: 143-151.
    Sakai, M. Current research status of fish immunostimulants. Aquaculture, 1999, 172: 63-92.
    Scandalios, J.G.. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res., 2005, 38: 995-1014.
    Seki, S., Kitada, T., Yamada, T., Sakaguchi, H., Nakatani, K., Wakasa, K. In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fattyliver diseases. J. Hepatol., 2002,37: 56-62.
    Siwicki, A. K., Aderson, D. P., Rumsey, G. L. Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protects against furunculosis. Vet. Immunol. Immunopathol., 1994,41: 125-139.
    Song, Z., Wu, T., Cai, L., Zhang, L., Zheng, X. Effects of dietary supplementation with Clostridium butyricum on the growth performance and humoral immune response in Miichthys miiuy. J Zhejiang Univ SCI. B, 2006,7: 596-602.
    Thiansilakul, Y., et al. Antioxidative activity of protein hydrolysate from round scad muscle using alcalase and flavourzyme. J. Food Biochem., 2007, 31: 266-287.
    Timothy R. Evolution of the complement system. Immunol. Today, 1991, 12: 295-312.
    Tort L., Balasch J.C., MacKenzie S. Fish health challenge after stress. Indicators of immunocompetence.Contr.Sci.,2004,2(4):443-454.
    Trenzado,C.,Hidalgo,M.C.,Garcia-Gallego,M.,et al.Antioxidant enzymes and lipid peroxidation in sturgeon Acipenser naccarii and trout Oncorhynchus mykiss:A comparative study.Aquaculture,2006,254:758-767.
    Waagbo R.,Glette J.,Nilsen E R,et al.The impact of nutritional factors on the immune system in Atlantic salmon,Salmon solar.Aquat.Fish Man.,1994,25:175-179.
    Watts,M.,Munday,B.L.,Burke,C.M.Isolation and partial characterisation of immunoglobulin from southern bluefin tuna Thunnus maccoyii Castelnau.Fish Shellfish Immunol.,2001,11:491-503.
    Weston,D.P.Envorimental consideration in the use of antibiotics drugs in aquaculture.In aquaculture and water resource management.Oxford;Blakwell,1996,pp.140-165
    Zhang,Y.A.,Sun,B.J.,Nie,P.Immune tissue and cells in fish:a review.Acta Hydrobiologica Sinica,2000,24:648-654.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700