鲟鱼的电感受行为及脑核反应特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
感受作为一种古老的感受形态,存在于许多水生动物中,并在摄食、避害和求偶等行为中有重要作用。电感受鱼类可分为原始的被动电感受和新型的主动电感受,其电感受器官也分别对应于壶腹型和结节型。鲟形目(Acipenseriformes)鱼类隶属软骨硬鳞纲,包括鲟科鱼类和白鲟科鱼类,是目前世界上的最古老鱼类之一,同时也是典型的被动电感受鱼类。它们的壶腹型电感受器官主要分布于头部,并在中枢神经系统中存在专司电感受信息处理的脑核,背听侧核(Dorsal Octavolateralis Nucleus, DON)。目前对于鲟形目鱼类的电感受研究主要集中在白鲟科的匙吻鲟(Polyodon spathula),对它的电感受器官、行为功能、中枢神经传导和信息处理均有详细报导。尽管对于鲟科鱼类(以下简称鲟鱼)的电感受器官有过早期报导,但对于它们的行为功能和中枢神经信息处理方式尚不清楚。本文以实验行为学为手段研究了西伯利亚鲟电感受的行为功能和以神经电生理手段研究了高首鲟DON对偶极子电场信息的处理方式,以期为电感受的进化研究积累资料,并为鲟鱼的资源保护和现代化的科学养殖提供参考。主要结果如下:
     1.西伯利亚鲟对金属腐蚀电场的行为反应
     本章测量了铝棒在水中的腐蚀电场,并测试了西伯利亚鲟(Acipenser baerii)对不同直径的铝棒、绝缘铝棒和塑料棒的行为反应。实验在黑暗条件下采用红外监控的行为学研究方法记录了10尾鱼的反应。电场测量结果表明:不同直径的铝棒产生了1-3Hz的腐蚀电场,其峰值分别为90μV(2.5cm),70μV(2.0cm)和50μV(1.5cm),但绝缘铝棒没有产生或产生微弱的电场信号。结果表明:鲟鱼对测试棒表现出以吸吮为特征的扑食行为和以绕棒为特征的觅食行为。经统计分析,鲟鱼对铝棒的感知能力显著差异于绝缘铝棒和塑料棒(P<0.01)。对铝棒和绝缘铝棒的扑食行为显著差异于塑料棒(P<0.01),但对铝棒和绝缘铝棒无显著差异性。对铝棒、绝缘铝棒和塑料棒的觅食行为无显著性(P>0.01)。伽玛系数分析表明,扑食行为与铝棒存在显著负相关性(G=-0.278, P=0.003),对绝缘铝棒存在显著正相关性(G=0.559, P=0),对塑料棒无相关性(P=0.777)。觅食行为与铝棒粗细呈现正相关性(G=0.612, P=0),而绝缘铝棒和塑料棒与觅食行为之间不存在相关性(P=0.445; P=0.08)。根据偏好度计算,鲟鱼对铝棒的偏好性最强,平均偏好度达4.71,对绝缘铝棒的偏好性较强,平均值为2.23,对塑料棒偏好性最低,平均值为0.06。这些结果说明,鲟鱼可依靠电感受进行摄食,在缺乏电场信息情况下,可依靠嗅觉感受进行摄食。鲟鱼对金属腐蚀电场的扑食行为也表明,在自然条件下,人为的电场可能会对鲟鱼的摄食、生殖行为具有重要影响。
     2.西伯利亚鲟对食蚊鱼生物电场的行为反应
     本章采用活体记录的方法测量了鲟鱼的生物饵料——食蚊鱼(Gambusia Affinis Baird & Girard)的生物电场,并测试了西伯利亚鲟对封闭在凝胶内的食蚊鱼的行为反应。食蚊鱼电场测量分单尾鱼、两尾鱼同向和两尾鱼反向三个实验组测量,每组10个重复。行为方法测试了五尾鲟鱼对食蚊鱼生物电场和饵料气味的行为。电场测量表明:单尾鱼的生物电场表现为头负、尾正的偶极子直流电场,头部相对电势为-24±2.4μV,尾部为21±1.6μV,且头部附近产生1-3 Hz与呼吸频率对应的交流呼吸电场,大小为4.2±0.8μV。两尾鱼生物电场测量表明,其直流电场均大于单尾鱼(P<0.05);两尾鱼同向靠近时产生的交流呼吸电场显著大于单尾鱼(P<0.01),而反向靠近时产生的呼吸电场显著小于单尾鱼(P<0.001)。这表明两条鱼不同方向靠近时,可通过呼吸作用改变交流呼吸电场的大小。此种现象对于依靠感知交流呼吸电场来摄食的被动电感受鱼类是不利的。行为学分析结果表明:食蚊鱼被凝胶封闭化学气味后,依然可以引起西伯利亚鲟的扑食行为,但同时鲟鱼对含有饵料气味的凝胶也有扑食反应,且两者之间不存在显著差异(P=0.27)。这些结果进一步表明,鲟鱼依靠电感受和嗅觉摄食的感觉机制。
     3.高首鲟的电感受初级中枢核(DON)对偶极子电场的反应特性
     本章采用电生理方法记录了高首鲟的电感受初级中枢核(Dorsal octavolateral nucleus,DON)在不同振幅和不同频率的偶极子电场刺激下的神经元反应特性,并设置不同方向来确定神经元对偶极子方向的选择性。结果表明,高首鲟DON神经单位在电场刺激下产生明显的相位耦合性和持续放电频率的变化。在5 Hz的调幅电场刺激下,DON神经单位的相对放电率和相位耦合度在25到100μV/cm范围内电频率没有明显变化,但相位耦合度在1到5 Hz范围内明显增加。不同方向偶极子刺激表明,DON神经单位对5Hz,100μV/cm的偶极子有明显的方向的选择性,表现为极性相反的相位耦合性。对结果进一步分析表明:DON神经单位在电感受信息处理中可能采用以自发放电频率为载波的频率编码模式和以相位耦合为特征的相位编码模式,并且根据自发放电频率分为低频放电(<10Hz)和高频放电神经元(>10Hz),低频放电神经元具有较强的相位耦合性,而高频放电神经元则具有较大的相对放电频率。这样不同类型的神经元在处理不同电场信号时采用频率编码和相位编码。对于高强度电场,神经元倾向于载波调制为主的频率编码,对于低强度电场,神经元则倾向于相位编码。不同类型的信息编码明显与鲟鱼的摄食行为相适应,同时可能与生殖行为相适应。
The electrosense is the ancestral vertebrate sense and present in many aquatic animals and is used in prey detection, avoidance and mating. The electrosense is divided into primitive passive electrosense and new active electrosense, and their electroreceptor are ampullary and tuberous. The sturgeon and paddlefish in the order Acipenseriformes are chondrostean and one of the primitive fish and typical passive electrosensory fish in present. Their electroreceptors distributed in head and rostrum which carry the electrical information to first special nucleus. The research on the electroreceptor, behavior and information processing in brain were well documented in Paddlefish, Polyodon spathula. However, it is unknown in sturgeon. The study investigated the electrosensory function in Siberian Sturgeon, Acipenser baerii by experimental behavior and the response properties in electrosensory neuron in White Sturgeon, Acipenser transmontanus. The significance of this study was to accumulating the information in evolution of electrosense and to provide the basic data on protection and aquaculture in sturgeon. The major results are the following:
     1. The response of Siberian Sturgeon, Acipenser baerii to corrosion electric fields from meal object
     The responses of Siberian Sturgeon, Acipenser baerii to aluminum, T-aluminum and plastic rods were investigated and the corrosion fields from metal rod were measured as well. The behavior experiment was conducted in darkness with 10 fish by IR-video recording. The results showed that the electric fields from aluminum rod were 1-3Hz with 90μV (2.5cm), 70μV (2.0cm) and 50μV (1.5cm) peak to peak. There was no or less electric field from T-aluminum rod. The behavior results showed that the fish food foraged and food striked at the rods. There was significant difference between aluminum and other rods (P<0.01). In food striking, aluminum and T-aluminum rod showed significantly difference with plastic rod (P<0.01), and there was NS between aluminum and T-aluminum. In food searching, there was NS among three kinds of rods (P>0.01). Gamma coefficient showed there was significant negative relative to the diameter of aluminum rods in food striking (G=-0.278, P=0.003), positive relative in T-aluminum rods (G=0.559, P=0), no relative in plastic rods (P=0.777). And there was significant positive relative to diameter of aluminum rods in food searching (G=0.612, P=0), no relative in T-aluminum and plastic rods (P=0.445; P=0.08). In the preference of degree, the aluminum had the max preference with value of 4.71; in T-aluminum the preference was 2.23; but there was no or least preference to plastic with value closing to zero. These results suggested that the sturgeon could feed with electrosense, and they also use olfaction in feeding without electric cues. It had also implications that the artificial electric field would influence the sturgeon in feeding and reproducing.
     2. The bioelectric field of Mosquito fish, Gambusia Affinis and the response of Siberian sturgeon
     In this study, the bioelectric field of Mosquito fish (Gambusia Affinis Baird & Girard), a kind of living prey of sturgeon, was investigated in single fish, pair of same direction and pair of opposite direction. And the behavior response of Siberian sturgeon to the Mosquito fish closed in the gelatin chamber and odor of pellets from gelatin was analyzed. The bioelectric field of single fish presented as direct current electric field of dipole type, with relative potential up to -24±2.4μV on head and 21±1.6μV on tail. And the alternating current electric field was modulated with 4.2±0.8μV at 1-3 Hz which corresponded with the respiratory rhythm. In two fish with same and opposite direction, the direct current electric fields were larger than the single fish (P<0.05), but the alternating current electric field was larger than the single fish measured in same direction (P<0.01), and was smaller than single fish in opposite direction (P<0.001). It suggested that the schooling fish could change the alternating current respiratory potential through the different directions. This phenomenon was unbeneficial for the feeding of passive electrosensory fish. The behavior results showed that sturgeon food striked at bioelectric field from Mosquito fish and odor from pellet solution and there was no significant difference between two gelatin blocks (P<0.001). It further suggested the electrosense and olfaction was used by sturgeon in feeding.
     3. The response properties of DON, dorsal octavolateral nucleus to dipolar electric fields in White Sturgeon, Acipenser transmontanus
     In this study, the response properties of DON, dorsal octavolateral nucleus to different amplitudes and different frequencies of dipole fields was investigated by electrophysiological method in White Sturgeon, Acipenser transmontanus and the two dipoles with different direction were used to determine the selectivity in DON units. The results showed the DON units modulated the spontaneous activity and phase locked to the sinusoidal electric fields. With different amplitudes at 5Hz the relative discharge rate and the degree of phase-locking increased with amplitude ranging from 25 to100μV/cm in DON; with different frequencies at 25μV/cm the relative discharge rate changed a little, but the phase-locking increased with frequencies ranging from 1 to 5Hz. There was apparent selectivity in dipolar direction expressed as opposite polarity of phase-locking. With further analyzing, the DON units could be catalogue into two types with low spontaneous activity (rate<10Hz) and high spontaneous activity (rate>10Hz) and processed the information with rate coding and phase coding. In rate coding, the spontaneous activity of DON units acted as carrier frequency. And the character of phase coding was phase locking. The units with low spontaneous activity had strong phase-locking and the units with high spontaneous activity had high relative discharge rate. DON units preferred to use phase coding responding to electric fields with low intensity, and rate coding with high intensity. These response properties of DON units matched the biological function in feeding and reproducing.
引文
[1] Bemis W E, Findeis E K, Grande L. An overview of Acipenseriformes[J]. Environmental Biology of Fishes, 1997, 48(1): 25-71
    [2] Bemis W, Birstein V, Waldman J. Sturgeon biodiversity and conservation: an introduction[J]. Environmental Biology of Fishes, 1997, 48(1): 13-14
    [3] Wilkens L A, Hofmann M H. Behavior of animals with passive, low-frequency electrosensory systems[A]. In: Bullock T H, Hopkins C D, Popper A N, Fay R R (Eds.), Electroreception[C]. New York: Springer. 2005, 229-263
    [4] J?rgensen J M. Morphology of electroreceptive sensory organs[A]. In: Bullock T H, Hopkins C D, Fay R R, Popper A N (Eds.), Electroreception[C], vol. 21. New York: Springer 2005, 47-67
    [5] Gibbs M A, Northcutt R G. Development of the lateral line system in the shovelnose sturgeon[J]. Brain, Behave, Evolution, 2004, 64(2): 70-84
    [6] Bullock T H, Bodznick D A, Northcutt R G. The phylogenetic distribution of electroreception: Evidence for convergent evolution of a primitive vertebrate sense modality[J]. Brain Research Reviews, 1983, 6(1): 25-46
    [7] New J, Northcutt R. Central projections of the lateral line nerves in the shovelnose sturgeon[J]. The Journal of Comparative Neurology, 1984, 225(1): 129-140
    [8] New J G, Bodznick D. Segregation of electroreceptive and mechanoreceptive lateral line afferents in the hindbrain of chondrostean fishes[J]. Brain research, 1985, 336(1): 89-98
    [9] Kistler H D. The primitive pores of Polyodon spathula[J]. Journal of Comparative Neurology and Psychology, 1906, 16(4): 294-298
    [10] Stockard C R. Observations on the natural history of polyodon spathula[J]. American Naturalist, 1907, 41: 753-766
    [11] Nachtrieb H F. The primitive pores of Polyodon spathula (Walbaum)[J]. Journal of Experimental Zoology, 1910, 9(2): 455-468
    [12] Sand A. The function of the ampullae of Lorenzini, with some observations on the effect of temperature on sensory rhythms[J]. Proceedings of the Royal Society of London. Series B, Biological Sciences, 1938: 524-553
    [13] Norris H W. On the function of the paddle of the paddlefish[J]. Proceedings of the Iowa Academy of Science, 1923, 30: 135-137
    [14] Murray R. Evidence for a mechanoreceptive function of the ampullae of Lorenzini[J]. Nature, 1957, 179(4550): 106-107
    [15] Murray R W. The response of the ampullae of Lorenzini of elasmobranchs to mechanical stimulation[J]. 1960: 417-424
    [16] Loewenstein W, Ishiko N. Sodium chloride sensitivity and electrochemical effects in a Lorenzinian ampulla[J]. Nature, 1962, 194: 292-294
    [17] Murray R, Potts W. The composition of the endolymph, perilymph and other body fluids of elasmobranchs[J]. Comp. Biochem. Physiol, 1961, 2: 65-75
    [18] Dijkgraaf S. Electroreception in the catfish, Amiurus nebulosus[J]. Cellular and Molecular Life Sciences, 1968, 24(2): 187-188
    [19] J?rgensen J M, Flock ?, Wers?ll J. The Lorenzinian ampullae of Polyodon spathula[J]. Cell andTissue Research, 1972, 130(3): 362-377
    [20] Clusin W T, Bennett M V. Calcium-activated conductance in skate electroreceptors: current clamp experiments[J]. Journal of General Physiology, 1977a, 69(2): 121-143
    [21] Clusin W T, Bennett M V. Calcium-activated conductance in skate electroreceptors: voltage clamp experiments[J]. Journal of General Physiology, 1977b, 69(2): 145-182
    [22] Clusin W, Bennett M. The oscillatory responses of skate electroreceptors to small voltage stimuli[J]. Journal of General Physiology, 1979, 73(6): 685
    [23] Clusin W T, Bennett M V. The ionic basis of oscillatory responses of skate electroreceptors[J]. Journal of General Physiology, 1979, 73(6): 703-723
    [24] Hofmann M H, Jung S N, Wilkens L A. Resonant properties in the paddlefish electrosensory system caused by delayed feedback[J]. Biological Cybernetics, 2007, 97(5): 413-421
    [25] Waltman B. Electrical properties and fine structure of the ampullary canals of Lorenzini[J]. Acta physiologica Scandinavica. Supplementum, 1966, 264: 1-60
    [26] Mullinger A. The fine structure of ampullary electric receptors in Amiurus[J]. Proceedings of the Royal Society of London. Series B, Biological Sciences, 1964, 160: 345-359
    [27] Whitehead D L, Tibbetts I R, Daddow L Y M. Ampullary organ morphology of freshwater salmontail catfish, Arius graeffei[J]. Journal of Morphology, 2000, 246(2):
    [28] Whitehead D, Tibbetts I R, Daddow L Y M. Microampullary Organs of a Freshwater Eel-Tailed Catfish, Plotosus (tandanus) tandanus[J]. Journal of Morphology, 2003, 255: 253-260
    [29] Wueringer B, Tibbetts I, Whitehead D. Ultrastructure of the ampullae of Lorenzini of Aptychotrema rostrata (Rhinobatidae)[J]. Zoomorphology, 2009, 128(1): 45-52
    [30] Lissmann H W, Mullinger A M. Organization of ampullary electric receptors in Gymnotidae[J]. Proceedings of the Royal Society of London, 1968, 169: 345-378
    [31] Teeter J H, Szamier R B, Bennett M V L. Ampullary Electroreceptors in the sturgeon Scaphirhynchus platorynchus(Rafinesque)[J]. Journal of Comparative Physiology.A, 1980, 138(213-223):
    [32] Lissmann H. On the function and evolution of electric organs in fish[J]. Journal of Experimental Biology, 1958, 35(1): 156-191
    [33] Nieuwenhuys R. Comparative anatomy of the cerebellum[J]. Progress in brain research, 1967, 25: 1-93
    [34] Bell C, Han V, Sawtell N. Cerebellum-like structures and their implications for cerebellar function[J]. 2008:
    [35] Gisbert E, Williot P. Advances in the larval rearing of Siberian sturgeon[J]. Journal of Fish Biology, 2002, 60(5): 1071-1092
    [36] Gisbert E, Williot P, Castello-Orvay F. Behavioural modifications in the early life stages of Siberian sturgeon (Acipenser baerii, Brandt)[J]. Journal of Applied Ichthyology, 1999, 15(4-5): 237-242
    [37] Gisbert E, Williot P. Larval behaviour and effect of the timing of initial feeding on growth and survival of Siberian sturgeon (Acipenser baeri) larvae under small scale hatchery production[J]. Aquaculture, 1997, 156(1-2): 63-76
    [38]曲秋芝,高艳丽.西伯利亚鲟的人工繁殖[J].中国水产科学, 2005, 12(004): 492-495
    [39]熊邦喜,梅新海,戴泽贵.匙吻鲟引进中国20年概述[J].淡水渔业, 2008, 38(005): 70-73
    [40] Bell C C, Maler L. Central Neuroanatomy of Electrosensory Systems in Fish[A]. In: Bullock T H, Hopkins C D, Popper A N, Fay R R (Eds.), Electroreception[C], vol. 21. Springer New York. 2005, 68-111
    [41] Wilkens L A, Russell D F, Pei X, Gurgens C. The paddlefish rostrum functions as an electrosensoryantenna in plankton feeding[J]. Proceedings: Biological Sciences, 1997, 264(1389): 1723-1729
    [42] Wojtenek W, Pei X, Wilkens L A. Paddlefish strike at artificial dipoles simulating the weak electric fields of planktonic prey[J]. The Journal of Experimental Biology, 2001, 204(8): 1391-1399
    [43]梁旭方.中华鲟吻部腹面罗伦氏囊结构与功能的研究[J].海洋与湖沼, 1996, 27(1): 1-5
    [44]张胜宇.鲟鱼规模养殖关键技术[M].南京:江苏科学技术出版社. 2002,
    [45]庄平,章龙珍,罗刚,张涛,冯广朋,刘健.长江口中华鲟幼鱼感觉器官在摄食行为中的作用[J].水生生物学报, 2008, 32(004): 475-481
    [46] Kynard B, Henyey E, Horgan M. Ontogenetic behavior, migration, and social behavior of pallid sturgeon, Scaphirhynchus albus, and shovelnose sturgeon, S. platorynchus, with notes on the adaptive significance of body color[J]. Environmental Biology of Fishes, 2002, 63(4): 389-403
    [47] Kynard B, Horgan M. Ontogenetic behavior and migration of Atlantic sturgeon, Acipenser oxyrinchus oxyrinchus, and shortnose sturgeon, A. brevirostrum, with notes on social behavior[J]. Environmental Biology of Fishes, 2002, 63(2): 137-150
    [48] Kynard B, Zhuang P, Zhang L, Zhang T, Zhang Z. Ontogenetic behavior and migration of Volga River Russian sturgeon, Acipenser gueldenstaedtii, with a note on adaptive significance of body color[J]. Environmental Biology of Fishes, 2002, 65(4): 411-421
    [49] Gurgens C, Russell D F, Wlikens L A. Electrosensory avoidance of metal obstacles by the paddlefish[J]. Journal of Fish Biology, 2000, 57(2): 277-290
    [50] Bodznick D, Montgomery J C. Suppression of Ventilatory Reafference in the Elasmobranch Electrosensory System: Medullary Neuron Receptive Fields Support a Common Mode Ejection Mechanism[J]. Journal of Experimental Biology, 1992, 171(1): 127-137
    [51] Montgomery J, Bodznick D. Signals and noise in the elasmobranch electrosensory system[J]. Journal of Experimental Biology, 1999, 202(10): 1349
    [52] Bodznick D, Montgomery J C, Bradley D J. Suppression of common mode signals within the electrosensory system of the little skate Raja erinacea[J]. Journal of Experimental Biology, 1992, 171(1): 107-125
    [53] Kalmijn A J. Bioelectric Fields in Sea Water and the Function of the Ampullae of Lorenzini in Elasmobranch Fishes[J]. Scripps Institution of Oceanography Reference Series, 1972: 72-83
    [54] Bullock T H, Hamstra R H, Scheich H. The jamming avoidance response of high frequency electric fish[J]. Journal of Comparative Physiology A, 1972, 77(1): 1-22
    [55] Tricas T, Michael S, Sisneros J. Electrosensory optimization to conspecific phasic signals for mating[J]. Neuroscience letters, 1995, 202(1-2): 129-132
    [56] Neiman A B, Russell D F. Stochastic biperiodic oscillations in the electroreceptors of paddlefish[J]. Phys Rev Lett, 2001, 86(15): 3443-3446
    [57] Russell D F, Wilkens L A, Moss F. Use of behavioural stochastic resonance by paddle fish for feeding[J]. Nature, 1999, 402: 291-294
    [58] Coombs S, New J, Nelson M. Information-processing demands in electrosensory and mechanosensory lateral line systems[J]. Journal of Physiology-Paris, 2002, 96(5-6): 341-354
    [59] Wilkens L A, Hofmann M H, Wojtenek W. The electric sense of the paddlefish: a passive system for the detection and capture of zooplankton prey[J]. Journal of Physiology - Paris, 2002, 96(5-6): 363-377
    [60]梁旭方,何大仁.鱼类摄食行为的感觉基础[J].水生生物学报, 1998, 22(003): 278-284
    [61]王作楷.鱼类摄食行为的感觉基础[J].水利渔业, 1992, 5(59): 53-56
    [62] Parker G H, Van Heusen A P. The responses of the catfish, Amiurus nebulosus, to metallic andnon-metallic rods[J]. American Journal of Physiology, 1917, 44(3): 405-420
    [63] Wei Q, He J, Yang D, Zheng W, Li L. Status of sturgeon aquaculture and sturgeon trade in China: a review based on two recent nationwide surveys[J]. Journal of Applied Ichthyology, 2004, 20(5): 321-332
    [64] Wei Q, Ke F, Zhang J, Zhuang P, Luo J, Zhou R, Yang W. Biology, fisheries, and conservation of sturgeons and paddlefish in China[J]. Environmental Biology of Fishes, 1997, 48(1): 241-255
    [65] Birstein V, Bemis W, Waldman J. The threatened status of acipenseriform species: a summary[J]. Environmental Biology of Fishes, 1997, 48(1): 427-435
    [66] Basov B. On electric fields of power lines and on their perception by freshwater fish[J]. Journal of ichthyology, 2007, 47(8): 656-661
    [67] Gill A B, Kimber J A. The potential for cooperative management of elasmobranchs and offshore renewable energy development in UK waters[J]. Journal of the Marine Biological Association of the U.K., 2005, 85(1075-1081):
    [68] Kimber J A. Elasmobranch electroreceptive foraging behaviour: male-female interactions, choice and cognitive ability. School of applied sciences, vol. Ph.D. Cranfield: Cranfield University, 2008
    [69] Northcutt R. Ontogeny of Electroreceptors and Their Neural Circuitry[A]. In: Bullock T H, Hopkins C D, Fay R R, Popper A N (Eds.), Electroreception[C], vol. 21. New York: Springer. 2005, 112-131
    [70] Hofmann M H, Chagnaud B P, Wilkens L A. Response properties of electrosensory afferent fibers and secondary brain stem neurons in the paddlefish[J]. J Exp Biol, 2005, 208(22): 4213-4222
    [71] Neiman A B, Russell D F. Two distinct types of noisy oscillators in electroreceptors of paddlefish[J]. J Neurophysiol, 2004, 92(1): 492-509
    [72] Hofmann M, Wilkens L. Temporal analysis of moving dc electric fields in aquatic media[J]. Physical Biology, 2005, 2: 23
    [73] Hofmann M H, Falk M, Wilkens L A. Electrosensory brain stem neurons compute the time derivative of electric fields in the paddlefish[J]. Fluct Noise Lett, 2004, 4: 129-138
    [74] Obara S. Mechanism of electroreception in ampullae of Lorenzini of the marine catfish Plotosus[A]. In: Reuben J P, Purpura D P, Bennett M V, Kandel E R (Eds.), Electrobiology of Nerve, Synapse, and Muscle: In Honor of Harry Grundfest[C]. New York: Raven Press. 1976, 129-141
    [75] Obara S, Bennett M. Mode of operation of ampullae of Lorenzini of the skate, Raja[J]. Journal of General Physiology, 1972, 60(5): 534
    [76] Szamier R, Bennett M. Ampullary electroreceptors in the fresh water ray, Potamotrygon[J]. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1980, 138(3): 225-230
    [77] Wojtenek W, Hofmann M H, Wilkens L A. Primary afferent electrosensory neurons represent paddlefish natural prey[J]. Neurocomputing, 2001, (38-40): 451-458
    [78] Wilkens L A, Wettring B, Wagner E, Wojtenek W, Russell D F. Prey detection in selective plankton feeding by the paddlefish: is the electric sense sufficient?[J]. The Journal of Experimental Biology, 2001, 204(8): 1381-1389
    [79] Hofmann M H, Wojtenek W, Wilkens L A. Central organization of the electrosensory system in the paddlefish (Polyodon spathula)[J]. The Journal of Comparative Neurology, 2002, 446(1): 25-36
    [80] Chagnaud B P, Wilkens L A, Hofmann M H. Response properties of electrosensory neurons in the lateral mesencephalic nucleus of the paddlefish[J]. Journal of Comparative Physiology A, 2008, 194(3): 209-220
    [81] Hofmann M H, Jung S N, Siebenaller U, Preissner M, Chagnaud B P, Wilkens L A. Responseproperties of electrosensory units in the midbrain tectum of the paddlefish (Polyodon spathula Walbaum)[J]. J Exp Biol, 2008, 211(5): 773-779
    [82] Chagnaud B P, Wilkens L A, Hofmann M H. Receptive field organization of electrosensory neurons in the paddlefish (Polyodon spathula)[J]. Journal of Physiology-Paris, 2008, 102(4-6): 246-255
    [83] Conley R, Bodznick D. The cerebellar dorsal granular ridge in an elasmobranch has proprioceptive and electroreceptive representations and projects homotopically to the medullary electrosensory nucleus[J]. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1994, 174(6): 707-721
    [84] Antipin N, Krylov B, Cherepnov V. Topography of the ampullary system of Raja clavata and its role in electroorientation[J]. Neurophysiology, 1984, 16(6): 628-633
    [85] Huesa G, Anadón R, Yá?z J. Topography and connections of the telencephalon in a chondrostean, Acipenser baeri: An experimental study[J]. The Journal of Comparative Neurology, 2006, 497(4): 519-541
    [86] Tricas T C. Commentary: Ampullary systems[J]. Journal of Physiology-Paris, 2008, 102(4-6): 157-158
    [87] Pothmann L, Wilkens L, Schweitzer C, Hofmann M. Two parallel ascending pathways from the dorsal octavolateral nucleus to the midbrain in the paddlefish Polyodon spathula[J]. Brain research, 2009, 1265: 93-102
    [88] Vanegas H, Williams B, Essayag E. Electrophysiological and behavioral aspects of the teleostean optic tectum [J]. Comparative neurology of the optic tectum, 1984: 121–161
    [89] Dicke U, Roth G. Tectal activation of premotor and motor networks during feeding in salamanders[J]. European Journal of Morphology, 1994, 32(2): 106-116
    [90] Coombs S, Montgomery J. Comparing Octavolateralis Sensory Systems: What Can We Learn?[J]. SPRINGER HANDBOOK OF AUDITORY RESEARCH, 2005, 21: 318
    [91] Bullock T, Northcutt R. A new electroreceptive teleost: Xenomystus nigri (Osteoglossiformes: Notopteridae)[J]. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1982, 148(3): 345-352
    [92] Northcutt R. Understanding vertebrate brain evolution[J]. Integrative and Comparative Biology, 2002, 42(4): 743
    [93] Northcutt R G. Evolution of gnathostome lateral line ontogenies[J]. Brain Behave and Evolution, 1997, 50: 25-37
    [94] Kalmijn A, Gonzalez I, McClune M. The physical nature of life[J]. Journal of Physiology-Paris, 2002, 96(5-6): 355-362
    [95] Bleckmann H, Schmitz H, Von der Emde G. Nature as a model for technical sensors[J]. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2004, 190(12): 971-981
    [96] Ghysen A. The origin and evolution of the nervous system[J]. International journal of developmental biology, 2003, 47(7/8): 555-562
    [97] Miller M. The ecology and functional morphology of feeding of North American sturgeon and paddlefish[J]. FISH AND FISHERIES SERIES, 2004, 27: 87-102
    [98] J?rgensen J M. The morphology of the Lorenzinian ampullae of the sturgeon Acipenser ruthenus (Pisces: Chondrostei)[J]. Acta Zool (Stockh), 1980, 61: 87-92
    [99] Hofmann M, Chagnaud B, Wilkens L. Edge-Detection Filter Improves Spatial Resolution in the Electrosensory System of the Paddlefish[J]. Journal of Neurophysiology, 2009, 102(2): 797
    [100] Hofmann M H, Wilkens L A. Temporal analysis of moving dc electric fields in aquatic media[J]. Physical Biology, 2005, 2(1): 23-28
    [101] Birstein V J, Bemis W E. How many species are there within the genus Acipenser?[J]. Environmental Biology of Fishes, 1997, 48(1): 157-163
    [102]陈细华.鲟形目鱼类生物学与资源现状[M].北京:海洋出版社. 2007, 1-9
    [103] Kasumyan A O. Sturgeon food searching behaviour evoked by chemical stimuli: a reliable sensory mechanism[J]. Journal of Applied Ichthyology, 2002, 18(4-6): 685-690
    [104] Kasumyan A O. Olfaction and taste senses in sturgeon behaviour[J]. Journal of Applied Ichthyology, 1999, 15(4-5): 228-232
    [105] Kasumyan A O. Gustatory reception and feeding behavior in fishes[J]. Voprosy Ikhtiologii, 1997, 37(1): 78-93
    [106] Kasumyan A, Doving K. Taste preferences in fishes[J]. Fish and Fisheries, 2003, 4(4): 289-347
    [107] Mori Y, Nakata K. Optimal foraging and information gathering: how should animals invest in repeated foraging bouts within the same patch? [J]. Evolutionary Ecology Research, 2008, 10(6): 823-834
    [108]王振尧,李巧霞,汪川,韩薇,于国材. LC4铝合金在格尔木盐湖大气环境中的腐蚀行为[J].中国有色金属学报, 2007, 17(1): 24-29
    [109] Govardovskii V, R hlich P, Szel A, Zueva L. Immunocytochemical reactivity of rod and cone visual pigments in the sturgeon retina[J]. Visual neuroscience, 1992, 8(6): 531
    [110] Siegel G, Castellan N J J. Nonparametric Statistics for the Behavi-oral Sciences[M]. New York: McGraw-Hill. 1989,
    [111] Kasumyan A O. Paddlefish Polyodon spathula juveniles food searching behaviour evoked by natural food odour[J]. Journal of Applied Ichthyology, 2007, 23(6): 636-639
    [112] Basov B. Behavior of Sterlet Acipenser ruthenus and Russian Sturgeon A. gueldenstaedtii in Low-Frequency Electric Fields[J]. Journal of ichthyology, 1999, 39(9): 782-787
    [113] Shamushaki V A J, Kasumyan A O, Abedian A, Abtahi B. Behavioural responses of the Persian sturgeon (Acipenser persicus) juveniles to free amino acid solutions[J]. Marine and Freshwater Behaviour and Physiology, 2007, 40(3): 219 - 224
    [114] Jafari Shamushaki V, Abtahi B, Kasumyan A, Abedian Kenari A, Ghorbani R. Taste attractiveness of free amino acids for juveniles of Persian sturgeon Acipenser persicus[J]. Journal of ichthyology, 2008, 48(1): 124-133
    [115] Mogdans J, Engelmann J, Hanke W. The fish lateral line: how to detect hydrodynamic stimuli[A]. In: Barth F, Humphrey J, Secomb T (Eds.), Sensors and Sensing in Biology and Engineering[C]. Vienna: Springer-Verlag. 2003, 173–185
    [116] Ruban G, Konoplya L. Diet of the Siberian Sturgeon, Acipenser baeri, in the Indigirka and Kolyma rivers[J]. Journal of Ichthyology/Voprosy Ikhtiologii, 1994: 1
    [117] Peters R C, van Wessel T, van den Wollenberg B J W, Bretschneider F, Olijslagers A E. The bioelectric field of the catfish Ictalurus nebulosus[J]. Journal of Physiology-Paris, 2002, 96(5-6): 397-404
    [118] Potts W T W, Hedges A J. Gill potentials in marine teleosts[J]. Journal of Comparative Physiology B, 1991, 161: 401-405
    [119]李梅,罗少杰.聚氯乙烯压敏胶粘带的研制[J].特种橡胶制品, 1991, (2): 22-25
    [120]涂春潮,齐暑华,周文英,赵维.聚乙烯用胶粘剂研究进展[J].中国胶粘剂, 2005, 14(7):
    [121]张翼,齐暑华,段国晨,吴新明.压敏胶研究进展[J].中国胶粘剂, 2010, 19(8):
    [122] Southall P D, Hubert W A. Habitat use by adult paddlefish in the upper Mississippi River[J]. Transactions of the American Fisheries Society, 1984, 113(2): 125-131
    [123] Marra L J. Shark bite on the SL submarine lightwave cable system: History,causes and resolution[J]. IEEE Journal of Oceanic Engineering, 1989, 14: 230-237
    [124] Hopkins C. Passive electrolocation and the sensory guidance of oriented behavior[A]. In: Bullock T H, Hopkins C D, Popper A N, Fay R R (Eds.), Electroreception[C]. New York: Springer. 2005, 264-289
    [125] Evans D, Piermarini P, Potts W. Ionic transport in the fish gill epithelium[J]. Journal of Experimental Zoology, 1999, 283(7): 641-652
    [126] Shuttleworth T, Potts W, Harris J. Bioelectric potentials in the gills of the flounder Platichthys flesus[J]. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1974, 94(4): 321-329
    [127]李振宇,解炎.中国外来入侵种[M].北京:林业出版社. 2002, 88
    [128] Peters R C, Bretschneider F. Electric phenomena in the habitat of the catfish Ictalurus nebulosus LeS[J]. Journal of Comparative Physiology A, 1972, 81(4): 345-362
    [129] Jordan L, Kajiura S, Gordon M. Functional consequences of structural differences in stingray sensory systems. Part II: electrosensory system[J]. Journal of Experimental Biology, 2009, 212(19): 3044
    [130] Kajiura S. Electroreception in carcharhinid and sphyrnid sharks. vol. Ph.D. Manoa: University of Hawai'i at Manoa, 2001. p.109
    [131] Kajiura S, Fitzgerald T. Response of juvenile scalloped hammerhead sharks to electric stimuli[J]. Zoology, 2009, 112(4): 241-250
    [132] Kajiura S M. Electroreception in neonatal bonnethead sharks, Sphyrna tiburo[J]. Marine Biology, 2003, 143(3): 603-611
    [133] Kajiura S M, Forni J B, Summers A P. Maneuvering in juvenile carcharhinid and sphyrnid sharks: the role of the hammerhead shark cephalofoil[J]. Zoology, 2003, 106(1): 19-28
    [134] McGowan D, Kajiura S. Electroreception in the euryhaline stingray, Dasyatis sabina[J]. Journal of Experimental Biology, 2009, 212(10): 1544-1552
    [135] Kim D. Prey detection mechanism of elasmobranchs[J]. BioSystems, 2007, 87(2-3): 322-331
    [136] Patullo B, Macmillan D. Making sense of electrical sense in crayfish[J]. The Journal of Experimental Biology, 2010, 213( 4): 651-657
    [137] Patullo B W, Macmillan D L. The relationship between body size and the field potentials generated by swimming crayfish[J]. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 2004, 139(1): 77-81
    [138] Keenleyside M. Some aspects of the schooling behaviour of fish[J]. Behaviour, 1955, 8(2): 183-248
    [139] Brock V, Riffenburgh R. Fish schooling: a possible factor in reducing predation[J]. ICES Journal of Marine Science, 1960, 25(3): 307
    [140] Peters R C, Wijland F. Electro-orientation in the passive electric catfish, Ictalurus nebulosus LeS[J]. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 1974, 92(3): 273-280
    [141] Kalmijn A. Electric and magnetic field detection in elasmobranch fishes[J]. Science, 1982, 218: 916-918
    [142] Prasad B R G, Borges R M. Searching on patch networks using correlated random walks: Space usage and optimal foraging predictions using Markov chain models[J]. Journal of TheoreticalBiology, 2006, 240(2): 241-249
    [143]柴毅,谢从新,危起伟.中华鲟吻须部味蕾的早期发育[J].长江大学学报:农学卷, 2007, 4(003): 62-64
    [144] Bodznick D, Montgomery J C. The physiology of low-frequency electrosensory systems[J]. Electroreception, 2005: 132-153
    [145] Stamper S A, Carrera-G E, Tan E W, Fugère V, Krahe R, Fortune E S. Species differences in group size and electrosensory interference in weakly electric fishes: Implications for electrosensory processing[J]. Behavioural Brain Research, 2010, 207(2): 368-376
    [146] Tricas T, New J. Sensitivity and response dynamics of elasmobranch electrosensory primary afferent neurons to near threshold fields[J]. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1998, 182(1): 89-101
    [147] Kajikawa Y, Hackett T A. Entropy analysis of neuronal spike train synchrony[J]. Journal of neuroscience methods, 2005, 149(1): 90-93
    [148] Liepelt S, Freund J A, Schimansky-Geier L, Neiman A, Russell D F. Information processing in noisy burster models of sensory neurons[J]. Journal of Theoretical Biology, 2005, 237(1): 30-40
    [149] Goldberg J M, Brown P B. Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization[J]. Journal of Neurophysiology, 1969, 32(4): 613-636
    [150] New J, Bodznick D. Medullary electrosensory processing in the little skate. I. Response characteristics of neurons in the dorsal octavolateralis nucleus[J]. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1990, 167(2): 285-294
    [151] McCreery D B. Two types of electroreceptive lateral lemniscal neurons of the lateral line lobe of the catfish Ictalurus nebulosus; connections from the lateral line nerve and steady-state frequency response characteristics[J]. Journal of Comparative Physiology A, 1977, 113(3): 317-339
    [152] Bodznick D, Northcutt R. Electroreception in lampreys: evidence that the earliest vertebrates were electroreceptive[J]. Science, 1981, 212(4493): 465
    [153] Bodznick D, Montgomery J, Tricas T. Electroreception: extracting behaviorally important signals from noise[J]. Sensory Processing in Aquatic Environments, 2003: 389-403
    [154]徐汉祥,刘子藩,周永东.东海带鱼生殖和补充特征的变动[J].水产学报, 2003, 27(4): 322-327

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700