应用机电阻抗技术探测梁板结构损伤
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着海洋资源开发的大规模发展,海洋平台的安全问题日益引起重视。大量的海洋平台安全事故显示,平台结构的破坏是由于管结点承受交变波浪载荷引起的疲劳所产生。但是现有的海洋平台健康监测技术难以实现局部损伤的早期监测与诊断,以至丧失系统安全预警与损伤修复控制的最佳时机。机电阻抗技术集感知、激励功能于一体,具有可实现自发(主动)高频激励与局部损伤敏感的特点,可以被应用于海洋平台结构管结点处疲劳裂纹的识别和监测。本论文作为这种应用的基础研究部分,发展基于机电阻抗的梁/板类结构损伤识别方法,并结合理论分析与数值模拟,揭示压电元件-梁/板结构的相互作用及其阻抗特性。本文主要进行了以下几方面工作:
     (1)总结和回顾了机电阻抗技术的发展历史及研究进程,阐述了机电阻抗技术的基本原理以及结构机械阻抗与PZT电导纳的相互关系,简要介绍了压电材料和结构相互作用耦合模型的发展;
     (2)分别采用阻抗分析法和耦合有限元法,建立了PZT与梁/板结构相互作用的力学模型,并且结合模型试验研究梁和板类结构的阻抗特性。研究表明,对于梁结构,阻抗分析法及耦合有限元方法得到的阻抗曲线与实验结果的峰值比较吻合,但对于板结构,阻抗曲线的幅值相差较大;
     (3)分别设计梁与板类结构的缩尺模型,进行梁、板结构的损伤探测试验研究。在试验模型中,分别考虑了损伤程度、损伤位置、频段选择、电压幅值、粘结用胶等因素对导纳频谱曲线的影响,获得了阻抗信号与结构损伤是否出现以及损伤类型、程度和距离的关系,建议了合理频率范围以及频率采样间隔;
     (4)根据本文研究成果,总结了实验与分析中存在的问题,并对下一步的研究进行了展望。
With the development of large-scaled exploitation of ocean resources, more and more attentions have been paid to the structural safety of the platform. A large number of accidents show that the destruction of ocean platform is often caused by the fatigue damage of tubular joints which are constantly subjected to the wave-induced loads. However, it is difficult for the existing health monitoring technology to identify the damage in the ocean platform at the early stage, which misses the right time of the damage repair and the safety warning. The electromechanical impedance technology (EMI), which integrates the sensing and exciting functions in one element, can be achieved with spontaneously (actively) high frequency excitation and the local damage-sensitive features. Thus the EMI can meet the requirements for crack identification in oil platform. As a basis for this application, EMI was used to detect the damage in beam and plate-like structures in the dissertation. Theoretical analysis and numerical simulations were carried out to study the interactions between the structure and the PZT element. The main contents of the dissertation include the followings:
     Firstly, the state of the art of the EMI were summarized and reviewed. The theoretical developments of the EMI were presented, and the relationship between the structurally mechanical impedance and the electricity conductance of the PZT. The modeling method of the interactions between the structure and the PZT was briefly introduced.
     Secondly, the interaction model of beam/plate-like structure-PZT was built by using of the impedance analysis method as well as the coupling finite element method, respectively. Then the impedance characteristics of beam and plate were studied with the analysis and the model test. It is shown that the frequencies corresponding to the peaks of the impedance curve obtained by the impedance analysis agree well with those by the coupling finite element analysis. However, the amplitudes of the peaks for two methods are different for the plate.
     Thirdly, the scale models of beam and plate are designed, and the feasibility of the damage detection with EMI was presented. The effects of the damage severity, damage location, frequency band-width, voltage amplitude and the glue on the admittance spectrum are considered experimentally. Accordingly, the relationship between admittance signal and the occurrence of the structural damage as well as the damage type, the degree and the distance are obtained. Then the reasonable frequency range and frequency sampling interval are proposed.
     Based on the results of the analysis and experiments, the conclusions of the study were made and the prospect for the further research are presented
引文
[1]王柏生.结构损伤检测与识别技术[M].杭州:浙江大学出版社,2000.
    [2]杨蔚.EMI结构健康监测技术与定量化分析[D].浙江:浙江大学建筑工程学院,2007.
    [3]徐茂华.结构损伤检测PZT阻抗法的理论与试验研究[D].武汉:华中科技大学,2005.
    [4]Egashira M, Shinya N. Local strain sensing using piezoelectric polymer. Journal of Intelligent Material Systems and Structures,1993,4(7):558-560.
    [5]Boller C,Biemans, C, Staszewski W J. Structural damage monitoring based on actuator-sensor system, Proceeding of SPIE-The International Society for Optical Engineering,1999,3668:285-294.
    [6]Liang C, Sun F P, Rogers C A. An impedance method for dynamic analysis of active material system. Journal of Vibration and Acoustics,1994,116(1):120-128.
    [7]Zhou S.W.,Liang C. and Rogers C. A. An impedance-based system modeling approach for induced strain actuator-driven structures. Journal of Vibration and Acoustics,Transaction of the ASME,1996,118(1):323-331.
    [8]Giurgiutiu V,Rogers C. A. Modeling of the electro-mechanical (E/M) impedance response of a damaged composite beam. American Society of Mechanical Engineers, Aerospace Division(publication)AD,1999,59:39-46.
    [9]Park G.,Kabeya K.,Cudney H. H, et al. Impedance-based structural health monitoring for temperature varying application. JSME International Journal, Series A:Solid Mechanics and Material Engineering,1999,42(2):249-258.
    [10]Park G, Cudney H. H. and Inman D. J. Impedance-based health monitoring of civil structural components. Journal of Infrastructure Systems,2000,6(4):153-160.
    [11]Park G, Cudney H. H. and Inman D. J. Feasibility of using impedance-based damage assessment for pipeline structures. Earthquake Engineering and Structural Dynamics,2001,30(10):1463-1474.
    [12]Lopes JR. V., Park G, Cudney H. H., et al. Impedance-based structural health monitoring with artificial neural networks. Journal of Intelligent Material Systems and Structures,2000,11(3):206-214.
    [13]Park G, Cudney H. H. and Inman D. J. An integrated health monitoring technique using structural impedance sensors. Journal of Intelligent Material Systems and Structures,2000,11(6):802-812.
    [14]Giurgiutiu V and Zagrai A N. Electro-mechanical impedance method for crack detection in metallic plates. Proceedings of SPIE-The International Society for Optical Engineering,2001,4335:131-142.
    [15]Giurgiutiu, V, Zagrai, A. Embedded self-sensing piezoelectric active sensors for online structural identification, Journal of Vibration and Acoustics, Transaction of the ASME,2002,124(1):116-124.
    [16]Soh C K, Tseng K K and Bhalla S et al. Performance of smart piezoceramic patches in health monitoring of a RC bridge. Smart Materials and Structures,2000,9(4):533-542.
    [17]Bhalla S, Soh C K et al. Diagnosis of incipient damage in steel structures by means of piezoceramic patches. Proceedings of the 8th East Asia-Pacific Conference on Structural Engineering and Construction,5-7 December, Singapore,2001:238-248.
    [18]Bhalla S., Soh C., K. Structural impedance based damage diagnosis bypiezo-transducers. Earthquake Engineering and Structural Dynamics,2003,32(12):1897-1916.
    [19]Xu Y. G., Liu G. R. A modified electro-mechanical impedance model of piezoelectric actuator-sensors for debonding detection of composite patches, Journal of Intelligent Material Systems and Structures,2002,13(6):389-396.
    [20]Giurgiutiu V, Xu B. L. Development of a Field-portable small-Size impedance analyzer for structural health monitoring using the electromechanical impedance technique.Proceedings of SPIE-The International Society for Optical Engineering, 2004,5391:774-785.
    [21]Fasel T. R.,Sohn H.,Park G.,et al. Active sensing using impedance-based ARX models and extreme value statistics for damage detection. Earthquake Engineering and Structural Dynamics,2005,34(7):763-785.
    [22]Yang, Y., Soh, C. K., Xu, J. An integrated evolutionary programming and impedance-based NDE method. Proceedings of SPIE-The International Society for Optical Engineering,2005,5649:154-161.
    [23]Annamdas V. G. M., Soh C. K. Embedded piezoelectric ceramic transducers in sandwiched beams. Smart Materials and Structures,2006,15(2):538-549.
    [24]李以农,郑玲,闻邦椿.基于机电阻抗的结构缺陷评价方法的实验研究.力学与实践,2002,24(3):44-47.
    [25]高峰,李以农,王德俊等.用于结构健康诊断的机电阻抗技术.振动工程学报,2000,13(1):94-99.
    [26]石立华,陶宝祺.压电智能结构的实验研究.南京航空航天大学学报,1996,28(4):457-462.
    [27]熊先锋,杨光瑜,杨拥民等.机电阻抗技术用于结构健康诊断的一种方法.传感器技术,2003,22(10):62-64.
    [28]孙明清,李卓球,侯作富.压电材料在土木工程结构健康检测中的应用.混凝土,2003,10(3):22-24
    [29]王矜奉,姜祖桐等.压电振动[M].北京:科学出版社,1989.
    [30]余天庆,王勋文,刘再华.弹性与塑性力学[M].北京:中国建筑工业出版社,2004.
    [31]张慷,张福学,压电学[M].北京:国防工业出版社,1984.
    [32]张福学,王丽坤.现代压电学[M].北京:科学出版社,2001.
    [33]Jiashi Yang. An Introduction to The Theory Of Piezoelectricity[M]. New York:Springer Science+Business Media, Inc,2005.
    [34]Jiashi Yang. The Mechanics of Piezoelectric Structures[M]. New Jersey:World Scientific,2006.
    [35]陶宝祺.智能材料结构[M].北京:国防工业出版社,1997.
    [36]Edward F. Crawley, Javier de Luis.Use of piezoelectric actuators as elements of intelligent structures. AIAA Journal,1989,25 (10):1373-1385.
    [37]H.卡德斯图赛编,诸德超,等译.有限元法手册.北京:科学出版社,1996.
    [38]Bhalla S, soh C K. Structural healthing monitoring by piezo-impedance transducer I:modeling. Journal of Aerospace Engineering,2004,17(4):154-165.
    [39]Bhalla S, Soh C K. Structural healthing monitoring by piezo-imPedance transducer Ⅱ:applications. Journal of Aerospace Engineering,2004,17(4):166-175.
    [40]Yang, J. Xu, and C. K. Soh, Generic impedance-based model for structure-piezoceramic interacting system. Journal of Aerospace Engineering,2005,18(2):93-101.
    [41]Venu Gopal Madhav Annamdas, Chee Kiong Soh. Three-Dimensional Electromechanical Impedance Model Ⅰ:Formulation of Directional Sum Impedance. Journal of Aerospace Engineering.2007,20(1):53-62.
    [42]Venu Gopal Madhav Annamdas, Chee Kiong Soh. Three-Dimensional Electromechanical Impedance Model Ⅱ:Damage Analysis and PZT Characterization Journal of Aerospace Engineering.2007,20(1):63-71.
    [43]王占军,周建方.压电结构有限元分析的动向.河海大学常州分校学报.2002.16(4):17-22.
    [44]姜德义,郑拯宇,李林.压电陶瓷片耦合振动模态的ANSYS模拟分析.传感技术学报,2003,(4):452-456.
    [45]涂远,杜建江,王涛.压电类智能层合结构的ANSYS仿真分析,广西大学学报,2005,30(4),288-292.
    [46]Makkonen T, Holappa A, Ella J. Finite element simulations of thin-film composite BAW resonators. IEEE transactions on ultrasonics, ferroelectrics, and frequency control.2001,48 (5):1241-1258.
    [47]熊先锋.压电阻抗技术用于结构健康监测的研究[D].长沙:国防科技大学研究生院2003.
    [48]K K-H Tseng, ASK Naidu. Non-parametric damage detection and characterization using smart piezoceramic material. Smart materials and structures,2002, (11):317-329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700