聚乙烯自增强复合材料的制备与力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高分子量聚乙烯(UHMWPE)纤维具有优异的综合性能。由于其原料相对廉价和来源广泛,废料可回收再利用及具有上述特点的缘故,使其作为复合材料增强体在复合材料领域占有重要的地位。本研究采用正交试验方案,获得优化的UHMWPE/PE层合板复合工艺。在UHMWPE/PE复合材料结构设计时,纤维含量是决定复合材料拉伸强度和剪切强度的重要因素,可以根据需要设计。复合工艺条件中,温度的影响最大,温度升高有利于提高界面强度,但会对纤维强度造成影响,时间和压力的影响相对较小,因此可选用低温长时间的工艺条件,使复合材料达到良好的综合性能。
     为了优化设计UHMWPE/PE复合材料层合板和准确评价其性能,必须深入地研究该类材料的损伤破坏机理,进而揭示其损伤扩展规律、预测因损伤的存在对材料刚度、强度等宏观性能的影响。在求解复合材料力学问题时,通常模拟用数值模型可分为以下三种类型:(1)通过使用平面应变元素,来模拟层合板复合材料的任意横截面,但由于复合材料层合板的力学行为总是具有复杂的三维变形,所以使用平面应变元素的二维模拟是不够的。(2)有人应用经典层合理论,把层合板复合材料简化假定为单一等效刚度板,并通过使用壳单元进行模拟,而此方法不能独立地揭示层内破裂和层间分离的分布及其特征等。(3)通过使用三维实体单元模拟层合板复合材料。很显然,为了得到有效的数值计算结果,网格必须很细,并要求材料具有一定的周期性,计算量相当庞大。随着加载过程,材料内部可能会出现基体开裂、纤维和基体界面的脱粘、纤维断裂、层间分层等复杂的损伤模式,当采用有限元数值方法模拟这一损伤破坏过程时,针对微结构的任何改变,都必须重新划分单元进行迭代计算,直至结构演化趋于稳定,然后,再增加载荷,进行同样的模拟步骤。这种仿真过程要求计算机容量极大,计算机工作时间很长。所以,目前对真实的多层复合材料层合板的破坏过程进行仿真计算,一般是花
Ultra-high molecular weight polyethylene (UHMWPE) fibers have excellent integrated properties. Their materials are relatively inexpensive and source broad. Flotsam can be reclaimed. Moreover, UHMWPE fibers as reinforcing materials have above properties, so they play an important role in region of composites. In this study orthogonal experimental design was utilized, optimum processing conditions of UHMWPE/PE laminates were obtained. Fibers content is one of important factors that affect tensile strength and shear strength in structural design of UHMWPE/PE laminates. Temperature is a most important factor among all processing parameters in this research. Rising temperature is useful for enhancing interfacial strength, but it can affect the strength of UHMWPE fibers. The effects of duration and pressure on are relatively small. So good integrated properties of UHMWPE/PE laminates can be achieved, if low temperature and long duration of processing conditions are used.In order to optimize the designs and evaluate exactly the performances of UHMWPE/PE laminated composites, it is necessary to study the damage mechanisms of these materials, and to indicate the rules of the damage propagation, then to predict the effects of what on the various performances such as stiffness, strength and so on with the damage developing. In the research about the mechanical problems of composite materials, numerical models used in the conventional simulations can be classified into the following three types. Firstly, any cross section of the laminated composite is modeled by using plane-strain elements. However, the mechanical behavior of the laminated composite always has the complex three-dimensional deformations. Therefore two-dimensional simulation using plane-strain elements are not adequate. Secondly, the laminated composite is sometimes assumed to be a single equivalent stiffness plate by means of classical lamination theory, and modeled by using shell elements. This method cannot simulate the in-layer fracture and the interlaminar delamination separately. Thirdly, the laminated composite is modeled by using three-dimensional solid elements. Obviously, in order to
    obtain the effective results of numerical calculation, the mesh must be very fine and material having certain periodicity is required, so the calculating amount is quite huge. With increasing loading, the multiple damage modes which are interfacial fracture between the fiber and matrix, the matrix cracking and interlaminar delamination etc. in the laminated composites may be occurred. When this damage process is simulated by using finite element numerical method, elements must be remeshed and iteratively calculated to any change of the microstructure, until the structure evolves and tends towards stability. Then, the same simulation step is carried out with further increasing the loading. Such simulating process requires the computer is great in capacity and the computer working time is very long. Accordingly, it cannot usually be afforded to spend that numerically simulating the damage processes of true multi-layer of laminated composites. Based on the quasi-3-demensional model concept, unreasonable aspect associated with fibers area modeling of Nishiwaki's model was modified, and the numerical model of UHMWPE/PE laminated composites was proposed in this paper. The damage propagation processes of UHMWPE/PE laminated composites subjected to tensile loading were investigated and different fractural phenomena such as the transverse crack and interlaminar delamination etc. in the composite laminates were simulated at the same time by using aforementioned modified numerical model. The damage mechanisms were revealed, the effects of ply stacking angles and sequences on were discussed and the strengths were predicted for those materials. Tensile stress-strain curves of experimental data were consistent with those of the numerical simulating for aforementioned laminated composites. The levels of tensile stresses that correspond to transverse crack, interlaminar delamination and their propagation can be predicted. Though stacking sequences of layers of above UHMWPE/HDPE quasi-isotropic laminates are different, sequences of initial cracking of their single ply are same, namely, first to be 90° layer. The damage initiation and propagation correlate with ply stacking angles and sequences of UHMWPE/HDPE quasi-isotropic laminates.In order to verify further this modified finite element mechanical model, next studies are that correlative experiments will be performed by means of acoustic emission technology etc. The damage mechanisms of self-reinforced polyethylene composites laminates (UHMWPE/HDPE) being subjected to tensile loading were investigated by acoustic emission technique and a scanning
    electron microscope technique in this study. The correlations were established between the dominant failure mechanisms and acoustic emission events amplitude for model specimens which exhibited the dominant damage mechanisms. Results revealed that fiber-matrix interfacial debonding, matrix plastic deformation and cracking, fiber pull-out, fiber breakage and interlaminar delamination are associated with acoustic emission events having amplitude range 30 dB to 45 dB (low amplitude events), 30 dB to 60 dB (low amplitude events), 60 dB to 80 dB (middle amplitude events), 80 dB to 97 dB (high amplitude events) and 60 dB to 85 dB (middle amplitude events), respectively. These correlations can be used to monitor the damage growth processes in the UHMWPE/HDPE composite laminates exhibiting multiple modes of damage, to evaluate the structure integrality and predict the life of these materials. Results from this study revealed that the acoustic emission technique is a viable and effective tool for identifying the damage mechanisms in the UHMWPE/HDPE composite materials.Using the correlations established between the types of damage in the UHMWPE/HDPE laminates and the acoustic emission results in terms of the events amplitude, measuring and analyzing amplitudes of acoustic emission signals were performed for different types of UHMWPE/HDPE quasi-isotropic laminates under the tensile loading conditions. Accumulative numbers of acoustic emission events for [0/90/45/-45]s (type A), [0/45/-45/90]s(type B), [45/-45/0/90]s(type C) specimens of UHMWPE/HDPE quasi-isotropic laminates vs tensile stress curves are different each other, corresponding loading levels of their same type of damage occurred are not equal. Results revealed that ply stacking angles and sequences of UHMWPE/HDPE quasi-isotropic laminates affect the damage growth processes of these laminates. The acoustic emission characteristics of damage growth processes and the fracture mechanisms in those laminates were revealed. The validity of the finite element mechanical model established in this study was proved.
引文
[1] Capiati N J, Porter R S. The concept of one polymer composites modeled with high density polyethylene. Journal of Materials Science 1975;10:1671-1677.
    [2] Mead W T, Porter R S. The preparation and tensile properties of polyethylene composites. Journal of Applied Polymer Science 1978;22:3249-3265.
    [3] Word I M, Ladizesky N H. High modulus polyethylene fibres and their composites. Composites Interfaces, ed. Ishida H, Koenig, JL. Elsevier Science Publishing Co., New York, 1986;37.
    [4] Marais C, Feillard P. Manufacturing and mechanical characterization of unidirectional polyethylene-fiber/polyethylene-matrix composites.Composites Science and Technology 1992;45: 247-255.
    [5] Amer M S, Ganapathiraju S. Effects of processing parameters on axial stiffness of self-reinforced polyethylene composites. Journal of Applied Polymer Science 2001 ;81:1136—1141.
    [6] Mosleh M, Suh NP ,Arinez J. Manufacture and properties of a polyethylene homocomposite. Composites Part A 1998;29A: 611-617.
    [7] Fujimatsu H, Ishikawa Y, Usami H, Nasu Y, Kajiwara K. Formation of adhesive phase onto high strength and modulus PE fiber by PE solution treatment for making PE fiber-reinforced PE composite. Composite Interfaces 2002;9(2): 157-169.
    [8] Rochette A, Bousmina M, Lavoie A. Effect of surface treatment on mechanical properties of polyethylene composite. Journal of Composite Materials 2002;36(8): 925-940.
    [9] Cohen Y, Rein D M, Vaykhansky L. A novel composite based on ultra-high-molecular-weight polyethylene. Composites Science and Technology 1997; 57:1149-54.
    [10] Devaux E,Caze C. Composites of UHMW polyethylene fibers in a LD polyethylene matrix. Ⅰ. Processing conditions. Composites Science and Technology 1999; 59: 459-466.
    [11] Teishev A, Marom G. Effect of transcrystallinity on the transverse mechanical properties of single-polymer polyethylene composites. Journal of Applied Polymer Science 1995; 56(8): 959-966.
    [12] Rolel D, Yavin E, Wachtel E, Wagner H D. Experimental study of transcrystallinity in UHMWPE/LLDPE Composites. Composite Interfaces 1993; 1(3): 225-242.
    [13] Stern T, Marom G. Origin, morphology and crystallography of transcrystallinity in polyethylene-based single-polymer composites. Composites Part A 1997; 28A: 437-444.
    [14] Barham PJ, Keller A. Review: High-strength polyethylene fibers from solution and gel spinning. Journal of Materials Science 1985; 20: 2281.
    [15] 陶肖明.《纺织结构复合材料及其特点》,2001年,科学出版社,北京.
    [16] 丁亦平.高性能聚乙烯纤维的开发及其应用前景,《纺织科学研究》,1999:1:34-42.
    [17] 蔡忠龙、冼杏娟.《超高模聚乙烯纤维增强复合材料》,1997年,科学出版社,北京.
    [18] Ogawa T, Mukai H, Osawa S. Mechanical properties of ultrahigh-molecular-weight polyethylene fiber-reinforced PE composites. Journal of Applied Polymer Science 1998; 68: 1431-1439.
    [19] 曾庆藻.超高分子量聚乙烯纤维,《上海化工》,1991;016(006):29-32.
    [20] Ajji A, Ait-Kadi A, Rochette A. Polyethylene-ultra high modulus polyethylene short fibers composites. Journal of Composite Materials 1992; 26: 121-131.
    [21] Teishev A, Incardoma S, Migliaresi C, Marom G. Polyethylene fibers-polyethylene matrix composites preparation and physical properties. Journal of Applied Polymer Science 1993;50:503.
    [22] Lacroix Fv, Werwer M, Schulte K. Solution impregnation of polyethylene fibre/polyethylene matrix composites. Composites Part A 1998;29A: 371-376.
    [23] Herrera-Franco PJ, Drzal LT. Comparison of methods for the measurement of fibre/matrix adhesion in composites. Composites 1992;23: 2-27.
    [24] Chand N, Kreuzberg S, Hinrichsen G.. Influence of processing conditions on the tensile properties of unidirectional UHMWPE fibre/LDPE composites. Composites 1994;9: 878-880.
    [25] Pegoretti A, Ashkar M, Migliaresi C, et al. Relaxation processes in polyethylene fiber-reinforced polyethylene composites. Composites Science and Technology 2000; 60:1181-1189.
    [26] Flores A, Poeppel A, Riekel C, et al. Evidence of a transcrystalline interphase in fiber pe homocomposites as revealed by microdiffraction experiments using synchrotron radiation. Journal of macromolecule science physics 2001; B40(5):749-761.
    [27] Shalom, S., Harel, H. and Marom, G., Fatigue behaviour of flat filament-wound polyethylene composites. Composites Science and Technology 1997;57:1423-1427.
    [28] Tissington B, Pollard G, Ward IM. A study of the influence of fiber/resin adhesion on the mechanical behaviour of ultra-high-modulus polyethylene fibre composites. Journal of Materials Science 1991 ;26: 82-92.
    [29] Tissington B, Pollard G, Ward IM. A study of the effect of oxygen plasma treatment on the adhesion behaviour of polyethylene fibres. Composites Science and Technology 1992;44:185-95.
    [30] Devaux E, Cazé C. Composites of UHMW polyethylene fibers in a LD polyethylene matrix, II . Fibre/matrix adhesion. Composites Science and
     Technology 1999; 59: 879-882.
    [31] Han Y M, Hahn H T. A simplified analysis of transverse ply cracking in cross-ply laminates. Composites Science and Technology 1988;31:1 65-177.
    [32] Whanthal S P, Yang T Y. Three-dimensional finite element formulations for laminated plates. J. Reinforced Plast. 1991 ;10: 330-353.
    [33] Burns S W, Herakovich C T. Efficient 3-D finite element failure analysis of composites loaded angle-ply plates, ICCM & ECCM 5 (1987) 5.231-5.241.
    [34] 杜善义,王彪,《复合材料细观力学》1998年,科学出版社,北京。
    [35] Fisher FT, Brinson LC. Viscoelastic Interphases in Polymer-matrix Composites.Theoretical Models and Finite-element Analysis. Composites Science and Technology 2001 ;61: 731-748.
    [36] Zou Z, Reid SR, Li S, Soden PD. Application of a Delamination Model to Laminated Composite Structures. Composite Structures 2002; 56: 375-389.
    [37] Ghazal A, Aivazzadeh S, Verchery G., Chu D. Finite Element Aided Design of Laminated and Sandwich Plates. Composite Materials Design and Analysis 1990; 201-211.
    [38] O. Hayden Griffin Jr. The use of computers in the evaluation of three dimensional stress effects in composite materials products. Composite Materials Design and Analysis 1990; 171—181.
    [39] Zidani F, Aivazzadeh S, Verchery G. A finite element program for the analysis of composite structures with mixed finite elements. Composite Materials Design and Analysis 1990;227-238.
    [40] Huang Q, Hoa SV, Sankar TS. Three Dimentional Finite Element Formulation for Stress Analysis of Anisotropic Laminate Structures. Composite Materials Design and Analysis 1990; 189-200.
    [41] Fiedler B, Hojo M, Ochiai S, et al. Finite-element modeling of initial
     matrix failure in CFRP under static transverse tensile load. Composites Science and Technology 2001; 61: 95-105.
    [42] Asp LE, Berglund LA, Talreja R. Prediction of matrix-initiated transverse failure in polymer composites. Composites Science and Technology 1996; 56: 1089-1097.
    [43] Asp LE, Berglund LA, Talreja R. Effects of fiber and interface on matrix-initiated transverse failure in polymer composites. Composites Science and Technology 1996; 56: 657-665.
    [44] Blackketter DM, Upadhyaya D. Micromechanics prediction of the transverse tensile strength of carbon fiber/epoxy composites: The influence of the matrix and interface. Polymer composites 1993; 14(5): 437-445.
    [45] Nishiwaki T, Yokoyama A, Maekawa Z, et al. A new numerical modeling for laminated composites. Composite Structures 1995; 32: 641-647.
    [46] Nishiwaki T, Yokoyama A, Maekawa Z, et al, Tensile damage analysis method for composite laminates using a quasi-three-dimensional model. JSME International Journal 1995; 38A(1): 16-22.
    [47] 早崎悟,北川和男,西脇 剛史,等.凝三次元用繊维擬似等方性積層板损傷解析.日本複合材料学会誌 1997;23(5):220-227.
    [48] 西脇 剛史,横山 敦士,前川善一郎,等.複合材料積層板擬三次元曲解析法.日本複合材料学会誌 1995;21(1):15-20.
    [49] 西脇 剛史,横山 敦士,前川善一郎,等.擬三次元用内部欠陥有複合材料積層板残留强度解析法.日本机械学会论文集(A编)1993;59(563):1697-1701.
    [50] Nishiwaki T, Yokoyama A, Maekawa Z, et al. A quasi-3-dimensional elastic wave propagation analysis for laminated composites. Composite Structures 1995; 32: 635-640.
    [51] 西脇 剛史,丹下 章男,北川 和男,等.柔软性界面相有方向繊维强化複合材料力学的特性.日本複合材料学会誌 2000:26(3):101-110.
    [52] 西脇 剛史,丹下 章男,北川 和男,等.柔软性界面相有方向繊维强化複合材料数值化手法.日本複合材料学会誌 2000;26(3):111-118.
    [53] 郝元恺,肖加余.《高性能复合材料学》,2004年,化学工业出版社,北京.
    [54] 肖长发,安树林,贾广霞,等.超高分子量聚乙烯纤维结构与性能的初步研究.纺织学报 1997;18(1):11-13.
    [55] Smook J, Pennings J. Colloid Polym. Sci. 1984; 712: 262.
    [56] Furuhata K, Yokokawa T. J. Polym. Sci. Polym. Phys. Ed. 1984; 133: 22.
    [57] 桂祖桐,谢建玲.《聚乙烯树脂及其应用》,2002年,化学工业出版社,北京.
    [58] 王勖成,邵敏.《有限单元法基本原理和数值方法》,1996年,第二版,清华大学出版社,北京.
    [59] 王国强.《实用工程数值模拟技术及其在ANSYS上的实践》,1998年,西北工业大学出版社,西安.
    [60] 陈精一,蔡国忠.《电脑辅助工程分析——ANSYS使用指南》,2001年,中国铁道出版社,北京.
    [61] Hull D. An Introduction to Composite Materials, Cambridge: Cambridge University Press, 1981. 60-64.
    [62] 吕恩琳.《复合材料力学》,1992年,重庆大学出版社,重庆.
    [63] 干光瑜,秦惠民.《材料力学》,第三版,1999年,高等教育出版社,北京.
    [64] 张锦,张乃恭.《新型复合材料力学机理及应用》,1993年,北京航空航天大学出版社,北京.
    [65] Owen D R J, Hinton E. Finite Elements in Plasticity [M]. Swansea: Pineridge Press Limited, 1980; 227.
    [66] 王震鸣.《复合材料力学和复合材料结构力学》,1991年,机械工业出版社,北京.
    [67] 杨明纬,马云中,刘哲军.《声发射检测》,2004年,国防科技工业无损检测人员资格鉴定与认证培训教材.
    [68] 张俊哲.《无损检测技术及其应用》,1993年,科学出版社,北京.
    [69] Valentin D, Bonniau Ph, Bunsell A R. Failure mechanism discrimination in carbon fibre-reinforced epoxy composites. Composites 1983; 14(4): 345-351.
    [70] Sato N, Kurauchi T, Kamigaito O. Failure mechanism of unidirectional carbon- fibre reinforced epoxy resin composites. Journal of Materials Science 1986; 21: 1005-1010.
    [71] Mittelman A, Roman I. A new approach to the use of acoustic emission peak amplitude distribution as a tool of characterizing failure mechanism in composite materials. Journal of Acoustic Emission 1987; 6(1): 73-77.
    [72] Berthelot J M. Relation between amplitude and rupture mechanisms in composite materials. Journal of Reinforced Plastics and Composites 1988; 7: 284-299.
    [73] Berthelot J M, Rhazi J. Acoustic emission in carbon fibre composites. Composite Science and Technology 1990; 37: 411-428.
    [74] Barre S, Benzeggagh M L. On the use of acoustic emission to investigate damage mechanisms in glass-fibre-reinforced polypropylene. Composite Science and Technology 1994; 52: 369-376.
    [75] Karger-Kocsis J, Harmia T, Czigany T. Comparison of the fracture and failure behavior of polypropylene composites reinforced by long glass fibers and by glass mat. Composite Science and Technology 1995; 54: 287-298.
    [76] De groot PJ, Wijnen PAM, Janssen RBF. Real-time frequency determination of acoustic emission for different fracture mechanisms in carbon/epoxy composites. Composite Science and Technology 1995;55:405-412.
    [77] Choi N S, Takahashi K. Characterization of the damage process in short-fibre/thermoplastic composites by acoustic emission. Journal of Materials Science 1998;33:2357-2363.
    [78] Giordano M, Calabro A, Esposito C, et al. An acoustic-emission characterization of the failure modes in polymer-composite materials. Composite Science and Technology 1998;58:1923-1928.
    [79] Benevolenski OI, Karger-Kocsis J. Comparative study of the fracture behavior of flow-molded GMT-PP with random and chopped-fiber mats. Composite Science and Technology 2001;61:2413-2423.
    [80] Huguet S, Godin N, Gaertner R, Salmon L, Villard D. Use of acoustic emission to identify damage modes in glass fibre reinforced polyester. Composite Science and Technology 2002;62:1433-1444.
    [81] Haselbach W, Lauke B. Acoustic emission of debonding between fibre and matrix to evaluate local adhesion. Composite Science and Technology 2003;63:2155-2162.
    [82] Ndlaye I, Maslouhi A, Denault J. Characterization of interfacial properties of composite materials by acoustic emission. Polymer Composites 2000;21(4): 595-604.
    [83] Lee S I, Park J M, Shin D W, et al. Interfacial properties of class fiber/brittle-ductile dual-matrix composites using micromechanical techniques and acoustic emission. Polymer Composites 1999;20(2):19-27.
    [84] Carlsson L, Norrbom B. Acoustic emission from graphite/epoxy composite laminates with special reference to delamination. Journal of Materials Science 1983; 18:2503-2509.
    [85] Benmedakhene S, Kenane M, Benzeggagh M L. Initiation and growth of delamination in glass/epoxy composites subjected to static and dynamic loading by acoustic emission monitoring. Composite Science and
     Technology 1999;59:201-208.
    [86] Ely TM, Hill EvK. Longitudinal splitting and fiber breakage characterization in graphite epoxy using acoustic emission data. Materials Evaluation 1995;53(2):288-294.
    [87] Flower TJ, Gray E. Development of an acoustic emission test for FRP equipment. Proceedings American society for civil engineers' convention, April, 1979.
    [88] Kumosa M, Hull D, Price N. Acoustic emission from stress corrosion cracks in aligned GRP. Journal of Materials Science 1987;22:331-336.
    [89] Otsuka H. Variations in Acoustic emission between carbon- and glass-epoxy composites. Journal of Composite Materials 1981;15:591-597.
    [90] Bertherot JM, Rhazi J. Different types of amplitude distributions in composite materials. Journal of reinforced plastics and composites 1988;7:302-320.
    [91] Rajan DS, Kishore NN, Agarwal BD. Damage characterization in Kevlar/epoxy composites using acoustic emission technique. World meeting on acoustic emission 1989; S297-S300.
    [92] Bakuckas JG, Prosser WS, Johnson WS. Monitoring Damage growth in titanium matrix composites using acoustic emission, Journal of Composite Materials 1994;28(4):305-328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700