声波测量和流化床聚合反应器多尺度结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气固流化床聚合反应器中流化床层的传递特性参数、反应效果、以及聚合物产品均受到流化床内颗粒性质及其运动状态的影响,而颗粒的性质又足随着反应的变化而变化的。因此,研究流化床聚合反应器的流体力学行为是化学反应工程研究领域的前沿,极富有挑战性。本研究论文以声波的测量和分析为研究手段,从多尺度的角度对流化床聚合反应器中的颗粒生长及其粒径分布、结块状况、起始流化速度、流动模式和料位等参数的变化进行了研究。不仅建立了新的测量和分析方法,而且发现了新的实验现象,提出了新的概念和理论,研究结果具有重要的理论意义,对于工业反应器的安全生产、优化操作和产品开发也具有重要的实用价值。
     颗粒流态化时会产生各种各样的信号,它们往往是时空多尺度结构的综合反映。由于各尺度信号相互混杂,妨碍了对过程的了解。虽然传统的流化床参数测量手段,如压力、激光、温度、射线衰减、超声、电导等技术被广泛地应用,但测量信号中所包含的丰富内涵还远未被人们所理解,更何况许多测量手段还由于对测量环境的要求苛刻,对流场的破坏以及对人体的危害,而受到限制。受古人“听音辨琴”的启发,本文将具有检测灵敏、绿色环保、非侵入性和实时监测等特点的声波测量技术应用于流化床各参数的测量。进一步,通过小波分析和R/S分形分析对声波测量信号进行多尺度的分解,论文主要开展了以下四个方面的研究工作:
     1.研究比较了声波信号和压力脉动信号的多尺度结构特征。根据各小波尺度下波动信号的Hurst指数变化规律(均小于0.5、均大于0.5或两者都有的),建立了声波信号的尺度划分的标准,认为可将声波信号划分为微尺度(1-5小波尺度)、介尺度(6-7小波)和宏尺度(8-10小波尺度),分别反映颗粒行为、气泡和颗粒团聚物行为、以及平均流动行为等。与压力脉动信号多尺度结构的比较表明,声波信号主要反映微尺度的颗粒信息,而压力信号主要反映介尺度的气泡信息。至于处于介尺度的颗粒团聚物的信号,由于信号强度较弱,其变化只能在声波的介尺度频段得到较明显的体现。
     2.研究了流化床聚合反应器在微尺度的特性。在直径分别为100mm和150mm流化床冷模实验装置(带加热装置)中,以及φ1000的HDPE中试流化床聚合反应器、φ3500的LLDPE、φ3500的HDPE和φ5000的Bi-mode PE工业流化床聚合反应器装置中,测量了颗粒流态化产生的声波信号。通过对声波微尺度信
Hydrodynamics of fluidization, behaviour of reaction and properties of resin produced in gas phase polymerization fluidized bed reactor are strongly affected by the movement of the particles in fluidized bed. Therefore, it is the frontal and full of challenge in chemical engineering research. The thesis focuses on the growth of particles and its evolvement of particle size distribution (PSD), including occurrence of agglomeration, definition of minimum fluidization velocity, flow pattern, bed height and so on in view of the multi-scale approach based on the acoustic emission (AE) measurement. Not only the novel measurement and analytical method were established, but also discover many new phenomena and then theory established. All the results have the important significant academically and commercially.The signals emitted from the fluidized particles were the synthesis of the multi-scale information, and they were so immingle that could not easily to be understood. Traditional measurements had been devised to measure the signals, but they may not be used reliably on an industrial scale under hostile conditions of atmosphere, temperature and pressure. A novel and non-invasive AE measurement was used in this study. Further, the AE signals would be decomposed in multi-scale based on wavelet analysis and R/S analysis. The creative works can be summarized as following:(1) Compared AE signals of the multi-scale structure character with pressure signals. The criterion of dividing the information to three characteristic scales was established by Hurst analysis of the wavelet decomposed signals: micro-scale signals with all Hurst exponents less than 0.5 (lst-5th wavelet decomposing scales); macro-scale signals with all Hurst exponents more than 0.5 (6th-7th wavelet decomposing scales); meso-scale with two characteristic Hurst exponents (8th-10th wavelet decomposing scales), and the three scales reflected the action of particles, average dynamics and bubbles and agglomeration respectively. Energy profiles of the three scales components confirmed that the AE signals and pressure signals mainly reflect apart the micro-scale and meso-scale.(2) The character of the polymerization fluidized bed reactor in micro-scale was studied. The AE signals came from not only the experiment apparatus with the diameter of 100mm and 150mm, the pilot reactor with the diameter of 420mm, but
    also the industrial units with diameter of 3500 mm (LLDPE), 3500 mm (HDPE) and 5000 mm (Bimodal PE). The signal main-frequency measurement Model, Hou-Yang Model and the new criterion of Umf were based.(a) A model of signal main-frequency measurementi. 1 2 v5J =- = ■r 5.7was presented for the gas-solid fluidized bed. It was found the signals main-frequency decreased with the increasing of the particles' size, temperature and density and with the decreasing of gas velocity. The experiment in the experimental fluidized bed showed that a satisfactory agreement was obtained between calculation and experimental data with respect of the main-frequency, and the average error all less than 8.3%. When this model was applied to the industrial fluidized bed of LLDPE, HDPE and bimodal polyethylene, the error between calculation and experimental data were less than 8.8% showed the model is effective.(b) Hou-Yang Model of particle size distribution (PSD)7=1 7 = 1was devoted to combine Hou-Yang Model with AE signals measurement and the wavelet analysis to determine the PSD in the fluidized bed with three different polyethylene powders of LLDPE, HDPE and Bi-mode PE respectively. It was found the corresponding deviations between Hou-Yang method and sieves method was less than 8.8%. When using between Hou-Yang Model to predict PSD in the industrial fluidized bed with the diameter of 3500mm of LLDPE, 3500mm of HDPE and 4000mm of Bimodal HDPE, the average deviations Hou-Yang method and sieves method was less than 15.8%. Farther study found Hou-Yang Model could be applied to some measurement that there were many wavelet scales in multi-scale, and gas velocity beyond 3Umf.(c) A new method to define minimum fluidization velocity in fluidized beds was put forward with AE measurement and wavelet packet analysis. When using this method to define the Umr with the particles of ordinary PE (LLDPE) and especial PE (Bimodal PE) under normal temperature conditions and LLDPE particles on the temperature increasing process, it showed that a satisfactory agreement was obtained between this new method and traditional ways. The traditional ways could not estimate Umf accurately with the Bimodal PE particles on the temperature increasing
    process, but the new method was effective. It was found Umf of LLDPE particles could not changed with temperature and Umf of Bimodal PE particles increased with the temperature increasing. Further, Using the new method give the result that Umr arranged from low to high in the same average particle size was FCC-type, bipeak-type, flat PSD, binary PSD, Gaussian-type and narrow cut PSD.(3) The character of the polymerization fluidized bed reactor in meso-scale was studied. It was found in the experiment apparatus with the diameter of 100mm and 150mm and the pilot reactor with the diameter of 420mm that the change of PSD affected the energy percentage of d'-d5 in multi-scale, and the agglomeration size increasing brought on the energy percentage of d6-d7 increased in turn. A formula to measure the agglomeration size was:S = a(Edb-E°d6) + b(Ed1 -E°d1) + c(Ed&-£°8).and 3=580, b= 1920, c=6800. the error between calculation and experimental data were less than 11.2%. On the other hand, the result showed there are reversible and non-reversible phases in the agglomerating process.(4) Investigate the AE signals with the different height in fluidized beds by using energy analysis, mean square deviation and complexity analysis. The flow pattern in the experimental apparatus and industrial unit (HDPE) was worked over. It was found that there are two solid circulations cells with smaller size and solid circulation with larger size (main circulation zone), and a stagnant zone located between the two circulations cells. On the other hand, the bed height could be measured in experimental apparatus and industrial unit (HDPE), and the error between the prediction by AE measurement and actual height was less than 2%. In a word, the character of macro-scale in fluidized beds could be measured availably by AE sensor array.
引文
Altobelli, S. A. (1997). Nuclear Magnetic Resonance as a Versatile Technique to Measure Flow Parameters. New York: Fluids Engineering Division.
    Andersen, M I. et al (1997). Ultrasonic instrumentation for on-line monitoring of solid deposition in pipes. Proceedings of SPE Production Operations Symposium 1997, Richardson, 425-431
    Argoul, F., Arnedo A., Grasseau G. (1989). Wavelet analysis of turbulence reveals the multi-fractal nature of the Richardson cascade. Nature, 338(2):51-53.
    Atmanspacher, H. Kurths, J. and Scheingraber, H. and Wackerbauer, R. and Witt, A. (1991). Complexity and Meaning in Nonlinear Dynamical Systems. Open Systems & Information dynamic, 1:269-289
    Bai D, lssangya A S, Grace J R (1999). Characteristics of gas-fluidized beds in different flow regimes, lnd Eng Chem Res, 38(3): 803-811
    Bailie, C. B., L. T. Fan & J. J. Stewart (1961). Uniformity and Stability of Fluidized Beds. In & EC, 53(7):567-569
    Bakshi, B. R., Zhong, H., Jiang, P. (1995). Analysis of flow in gas-liquid bubble columns using multi-resolution methods. Trans. lChemE, 73:608-614
    Barth, H. G. (1984). Modern Methods of Particle Size Analysis. Johy Wiley and Sons
    Boyd, J. W. g., Varley J. (2001). The uses of passive measurement of acoustic emissions from chemical engineering processes. Chemical Engineering Science, 56(7): 1749-1767
    Chen, G. et al. (1998). Flow Regime Identification Based on Wavelets Transform. Proceedings oflSMTMF'98, Beijing
    Choi KuYong, Zhao Xia, Tang Shihua. (1994). Population Balance Modeling for a Continuous Gas Phase Olefin Polymerization Reactor. J. Appl. Polym. Sci., 53:1589-1597
    Cody G. D. Goldfarb, D. J.; Storch Jr, G. V.; Norris, A. N. (1996). Particle granular temperature in gas fluidized beds. Powder Technology 87:211-232
    Cody, G. D., Bellows, R. J., Goldfarb, D. J., Wolf, H. A., Storch Jr. (2000). A novel non-instrusive probe of particle motion and gas generation in the feed injection zone of the feed riser of a fluidized bed catalytic cracking unit. Powder Tectmology 110(1): 128-142
    Coulthard, J. (1983). Cross-correlation flow measurement-a history and the state of the art. Measurement and Control. 16:214-218
    Donoho, D., Johstone, Im. (1994). Ideal Spatial Adaptation via Wavelet Shrinkage. Biometrika. 81(9):425-455
    Drahos J, Bradka F, Puncochar M. (1992) . Fractal behaviour of pressure fluctuations in a bubble column. Chem Eng Sci, 47(15/16): 4069-4075
    Ellis, N., Briens, L.A., Grace, J.R., Bi, H.T., Lim, C.J. (2003). Characterization of dynamic behaviour in gas-solid turbulent fluidized bed using chaos and wavelet analyses. Chemical Engineering Journal, 96( 1): 105-116
    Ellis, N., Bi, H.T., Lim, C.J., Grace, J.R. (2004). Influence of probe scale and analysis method on measured hydrodynamic properties of gas-fluidized beds. Chemical Engineering Science,58(8): 1841-1851
    Fan, L. T., Kang Y, Neogi, D., Yashima, M. (1993). Fractal Analysis of Fluidized Particle Behavior in Liquid-Solid Fluidized Beds. AlChE J., 39(3): 513-517
    Fan, Z., et al. (1990). Analysis of Pressure Fluctuations in a 2-D Fluidized Bed. Powder Technology, 62(1): 139-145.
    Feder, J. (1988). Fractals. New York: Plenum
    Fiedler, O. et al. (1996), Usage of the spatial filter method for measurements of local particle velocities in multiphase flows, IEE Colloquium (Digest), Stevenage
    Gauthier, D., Zerguerras, S., Flamant, G (1999) Influence of the particle size distribution of powders on the velocities of minimum and complete fluidization. Chemical Engineering Journal, 73(3): 181-196
    Ge Wei, Li Jinghai (2002) Physical mapping of fluidization regimes------the EMMS approach. Chemical Engineering Science, 57( 12):3993-4004
    Geldart, D. (1973). Type of Gas Fluidization. Powder Technology, 7(2): 285-292
    Giordno, M., Calabro, A., Esposito, C, et al. (1998). An Acoustic Emission Characterization of the Failure Modes in Polymer-Composite Materials. Composites Science and Technology. 58(12):1923-1928
    Grassberger, P. (1986a). Toward a Quantitative Theory of Self-Generated Complexity. Int. J. Theor. Phys. 25:907-938
    Grassberger, P. (1986b). How to Measure Self-Generated Complexity. Physica 140A: 319-325
    Green A. T., Lockman C. S., Steele R. K.(1964). Acoustic Verification of Structural Integrity of Polaris Chambers. Mordern Plastics, MOPLAY, 41 (11): 137-139,178-180
    Groot, De., Peter, J., Wijnen, et al. (1995). Real-Time Frequency Determination of Acoustic Emission for Different Fracture Mechanisms in Carbon/Epoxy Composites. Composites Science and Technology, 55(4):405-412
    Hakanen, A., Laine, E., Jalonen, H., Linsaari, K., & Jokinen, J. (1993). Acoustic emission during powder compaction and its frequency spectral analysis. Drug Development and Industrial Pharmacy, 19(19):2539-2560
    Hay, J. M., Nelson, B. H., Briens, C. L, Bergougnou, M. A.. (1995). The Calculation of the Characteristics of a Chaotic Attractor in a Gas-Solid Fluidized Bed. Chem. Eng. Sci., 50(3): 373-379
    He, Z., Zhang, D. M., Chen, B. C. (1997a). Pressure-Fluctuation Analysis of a Gas-Solid Fluidized Bed Using the Wigner Distribution. AIChE J., 43(2): 345-355
    He, Z., Zhang, W. D., He, K. M. (1997b). Modeling Pressure Fluctuations via Correlation Structure in a Gas-Solids Fluidized Bed, AIChE J., 43(7): 1914-1920
    Hiroaki Suzuki, TetsuoKinjo, Mikio Takemoto (1996). Fracture-Mode Determination of Glass-Fiber Composites by Various AE Processing. Progress in Acoustic Emission VIII, The Japanese Society for NDI, 47-52
    Hiroaki Suzuki, TetsuoKinjo, Mikio Takemoto (1996a). Wavelet Transform of Acoustic Emission Signals. Jounal of Acoustic Emission, 14( 1 ):69-84
    Hiroyuki Tsujimoto , Toyokazu Yokoyama, C.C. Huang, Isao Sekiguchi. (2000) .Monitoring particle fluidization in a fluidized bed granulator with an acoustic emission sensor, Powder Technology, 113(1 ):88-96
    Hou Linxi, Yang Yongrong, Wang Jingdai (2002). Acoustic Measurement And Analysis Of Particles Movement In Fluidized Beds Based On Wavelets Transform. ISCRE 17. No.83
    Hou, R., Hunt, A., Williams, R. A. (1998). Acoustic monitoring of hydrocyclone performance. Minerals Engineering, 11(11):1047-1059
    Hou, R., Hunt, A., & Williams, R. A. (1999). Acoustic monitoring of pipeline flows: Particulate slurries. Powder Technology, 106:30-36
    Huberman, B. A. & T. Hogg (1986). Complexity and Adaptation. Physica D, 22:376-384
    Huang, Y. W. (1986). Pressure Fluctuations in a Gas-Solid Fluidized Bed with a Screen. Ind. Eng. Chem. Process Des. Dev.,25:284-289
    Huang Jun, Sivert Ose, Sunil de Silva, Esbensen Kim H. (2003). Non-invasive monitoring of powder breakage during pneumatic transportation using acoustic chemometrics. Powder Technology 129(1): 130-138
    Jenkins, J. M, Jones, R. L, Thomas M. (1985) Fluidized Bed Reaction System. US 4,543,399
    Jenkins, J. M., Jones, R. L, Thomas M. (1986) Method for Fluidized Bed Polymerization. Us 4,588,790
    Kamala, G., Hashemi, J., Barhorst, et al. (2001). Discrete-Wavelet Analysis of Acoustic Emissions during Fatigue Loading of Carbon Fiber Reinforced Composites. Journal of Reinforced Plastics and Composites, 20(3):222-238
    Kabondan, M. A. (1996). Chaos. Soliton and Fractals, 7(7):977
    Koda, H., Kurisaka, T. (1985) Research and Development of Gas Phase Polymerization Process of Propylene. Fluidization Science and Technology Conference Paper. China—Japan Symposium Science Press, P410-411
    Koppel, H. & H. Atlan (1991). Program-length Complexity, Sophistication, and Induction. Inform. Sci, 56:186-213
    Krieg, D. A., Helwick, J. A., Dillon, P. Q., McCready, M. J. (1995). Origin of disturbances in cocurrent gas-liquid packed bed flows. A.I.Ch.E. journal, 41(7):1653-1666
    Kwon, H. W. (1994). Bubble-Chord Length and Pressure Fluctuations in Three-Phase Fluidized Beds. Ind. Eng. Chem. Res., 33(7): 1852-1857
    Landau, L.D and Lifshitz, E.M. (1970) Theory of Elasticity. Pergamon, Oxford, 2nd edn., 34-38
    Langton, C. G (1990). Computation at the Edge of Chaos: Phase Transitions and Emergent Computation. Physica D, 42: 12-37
    Leach, M. F., Rubin, G A., Williams, J. C. (1977). Particle size determination from acoustic emission. Powder Technology, 16:153-154
    Leach, M. F., Rubin, G A., Williams, J. C. (1978). Particle size distribution characterization from acoustic emission. Powder Technology, 19(1): 157-167
    Lempel, A. & J. Ziv. (1976). On the Complexity of Finite Sequences. IEEE Transactions on Information Theory, 22(1): 75-81
    Lerou J. L., Ng K. M (1996) Chemical reaction engineering: a multiscale approach to a multiobjective task. Chemical Engineering Science, 51 (10): 1595
    Li, H. Z. (1999). Bubbles in Non-Newtonian Fluids: Formation, Interactions and Coalescence. Chem. Eng. Sci., 54(13): 2247-2254
    Li, Jinghai. (2000). Compromise and resolution — Exploring the multi-scale nature of gas-solid fluidization. Powder Technology, 111(1 ):50-59
    Li, Jinghai. (2003). Exploring complex systems in chemical engineering------the multi-scale methodology. Chemical Engineering Science 58(3):521 -535
    Li X, Wu J. (2000). Wavelet Analysis of Acoustic Emission Signals in Boring. Journal of Engineering Manufacture, 214(5):412-424
    Li, X. Yuan, Z. (1998). Tool Wear Monitoring with Wavelet Packet Transform Fuzzy Clustering Method Wear,219(2):145-154
    Li Xiaoli. (2002). A brief Review: Acoustic Emission Method for Tool Wear Monitoring during Turning. International Journal of Machine Tool & Manufacture, 42(2): 157-165
    Lin, Chiou-Liang, Wey, Ming-Yen, You, Shr-Da (2002). The effect of particle size distribution on minimum fluidization velocity at high temperature. Powder Technology. 126(3): 297-301
    Mandelbrot B. B., Wallis J. R. (1969a). Some long-run properties of geographysical records. Water Resources Res, 5(2):321-340
    Mandelbrot B. B., Wallis J. R. (1969b) Roubustness of the rescaled ranged R/S in the measurement of noncyclic long run statistical dependence. Water Resources Res, 5(5):967-988
    Marzocchella A., Zijerveld R. C, Schouten J. C, (1997). Chaotic Behavior of Gas-Solids Flow in the Riser of a Laboratory-Scale Circulating Fluidized Beds. AlChEJ., 43(6). 1458-1468
    Maths Halstensen, Kim, Esbensen (2000). New developments in acoustic chemometric prediction of particle size distribution—'the problem is the solution'. J. Chemometrics. 14(5-6): 463-481
    Mossing, J. C, Tuthill, T. A. (1996) Reduced Interference Distributions for the Detection and Classification of Outside Sound Source Acoustic Emissions. In:lEEE International Conference on Acoustics, Speech and Signal Processing. Atlanta, GA, USA:IEEE, 2758 -2761
    Munoz-Najar, Andres, Hashemi (1999) Continuous Wavelet Transform Analysis of Acoustic Emission Signals. Proceedings of the International Modal Analysis Conference- IMAC, 1(1 ):99-102
    Newland, D. E. (1994) An introduction to random vibrations, spectral and wavelet analysis (3~(rd) ed.). UK: Longman Scientific and Technical.
    Peng Y. (1995), Characterization of fluctuating signals of multiphase flows using wavelet transform, Proceeding of Modern Measuring Techniques for Multiphase Flows, 281-288
    Qi Gang, Barhorst, Alan, (1997). Discrete Wavelet Decomposition of Acoustic Emission Signals from Carbon-Fiber-Reinforced Composites. Composites Science and Technology, 57(4):389-403
    Qi Gang. (2000). Wavelet-Based AE Characterization of Composite Materials. NDT&E International, 33(3): 133-144
    Rao, K., Mallikarjuna, Aparna, D. et al. (1995). Frequency Analysis of the Acoustic Emission Signals from PZT Ceramics during the Application of AC Fields. Ferroelectrics /Letters Section, 20(l-2):45-51
    Ren Jingqiang, Mao Qiming, Li Jinghai, Lin Weigang. (2001). Wavelet analysis of dynamic behavior in fluidized beds. Chemical Engineering Science, 56(4):981-988
    Roger Baker. (1989). Multi-phase flow moves on, C & I, 2:35-36
    Roy, R., Davidson, J. K, Tuponogov, V. G (1990). The velocity of sound in fluidized beds. Chemical Engineering Science, 45(12): 3233-3245
    Saba Mylvaganam (2003). Some application of acoustic emission in particle science and technology. Particulate Science and Technology 21:293-301
    Schlichthaerle P., Werther J. (1999). Axial pressure profiles and solids concentration distributions in the CFB bottom zone. Chemical Engineering Science Volume, 54(22): 5485-5493
    Shuster, W. W. & P. Kisliak (1952). The Measurement of Fluidization Quality. Chem. Eng. Pro., 48(9):455-458
    Song, J. C., L. T. Fan & N. Yutani (1984). Fault Detection of the Fluidized Bed Distributor by Pressure Fluctuation signal. Chem. Eng. Commun., 25:105-116
    Terchi, A. Au, Y. H. J. (2001) Acoustic Emission Signal Processing. Measurement and Control. 4(8):240-244
    UCC(1985)操作手册(内部资料)
    Van der Schaaf, J., J. C. Schouten & C. M. van den Bleek. (1998). Origin, Propagation and Attenuation of Pressure Waves in Gas-Solid Fluidized Beds. Powder Technology, 95:220-233
    Van der Schaaf, J., van Ommen, J. R., Takens, F., Schouten, J. C., van den Bleek, C. M. (2004). Similarity between chaos analysis and frequency analysis of pressure fluctuations in fluidized beds. Chemical Engineering Science. 59(8): 1829-1840
    Wackerbauer R., Witt A., Atmanspacher H. (1994). A Comparative Classification of Complexity Measures. Chaos, Solitons & Fractals, 4(1): 133-173
    Wentzell, P. D., Lee, O., Wade, A. P. (1991). Comparison of pattern recognition descriptors for chemical acoustic emission analysis. Journal of Chemometrics, 5:389-403
    Yamada M. (1990). Orthonormal wavelet expansion and its application to turbulence. Prog. Theor. Phys., 83(5):819
    Yerushalmi J., Cancurt N. (1979) Further studies of the regimes of flu idization. Powder Technology, 24:187
    Zhao Guibing, Yang Yongrong (2003). Multiscale resolution of fluidized-bed pressure fluctuations. ,41ChE J. 49(4):869-882
    Zhang Kai, Zhang Jiyu, Zhang Bijiang (2003). Experimental and numerical study of fluid dynamic parameters in a jetting fluidized bed of a binary mixture. Powder Technology 132 (1):30-38
    Zhang, Yufeng, Hamid, Arastoopour, (1995). Dilute fluidized cracking catalyst particles-gas flow behavior in the riser of a circulating fluidized bed. Powder Technology. 84(3): 221-229
    Zeng, H. Zhou, Z. D. Chen, Y. P. (2001). Wavelet Analysis of Acoustic Emission Signals and Quality Control in Laser Welding. Journal of Laser Application, 13(4):167-173
    Zukowski, W. (1999). Acoustic effects during the combustion of gaseous fuels in a bubbling fluidized bed. Combustion and Flame. 117(3): 629-635
    阿克洛尼斯 J.J.,麦克奈特,W.J.(1986).聚合物粘弹性引论.北京:科学出版社,44-46
    陈伯川(1987).流化床内压力脉动信号的检测与分析.化学反应工程与工艺,3(3):82-86
    陈伯川,黄春燕,甄玲,王晓萍(2003).气固流化床压力信号时间序列复杂性特征研究.仪器仪表学报.24(3):236-240
    陈伯川,张宏建,李海青(1990).流化床内颗粒大小在线检测方法的研究.第三届全国多相流、非牛顿流、物理化学流学术会议论文集.杭州,160-161
    陈伯川,黄蓓,黄春燕,甄玲等(2002).三种复杂性测度在气固流化床压力脉动中的应用.高校化学工程学报,16(4):415-420
    陈伯川,张东明,何振,沈晓清,陈丰秋(1996),模拟流化床颗粒结块故障诊断研究.多相流检测技术进展.石油工业出版社.251-256
    陈甘棠(1984).化学反应工程.化学工业出版社,北京,1-43
    陈甘棠,王樟茂(1996).多相流反应工程.浙江大学出版社,杭州,1-57
    陈珙(1999a).小波分析技术在两相流流型辨识中的应用.浙江大学博士论文
    陈珙,黄志尧.王保良,李海青(1999a).小波变化辨识流型的一种新方法研究,仪器仪表学报,20(2):117-120
    陈伟,洪良斌(1997),加压流化床中差压脉动时间序列的复杂性.化工学报,48(6):746-750
    陈伟,阳永荣(1998),加压流态化Ⅲ压力脉动与分形研究.化学反应工程工艺,14(1):14-20
    程从礼(2002).气固循环流化床能量最小多尺度环核(EMMS/CA)模型.化工学报53(8):804-809
    程正兴(1999).小波分析算法与应用.西安交通大学出版社,西安
    崔彦彬(2003).煤粉料位测量装置的开发设计.煤矿机械,(6):6-7
    冯哲圣.顾德恩,杨邦朝(2003),基于小波包分解的电化学噪音能量谱分析.电子测量与仪器学报,17(4):53-56
    高毅龙(2000).数据挖掘及其在工程诊断中的应用 西安交通大学博士论文
    葛蔚(1998).流态化系统的多尺度计算机模拟,哈尔滨工业大学博士论文
    耿荣生(2000).声发射信号处理和分析技术.无损检测,24(1):23-28
    宫小文,苗春兰,杨宝柱,宁凡河(2002).UNIPOL气相法流化床聚乙烯工艺冷凝态技术最新进展.齐鲁石油化工,30(2):146-149
    龚允怡,林漫群(1998).粒度分布函数在柴油机喷雾测量中的应用和比较.燃烧科学与技术,4(4):342-347
    国井大藏,列文斯比尔(1968).流态化工程.北京:石油化学工业出版社
    郭慕孙,李静海(2000).三传一反多尺度.自然科学进展,10(12):1078-1082
    郝晓刚,石炎福(1998).气固流化床颗粒的内循环流动.高校化学工程学报,12(4):350-354
    何克明,何震(1999).基于压力涨落信号的气固流化床早期颗粒结块故障诊断研究.仪器仪表学报,20(1):16-19
    何明(1986).气液两相流流型判别.第一届全国多相流检测技术会议论文集,504-529
    胡荣泽(1981).粉末颗粒和孔隙的测量.北京:冶金工业出版社
    化学工程手册编委会(1989).化学工程手册(19)—颗粒及颗粒系统.北京:化学工业出版社
    黄春燕,陈伯川,黄轶伦,甄玲,王晓萍(2001).气固流化床流型特性及其识别的复杂性研究.化学反应工程与工艺,17(3):291-296
    黄海,黄轶伦,张卫东(1999).气固流化床压力脉动信号的Wigner谱分析.化工学报,50(4):477-482
    黄世霖(1986).工程信号处理.人民交通出版社.
    黄轶伦(1998).流化床检测技术研究现状及趋势.第九届全国化学工程科技报告会
    黄轶伦(2001),气固流化床压力脉动时间序列的非线性分析与实验研究.浙江大学博士学位论文
    黄志尧(2000).分形技术与小波分析在气固流化床研究中的应用.东北大学学报(自然科学版),21(S1):194-197
    江炜(2004).乙烯气相聚合颗粒粒径分布模型的研究.浙江大学硕士学位论文
    靳海波,张济宇(1996).单组分颗粒振动流化床的流体力学研究(2)——床层膨胀和起始流化速度.化学工业与工程,13(4):20-24
    金以文,鲁世杰(1998).分形几何原理及其应用.浙江大学出版社
    金涌,蔡平(1986).鼓泡流态化向湍动流态化过渡的判别.化工学报,37(4):391
    劳力云(1998).基于动态差压信号分析的两相流参数辩识方法研究.浙江大学博士论文
    劳力云,郑之初(1996).应用信号处理技术实现两相流参数检测.多相流检测技术进展.石油工业出版社, 103-109
    李光海,刘时风(2002),声发射源特征识别的最新方法.无损检测,24(12):534-538
    李海青(1991),两相流参数检测及应用.浙江大学出版社
    李海青,黄志尧(2000).特种检测技术及应用.浙江大学出版社
    李辉,宋智勇,孙丰瑞(2003),基于小波包-包络分析的故障特征提取方法.振动.测试与诊断,23(4):291-294
    李琳.(2001).环境监测 http://www.jxau.edu.cn/jpkc/huanjingjc./files/shoukejiaoan.files
    李强伟,冀海峰,黄志尧,李海青(2004).基于分形和模糊技术的气固流化床流型辨识.化工自动化及仪表,31(1):48-49
    李省歧(2000) 聚乙烯工艺比较及进展.齐鲁石油化工,28(4).305-308
    李素兰(1998),脑电时间序列分析的非线性动力学方法.浙江大学硕士论文
    凌复华(1989),非线性动力学系统的数值研究.上海交通大学出版社
    刘德昌,熊立(1999).煤的颗粒粒径分布对循环流化床锅炉设计和运行的影响.中国粉体技术,5(4):23-25
    刘宏吉,凌勇,王建沁(2003).UNIPOL工艺结块与结片的防止措施.弹性体,13(5):39-43
    刘式达,刘式适(1989),非线性动力学和复杂现象.气象出版社
    刘勇,杨宏旻,马卫民,顾蟠,徐益谦(1999a).燃煤流化床声发射频谱域特征分析.燃烧科学与技术,5(3):262-269
    刘勇,杨宏旻,马卫民,顾蟠,徐益谦(1999b).燃煤流化床声发射特性实验研究.燃烧科学与技术,5(1):32-38
    刘勇,唐晓军,杨宏旻,顾蟠,徐益谦(1999c).流化床燃烧声发射与气固两相流特性研究.工程热物理学报,20(1):102-105
    马大猷(1983).声学手册.北京:科学出版社,58-60.
    马丽萍,石炎福,黄卫星,余华瑞,祝京旭(2003).循环流化床压力波动信号的间歇性分析.化工学报,54(5):619-624
    欧阳洁.李静海(2004).确定性颗粒轨道模型在流化床模拟中的研究进展.化工学报,55(10):1581-1692
    彭玉华(2004).小波变换与工程应用.北京:科学出版社,49-54
    钱诗智.陆继东,赫俏,谢松法(1999) 气固流化床内微观瞬态特性的多尺度分析.自然科学进展,9(1):90-94
    任金强,李静海(1999).小波在分析流态化系统多尺度动态行为中的应用.化工冶金,20(1):38-43
    唐晓车,刘勇(1997).燃煤流化床燃烧声波混沌特性研究.燃烧科学与技术,3(1):63-69
    唐晓军,陆慧.宁宁,刘勇,顾蟠,徐益谦(1999).燃烧流化床气泡能量分布模型.燃烧科学与技术,5(2):192-198
    王宏禹(1999).非平稳随机信号分析与处理.北京:国防工业出版礼,174-205
    王琳娜,李静海(2001).非均匀气固两相系统中多尺度传质模型.化工学报,52(8):708-714
    王双群,蒋守国(2003).PFBC中试电站的几种特殊检测方法.能源研究与利用,(2):16-17
    王兴元(2003).复杂非线性系统中的混沌.电子工业出版社
    王忠民,王信义(2000).基于分形维数的刀具状态在线监测新方法.北京理工大学学报,20(4):441-444
    汪莲,王长军(2003),.放射性γ射线料位计在石化行业中的典型应用.工业控制计算机,6(10):17-18
    汪跃群,李国富(2003).超声波料位仪的研制.声学与电子工程,(3):43-44
    文利雄,李静海(1996).颗粒流体系统的流域特性及其混沌行为.化学反应工程与工艺,12(1):40-47.
    吴泽华,陈治中,黄正东(1999).大学物理.杭州:浙江大学出版利,303
    吴贤国,黄志尧,冀海峰,王保良,李海清(2000).分析技术在气周流态化研究中的应用.石油化工自动化,(6):54-56
    夏靖波(1998).电容层析成像在两相流参数检测中的应用.东北大学博士学位论文
    谢利理,李玉忍(2002).一种新型的电容式料位传感器设计.传感器技术,21(12):21-22
    谢松法,钱诗智(1999).小波分析在流化床两相流信号处理中的应用.信号处理,15(4):372-375
    徐京华,童勤业,刘仁(1996).大脑皮层信息传输和精神分裂症.生物物理学报,12(1):103-108,
    徐苓安(1996).关于过程层析成像技术的评述.多相流检测技术进展.石油工业出版社,7-12
    徐苓安(1998).相关流量测量技术.天津大学出版社
    阳永荣,侯琳熙,刘诚午,王靖岱,胡晓萍(2003).流化床反应器声波监测的装置和方法(中周专利) 公开号:1544140
    张东明(1996).流化床故障诊断方法研究.浙江大学硕士论义
    张宏建·陈伯川,李海青(1991).一种气、固流化床料位检测的新方法.化学反应工程与工艺,7(3):292-297
    章蕴璧(1989).流态化选论.西安:西北大学出版社,
    赵贵兵(1999).气固流化床压力波动的混沌分析 四川大学博士论文
    赵贵兵,石炎福(2000).流化床压力波动混沌预测.化工学报,51(5):660-665
    赵贵兵,顾丽莉(2000a).散式流态化到聚式流态化的混沌识别.化工学报,51(4):468-479
    赵贵兵,石炎福(2000b).周期信号对计算流化床动力学重构滞时的影响.化工学报,51(3):33l-337
    赵贵兵,陈伯川,阳永荣(2000c).气固流化床压力波动信号成分分析.东北大学学报(自然科学版,21(S1):25-28
    赵贵兵,阳永荣,侯琳熙(2001).流化床声发射机理及其在故障诊断中的应用.化工学报,52(11):941-943
    浙大联合化学反应工程研究所(1993).齐鲁石化高密度聚乙烯生产装置的标定报告.内部资料
    郑建荣(2003).流化床喷雾制粒机若干机理的研究.华东理工大学学报(自然科学版).29(1):104-108
    郑建英(1988).流化床中主要检测方法及其应用.化工自动化及仪表,2:1-4.
    郑建英(1986).用模糊聚类分析方法确定流化床内颗粒平均直径.第一届全国多相流检测技术会议论文集,135-148
    郑伟谋,郝柏林(1992).实用符号动力学.上海科技教育出版社
    郑燕萍(1999).流化床压力脉动信号特征提取与规律性研究.浙江大学硕士论文
    周章玉,石炎福,余华瑞(1999).由压力波动判断气固流化床中的流化类型.化学反应工程与工艺,5(3):262-267

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700