石英和水泥基体平板吸波材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对目前日益严重的电磁污染,对建筑用防电磁辐射复合材料的研究也越来越迫切和广泛。为此,本文对石英和水泥为基体的两种平板复合材料进行了电磁性能研究,开发了两种建筑平板吸波材料。
     首先对石英/纳米炭黑复合材料的电磁性能进行了研究。采用TEM手段对N234型纳米炭黑的颗粒形貌进行了分析,采用同轴法测定了纳米炭黑粒子的电磁参数,并以石英为基体材料,以水玻璃和聚乙烯醇(PVA)为粘结剂,对石英/炭黑复合材料在150~1500MHz频段内的电磁屏蔽效能和2~18 GHz频段内的吸波性能进行了分析。研究结果表明,炭黑属于一种电损耗介质,具有较高的电导率和较大的介电常数。石英/炭黑复合材料的电磁屏蔽效能随测试频率和炭黑含量的增加而增大。当炭黑含量达到15 vol%时,厚度为7 mm的复合平板在150~1500 MHz内的屏蔽效能可以达到-35 dB。材料的吸波性能存在一个极限值,当炭黑含量超过6.0 vol%时,入射电磁波在材料表面的反射增强,复合材料的吸波性能会下降。
     通过TEM、XRD手段分析了纳米二氧化锰粒子的颗粒形貌和化学成分,用同轴法测定了二氧化锰粒子的电磁参数,并以石英为基体对石英/二氧化锰复合材料的电磁性能进行了分析。研究表明,二氧化锰属于一种介电损耗介质,具有较高的电阻率和较大的介电常数,而且其介电损耗角正切随频率的增加变化不大。二氧化锰填充石英复合材料在低频下仍然具有较好的吸波性能,且其最佳吸收性能具有频率选择性。当二氧化锰含量小于40 vol%时,复合材料在2~18 GHz频段内的吸收峰值随二氧化锰含量的增加而逐渐增大,且峰值频率逐渐向低频移动。
     应用Rayleigh混合公式的扩展式和吸波性能的计算公式对炭黑或二氧化锰填充石英基体复合材料的电磁性能进行理论计算的结果表明,当炭黑或二氧化锰的含量较大时,计算值与实验值比较接近。说明Rayleigh混合公式的扩展式可以用于该复合体系吸波剂含量较大时的电磁性能计算。
     水玻璃和聚乙烯醇两种粘结剂对石英基复合材料的电磁性能具有不同的影响。以水玻璃为粘结剂的试样比聚乙烯醇试样具有更高的屏蔽效能;而两者的吸波性能相差不大,但水玻璃试样吸波曲线比较平缓,而聚乙烯醇试样则具有较大的吸收峰。而且水玻璃试样具有相对较高的抗压性能。
     本文首次对发泡聚苯乙烯(EPS)填充水泥基体复合材料的吸波性能进行了实验研究。首次采用EPS颗粒表面处理工艺来增强其与水泥基体的亲和性和混合时的均匀性,分别制备了不同EPS填充率和不同厚度的EPS填充水泥平板试样,并在微波暗室内测
This dissertation is aimed at the increasingly severe electromagnetic pollution and both the urgency and broadness of the research on building materials for electromagnetic interference (EMI) prevention. This dissertation discusses the electromagnetic characteristics of two kinds of composite plates and explores two building materials for electromagnetic wave absorbing based on silicon dioxide (SiO_2) and cement matrices.The electromagnetic properties of nanometer carbon black (CB) filling SiO_2 composites were first studied. The micrograph and electromagnetic parameters of CB particulates were analyzed with TEM microscope and coaxial method. The electromagnetic shielding effectiveness (SE) in 150-1500 MHz and the wave absorbing properties in 2-18 GHz were studied with sodium silicate and polyvinyl alcohol (PVA) as the adhesive binders. Findings show that CB is a kind of electric loss medium and it has high electric conductivity and dielectric constants. The SE of CB composites increase with the increasing of CB content and frequency. When the CB content is 15 vol%, a plate with a thickness of 7 mm gives a SE of -35 dB. There is a critic content in CB filling composite for wave absorbing. When the CB content is over 6.0 vol%, the wave reflection on the surface of the material increases and so the wave absorbing performance decreases.The electromagnetic properties of manganese dioxide (MnO_2) particulates were discussed in this dissertation for the first time. TEM, XRD and coaxial method were applied to analyze the properties of MnO_2 particulates and SiO_2/MnO_2 composites. Results show that MnO_2 is a kind of dielectric loss medium, and it has high electric resistivity and dielectric constants. When the MnO_2 content is lower than 40 vol%, the wave absorbing peak values of MnO_2 composite increase with the increasing of MnO_2 filling fraction and the matching frequencies drift to the lower band with MnO_2 increment.The modified Rayleigh mixing formula is applied to calculate the effective electromagnetic parameters and reflection loss of CB or MnO_2 filling composites, and it indicates that when the CB and MnO_2 content is high, the calculated values are closely agree to the experimental ones. It indicates that Rayleigh mixing formula can be applied to the calculation of electromagnetic properties in high concentrations.The different influences of binders on the electromagnetic properties of SiO_2 based composites were studied. The results show that the sample with sodium silicate as the
    adhesive binder has a higher SE than that with PVA, but their comprehensive wave absorbing properties have not many differences, only that the absorbing curves of samples with sodium silicate as the binders are relatively flat, but PVA samples have one or more peak values. The sample with sodium silicate as the binder has a relatively higher compressive strength than that with PVA.The electromagnetic absorbing properties of expanded polystyrene (EPS) filled lightweight cement based composites were studied in this dissertation for the first time. A surface pretreatment was first used to treat the EPS beads so as to improve the affinity with cement matrix and the uniformity during mixing. Samples with different EPS filling ratio and different thickness were made and their wave absorbing properties were studied with the arched testing method in an anechoic chamber. The analysis of the changes of dielectric property during the hydration and the inner macrostructure of the EPS cement were carried out to investigate the electromagnetic absorbing mechanism of the EPS cements. The effects of thickness, filling ratio and EPS bead diameter on absorbing properties were studied. The matching thickness of the composite was also discussed. The results show that the EPS cement composite holds a good absorbing characteristic and its absorbing property increases with the EPS filling ratio until 60 vol%, and a decrease is observed afterwards. With the addition of EPS beads, the wave transparent property of the EPS filled cement composite improved gradually and so the matching thickness increased. In the frequency range of 8-18 GHz, a 20-mm-thick sample filled with 60 vol% EPS with a diameter of 2 mm can have an absorbing property of-10—15 dB, and the bandwidth of-10 dB reaches 6.2 GHz.The studies on the compressive strength of EPS filling cement composite show that the compressive strength appears to decrease linearly with the increase of EPS volume and increase gradually with the curing time. The compressive strength has a close relationship with the bonding strength at the interface between EPS and the cement matrix. The EPS bead with smaller size has more specific surface areas and more interfaces with cement matrix, and its smallness has decreased the pores and defects at the interfaces, so cement composites filled with
引文
[1] 赵玉峰,肖瑞,赵东平等编著.电磁辐射的抑制技术.北京:中国铁道出版社.1980:10-19,331-34.
    [2] 钟克煌,李中怡.屏蔽电磁波干扰的涂料.化工新型材料.1989,17(3):33-35.
    [3] 杜仕国.屏蔽电磁波干扰塑料及其开发动向.塑料科技.1995,(2):1-4.
    [4] 管登高.镍基电磁波屏蔽复合涂料的研究及其在EMC的工程应用.成都:四川大学硕士学位论文.2001:2-4.
    [5] Hirata A, Matsuyama S, Shiozawa T. Temperature rises in the human eye exposed to EM waves in the frequency range 0.6-6 GHz. IEEE Trans. on Electromagnetic Compatibility. 2000, 42 (4): 386-92.
    [6] 徐培基,武建民,王振宁.近场射频辐射条件下大白鼠共振吸收频率的研究.生物医学工程学杂志.1996,13(3):253-56.
    [7] Frohlich H. What are non-thermal electric biological effects? Bioelectromagnetics. 1982, 3 (1): 45-4.
    [8] 唐世钧,王保华,钟季康.生物医学电磁学非热效应现象与机理.国外医学生物医学分册.1998,21(1):12-19.
    [9] 陈国璋,陈惠晓.谈谈生物电磁学研究热点——非热效应.物理.1998,27(3):151-55.
    [10] 刘亚宁.电磁辐射生物效应的机理研究述评.基础医学与临床.2000,20(1):20-23.
    [11] 郭鹞.漫谈电磁辐射生物效应.疾病控制杂志.2002,6(Suppl.):1-8.
    [12] Hardy J D, Wolff H G, Goodell H. Pain Sensations and Reactions. Baltimore, MD: Williams & Wilkins. 1952. Chapter Ⅳand X.
    [13] Guyton A C, Hall J E. Textbook of Medical Physiology. Philadelphia, PA: Saunders. 1996, Chapter 73.
    [14] Gandhi O P, Lazzi G, Furse C M. Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900 MHz. IEEE Trans. on Theory & Techniques. 1996, 44 (10): 1884-96.
    [15] Bernardi P, Cavagnaro M, Pisa S, et al. Specific absorption rate and temperature increase in the head of a cellular-phone user. IEEE Trans. on Microwave Theory & Technology. 2000, 48 (7): 1118-26.
    [16] Gabriel C. Compilation of the dielectric properties of body tissues at RF and microwave frequencies. Occupational and Environmental Health Directorate, Books Air Force Base. TX, AL/OE-TR-1996-0037.
    [17] Hirata A, Morita M, Shiozawa T. Temperature increase in the human head due to a dipole antenna at microwave frequencies. IEEE Trans. on Electromagnetic Compatibility. 2003, 45 (1): 109-16.
    [18] 冯桂山.计算机泄密机理及其防护措施介绍.宇航计测技术.1994,13(1):27-32.
    [19] 单国栋,戴英霞,王航.计算机电磁信息泄露与防护措施.电子技术应用.2002,(4):6-8.
    [20] 高攸纲,张苏慧.电磁辐射的生物效应.安全与电磁兼容.2002,(6):49-52.
    [21] Chung D D L. Materials for electromagnetic interference shielding. J. Mater. Eng. & Perf 2000,9 (3): 350-54.
    [22] Kaynak A. Electromagnetic shielding effectiveness of galvanostatically synthesized conducting polypyrrole films in the 300-2000 MHz frequency range. Mater. Res. Bull. 1996, 31 (7): 845-60.
    [23] 栗源,西方,清水.电磁吸收体发热量分布分析.1998年电子情报通信学会综合大会.1998,4(67):352.
    [24] 廖海军,张超灿,赵清荣.防电磁辐射水泥基复合材料的性能及应刚.房材与应用.2004,(2):6-7.
    [25] 赵东林,周万城.结构吸波材料及其结构型式设计.兵器材料科学与工程.1997,20(6):53-57.
    [26] Emerson W H. Electromagnetic wave absorbers and anechoic chambers through the years. IEEE Trans. on Antennas and Propagation. 1973, 21 (4): 484-90.
    [27] 赵东林,周万城.隐身技术中的结构吸波材料.金属世界.1998,(5):3.
    [28] Naito E, Suetake K, Matsumura H, et al. Matching frequencies of ferrite-based microwave absorbers.电子学会论文誌. 1969, 52B (7): 398-404.
    [29] Petrov V M, Gagulin V V. Microwave absorbing materials. Inorganic Materials. 2001, 37 (2): 93-98.
    [30] 冯林,陆丛笑.新型宽频带吸波涂层研究.电子科学学刊.1992,14(6):618-23.
    [31] Ruck G T, Barrick D E, Stuart W D, et al. Radar Cross Section Handbook. Plenum Press, NewYork. 1970, vol.2: 616-22.
    [32] Chambers B, Tennant A. Characteristics of a Salisbury radar absorber covered by a dielectric skin. Electronics Letters. 1994, 30 (21): 1797-99.
    [33] Chambers B.Symmetrical radar absorbing structures. Electronics Letters. 1995, 31 (5): 404-05.
    [34] 赵东林,周万成.涂敷型吸波材料及其涂层结构没计.兵器材料科学与工程.1998,21(4):58-62.
    [35] 邢丽英,刘俊能.电阻渐变型结构吸波材料的研究与进展.航空材料学报.2000,20(3):187-91.
    [36] 王钧,刘东,王翔等.碳纤维在功能复合材料中的应用.国外建材科技.2002,23(2):6-8.
    [37] Mittra R, Chan C C, Cwik T. Techniques for analyzing frequency selective surfaces: a review. Proceedings of the IEEE. 1988, 76 (12):1593-1615.
    [38] Bertoni H L, Cheo L S, Tamir T. Frequency-selective reflection and transmission by a periodic dielectric layer. IEEE Trans. on Antennas & Propagation. 1989, 37 (1): 78-83.
    [39] Chambers B, Ford K L. Tunable radar absorbers using frequency selective surfaces, llth International Conference on Antennas & Propagation. UK: Manchester. 2001, vol.2: 593-97.
    [40] 武振波.双层频率选择表面电磁特性数值模拟研究.电波科学学报.2004,19(6):663-68.
    [41] 刑丽英.含电路模拟结构吸波复合材料.复合材料学报.2004,21(6):27-33.
    [42] Fulghun D A. Stealth engine advances revealed in JSF designs. Aviation Week & Space Technology. 2000, (19): 28-33.
    [43] Lee S W, Zarrillo G, Law C L. Simple formulas for transmission through periodic metal grids or plates. IEEE Trans. on Antennas & Propagation. 1982, 30 (5): 904-09.
    [44] Kim D Y, Chung Y C. Electromagnetic wave absorbing characteristics of Ni-Zn ferrite grid absorber. IEEE Trans. on Electromagnetic Compatibility. 1997, 39 (4): 356-61.
    [45] T. D. N. Williams. A new ferrite grid absorber for screened rooms. Eighth International Conference on Electromagnetic Compatibility. UK: Edinburgh. 1992: 220-26.
    [46] Naito Y, Anzai H, Mizumoto T, et al. Ferrite grid electromagnetic wave absorbers. 1EEE International Symposium on Electromagnetic Compatibility. USA: Dallas, TX. 1993, vol.2: 254-59.
    [47] 胡秉科,周训波.美军用飞机推进系统上隐身技术的发展及应用.国际航空.2001,(6):54-56.
    [48] Holloway C L, Delyser R R, German R F, et al. Comparison of electromagnetic absorber used in anechoic and semi-anechoic chambers for emissions and immunity testing of digital devices. IEEE Trans. on Electromagnetic Compatibility. 1997, 39(1): 33-46.
    [49] Neher L K. Nonreflecting background for testing microwave equipment. U. S. Patent 2 656 535. Oct.20, 1953.
    [50] Janaswamy R. Oblique scattering from lossy periodic surfaces with application to anechoic chamber absorbers. IEEE Trans on Antennas & Propagation. 1992, 40 (2): 162-69.
    [51] 王相元,朱航飞,钱鉴等.微波暗室吸波材料的分析和设计.微波学报.2000,16(4):389-98.
    [52] 王相元,朱航飞,钱鉴等.外壳为聚苯乙烯硬泡沫的角锥吸波材料.电波科学学报.2001,16(1):41-44.
    [53] Qian J, Wang X Y, Zhu H F, et al. Novel pyramidal microwave absorbers for out-door using. The 5~(th) International Symposium on Antenna, Propagation and EM Theory. China: Beijing. 2000: 347-49.
    [54] Kuester E F, Holloway C L. Comparison of approximations for effective parameters of artificial dielectrics. IEEE Trans. on Microwave theory & Tech. 1990, 38(11): 1752-55.
    [55] Gibbons H T. Design of backing layers for pyramid absorbers to minimize low frequency reflection. MS. thesis. University of Colorado at Boulder, 1990.
    [56] Park M J, Choi J, Kim S S. Wide bandwidth pyramidal absorbers of granular ferrite and carbonyl iron powders. IEEE Trans, on Magnetics. 2000, 36 (5): 3272-74.
    [57] 何燕飞,龚荣洲,何华辉.角锥型吸波材料应用新探.华中科技大学学报(自然科学版).2004,32(11):56-58.
    [58] Oliver D, Ryan M著,李向荣译.隐形战斗机.海口:海南出版社.2002:80-88,99.
    [59] Pitkethly M J. Radar absorbing materials and their potential use in aircraft structures. IEEE Colloquium on Low Profile Absorbers and Scatterers. UK: London. 1992: 7/1-7/3.
    [60] 邢丽英等 编著.隐身材料.北京:化学工业出版社.2004:9.
    [61] 周永江.PAN基吸波纤维和吸波结构的研究.长沙:国防科学技术大学硕士学位论文.2002:1-2.
    [62] 黄松高,周开基,汪志群.电波暗室静区性能的分析与评估.安全与电磁兼容.2003,(4):42-46.
    [63] Maeda A, Osabe K. Study on anechoic chamber for EMI measurement—Measurement and evaluation of chamber characteristics. IEEE International Symposium on Electromagnetic Compatibility. USA:Washington, DC. 1990, vol.3: 247-251.
    [64] Khorasheva N E. Microwave absorption of magnetic materials. The 11~(th) International Conference on Microwave Ferrite. Ukraine: Alushta Crimea. 1992, Session 9.1.5.
    [65] 吕述平,刘顺华.谐振型吸波材料的理论分析与实验研究.材料科学与工程学报.2006,24(1):135-38.
    [66] 吕述平,刘顺华,赵彦波.新型填充式吸波材料的研究.功能材料与器件学报.2005,11(4):498-500.
    [67] LIU Shun-Hua, LV Shu-Ping, ZHAO Yan-Bo. Study of the resonant absorber based of carbon coated EPS. Materials Technology. 2005, 20 (3): 145-48.
    [68] Cao J, Chung D D L. Use of fly ash as an admixture for electromagnetic interference shielding. Cement & Concrete Research. 2004, 34 (10): 1889-92.
    [69] Guan H, Liu S, Duan Y, et al. Cement based electromagnetic shielding and absorbing building materials. Cement & Concrete Composites. 2006, 28 (5): 468-74.
    [70] Fu X, Chung D D L. Linear correlation of bond strength and contact electrical resistivity between steels rebar and concrete. Cement. & Concrete. Research. 1995, 25 (7): 1397-1402.
    [71] Trabelsi S, Kraszewski A W, Nelson S O. A microwave method for on-line determination of bulk density and moisture content of particulate materials. IEEE. Trans. Instru. & Meas. 1998, 47 (1):127-32.
    [72] Bois K J, Benally A D, Zoughi R. Microwave near-field reflection property analysis of concrete for materials content determination. IEEE Trans. on Instru. & Meas. 2000, 49 (1): 49-55.
    [73] Akuthota B, Zoughi R, Kurtis K E. Determination of dielectric profile in cement-based materials using microwave reflection and transmission properties. Instrumentation and Measurement Technology Conference. Italy: Como. 2004: 327-32.
    [74] Kharkocsky S N, Hasar U C, Akay M F, et al. Measurement and monitoring of microwave reflection and transmission properties of cement-based materials for propagation modeling. Vehicular Technology Conference. Greece: Rhodes. 2001, vol.2: 1202-06.
    [75] Kharkocsky S N, Akay M F, Hasar U C, et al. Measurement and monitoring of microwave reflection and transmission properties of cement-based specimens. IEEE. Trans. Instr. & Meas. 2002, 51 (6):1210-18.
    [76] 葛凯勇,王群,毛倩瑾等.空心微珠表面改性及其吸波特性.功能材料与器件学报.2003,9(1):67-70.
    [77] 熊国宣,邓敏,徐玲玲等.水泥基复合材料的吸波性能.硅酸盐学报.2004,32(10):1281-84.
    [78] 熊国宣,徐玲玲,邓敏等.掺杂TiO_2水泥的吸波性能与力学性能研究.功能材料与器件学报.2005,11(1):87-91.
    [79] 杨海燕,李劲,叶齐政等.钢纤维混凝土的吸波性能研究.功能材料.2002,33(3):341-43.
    [80] Chung D D L. Cement reinforced with short carbon fibers: a multifunctional material. Composites: Part B. 2000, 31 (6-7): 511-26.
    [81] Yamane T, Numata S, Mizumoto T, et al. Development of wide-band ferrite fin electromagnetic wave absorber panel for building wall. Electromagnetic Compatibility, 2002 International Symposium on. Minnesota: Minneapolis. 2002, vol.2: 799-804.
    [82] 许卫东,杨燚,张豹山等.铁氧体水泥基微波吸收复合材料的初步研究.兵器材料科学与工程.2003,26(6):6-9.
    [83] Cao J, Chung D D L. Coke powder as an admixture in cement for electromagnetic interference shielding. Carbon. 2003, 41 (12): 2433-36.
    [84] 江家京,王春芳,孟海乐等.吸波建筑材料的研究及应用进展.科技情报开发与经济.2005,15(1):132-33.
    [85] Morimoto M, Kanda K, Hada H, et al. Development of electromagnetic absorbing board for wireless communication environment. In Proceedings of the Conference of Architectural Institute of Japan. 1998, D-1: 1069-70.
    [86] Oda M. Radio wave absorptive building materials for depressing multipath indoors. Electromagnetic Compatibility, 1999 International Symposium. Japan: Tokyo. 1999: 492-95.
    [87] 张雄,习志臻.建筑吸波材料及其开发利用前景.建筑材料学报.2003,6(1):72-75
    [88] 陈兵,张东.新型水泥基复合材料的研究与应用.新型建筑材料.2000,(4):28-30.
    [89] 唐明,陈勇.论混凝土材料的高功能化.混凝士.2001,(3):14-18.
    [90] Kobayashi M, Kasashima Y, et al.高层电波反射障碍防止用.日本复合材料学会志.1998,24(3):110-13.
    [91] Kobayashi M, Kasashima Y, et al.建筑电波反射障碍防止用电波透过型.日本复合材料学会志.1998,24(1):32-34.
    [92] 娄明连,阚涛,娄天红.一种廉价的电波吸收材料研究.功能材料.1997,28(4):383-35.
    [93] 娄明连,阚涛.复合磁介质吸波材料.磁性材料及器件.2002,33(5):13-15.
    [94] Li X, Kang Q, Zhou C. Research on absorbing properties of the concrete shielding material at 3mm wave bands. Asia-Pacific Conference on Environmental Electromagnetics. China: Hangzhou. 2003: 536-40.
    [95] 李旭,康青,周从直.铁品矿砂水泥基复合材料电磁波吸收特性研究.功能材料.2004,35(Suppl.):854-56.
    [96] 毛倩瑾,丁彩霞,葛凯勇等.粉煤灰空心微珠的改性及其吸波特性.清华大学学报.2005,45(12):1672-75.
    [97] Kim S S, Kim S T, Ahn J M, et aL Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density. J. Magn. & Magn. Mater. 2004, 271(1): 39-45.
    [98] Vikrants T, Arun S, Arijit B. Acoustic properties of cenosphere reinforced cement and asphalt concrete. Applied Acoustics. 2004, 65 (3): 263-75.
    [99] 熊国宣,邓敏,宋碧涛等.纳米材料在混凝土中应用的思考.混凝土与水泥制品.2002,(5):18-21.
    [100] 熊国宣,邓敏,徐玲玲等.隐身材料和隐身混凝土的研究现状与趋势.功能材料与器件学报.2003,9(4):486-92.
    [101] 窦丹若.建筑空间的电磁辐射和建筑吸波材料.中国非金属矿工业导刊.2004,(5):22-24.
    [102] Luo X, Chung D D L. Electromagnetic interference shielding using continuous carbon-fiber carbonmatrix and polymer-matrix composites. Composites Part B: Engineering. 1999, 30 (3): 227-31.
    [103] Fu X, Chung D D L. Submicron diameter carbon filament cement matrix composites. Carbon. 1998,36 (4): 459-62.
    [104] Chung D D L. Cement-based electronics. J. Elelctroeeramics. 2001, 6 (1): 75-88.
    [105] Sato K, Manabe T, Ihara T, et al. Measurements of reflection and transmission characteristics of interior structures of office buildings in the 60 GHz band. Personal, Indoor and Mobile Radio Communications, Seventh IEEE International Symposium on. China: Taipei. 1996, vol. 1 : 14-18.
    [106] Kimura K, Hashimoto O. Three-layer wave absorber using common building material for wireless LAN. Electronics Letters. 2004, 40 (21): 1323-24.
    [107] 杨华明,邱冠周.超细石英粉在红外陶瓷材料中的应用.非金属矿.1998,(2):18-19.
    [108] 杨华明,邱冠周.石英质红外材料的研制.材料科学与工艺.1998,6(3):21-23.
    [109] 刘得利.石英陶瓷电气绝缘材料.佛山陶瓷.2002,12(11):33-34.
    [110] 刘萝葳,曹运红,王蕾等.导弹雷达天线罩用的工艺材料.战术导弹技术.2004,(1):23-28.
    [111] 黎义,张大海,陈英等.航天透波多功能材料研究进展.宇航材料工艺.2000,(5):1-5.
    [112] Wang X H, Li L T, Yue Z X, et al. Effect of SiO_2 additive on the high-frequency properties of low temperature fired Co_2Z. J. Magn & Magn. Mater. 2004, 271 (2-3): 301-06.
    [113] Huang S H, Wang Y, Persi L, et al. Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. J. Power Sources. 2001, 97-98: 644-648.
    [114] Yang S H, Nguyen T P, Rendu P, et al. Optical and electrical properties of PPV/SiO_2 and PPV/TiO_2 composite materials. Composites: Part A. 2005, 36 (4): 509-13.
    [115] Kondo T, Aoki T, Asano K, et al. Fabrication of the composite electromagnetic wave absorber. Electromagnetic Compatibility, 1999 International Symposium on. Japan: Tokyo. 1999: 397-400.
    [116] Guan H, Liu S, Duan Y. Effects of adhesive binders on the electromagnetic properties of silicon dioxide based composites. J. Functional Mater. 2005, 36 (12): 1981-84.
    [117] 焦其祥 主编.电磁场与电磁波.北京:科学出版社.2004:218.
    [118] Hayt W H, Buck J A. Engineering Electromagnetics (Sixth Edition). New York: McGraw-Hill Comoanies, Inc. 2001.
    [119] 徐安士,周乐柱.工程电磁场.北京:电子工业出版社.2004:259-268.
    [120] 陈抗生.电磁场与电磁波.北京:高等教育出版社.2003:1-10.
    [121] 阎鑫,胡小玲,岳红等.雷达吸收剂材料的研究进展.材料导报.2001,15(1):62-64.
    [122] Carl T.A.Johnk著,吕继尧,彭铁军译.工程电磁场与波.北京:国防工业出版社.1983:99-105,229-238.
    [123] M. J. Ptikethly. Radar absorbing materials and their potential use in aircraft structures. Low Profile Absorbers and Scatters, lEE Colloquium on. UK: London. 1992: 7/1-7/3.
    [124] 科夫涅里斯特等著,蔡德录等译.微波吸收材料.北京:科学出版社.1985:1-6.
    [125] 阮颖铮著.雷达截面与隐身技术.北京:国防工业出版社.1998:269-271.
    [126] Musal H M Jr., Hahn H T. Thin-layer electromagnetic absorber design. IEEE Trans. on Magnetics. 1989, 25 (5): 3851-3853.
    [127] Olmedol L, Chateau G, Deleuzec C, et al. Microwave characterization and modelization of magnetic granular materials. J. Appl. Phys. 1993, 73 (10): 6992-6994.
    [128] Shin J Y, Oh J H. The microwave absorbing phenomenon of ferrite microwave absorbers. IEEE Trans. on Magnetics. 1993, 29 (6): 3437-39.
    [129] 步文博,徐洁,丘泰. 吸波材料基础理论的探讨及展望.江苏陶瓷.2001,34(2):1-4.
    [130] 赖祖武,电磁干扰防护与电磁兼容,北京:原子能出版社.1993.
    [131] Sanchez G A, 监朝良.特殊用途吸波材料.电子对抗技术.1995,(4):30-34.
    [132] Simmons A J, Emerson W H. An anechoic chamber making use of a new broadband absorbing material. IRE International Convention Record. 1953, 1 (2): 34-41.
    [133] Smith F C, Chambers B, Bennett J C. Calibration techniques for free space reflection coefficient measurements, lEE Proceedings-A. 1992, 139 (5): 247-53.
    [134] 郭辉进.炭黑/ABS/金属网复合材料电磁屏蔽性能研究.大连理工大学硕士学位论文.2003:24-25.
    [135] 周维祥.塑料测试技术.北京:化学工业出版社.1997.
    [136] Tanaka T, Yoshida Y, Sato R, et al. Effect of the size of the specimen on reflection coefficient in the free-space method. Asia Pacific Microwave conference Proceedings. China: Hong Kong. 1997, vol.3:901-04.
    [137] 郭隽奎,龚怀耀 主编.化工百科全书(第15卷).北京:化学工业出版社.1996:700-722.
    [138] Dishovsky N, Grigorova M. On the correlation between electromagnetic waves absorption and electrical conductivity of carbon black filled polyethylenes. Mater. Res. Bull. 2000, 35(3): 403-09.
    [139] Mather P J, Thomas K M. Carbon black/high density polyethylene conducting composite materials. Part Ⅰ. J. Mater. Sci. 1997, 32(2): 401-07.
    [140] 陆怀先,蒉纪圣,钱鉴等.X波段一些磁铅石型铁氧体电磁参数的初步研究.宇航材料工艺.1989,(4-5):44-47.
    [141] 李炳炎 主编.炭黑生产与应用手册.北京:化学工业出版社.2000:86.
    [142] Mrozowski S. Electron spin resonance in neutron irradiated and in doped polycrystalline graphite- part Ⅰ. Carbon. 1965, 3(3): 305-20.
    [143] 道奈 J B,沃埃特A著.炭黑.北京:化学工业出版社.1982:104-17.
    [144] 张雄伟,黄锐.LDPE/炭黑复合导电材料性能的研究.中国塑料.1994,8(3):24-26.
    [145] Tzeng S S, Chang F Y. EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites. Mater. Sci. & Eng. 2001, A302(2): 258-67.
    [146] 刘飙,官建国,王琦等.纳米技术在微波吸收材料中的应用.材料导报.2003.17(3):45-47.
    [147] Kubo R. Statistical-mechanical theory of irreversible process. Part Ⅰ: General theory and simple application to magnetic and conduction problem. J. Phys. Soc. Japan. 1957, 12(6): 570-86.
    [148] Talbot P, Konn A M, Brosseau C. Electromagnetic characterization of fine-scale particulate composite materials. J. Magn & Magn. Mater. 2002, 249(3): 481-85.
    [149] Brosseau C, Youssef J B, Talbot P, et al. Electromagnetic and magnetic properties of multi component metal oxides heterostructures: Nanometer versus micrometer-sized particles. J. Appl. Phys. 2003, 93(11): 9243-56.
    [150] Viau G, F-Vincent F, Fievet F, et al. Size dependence of microwave permeability of spherical ferromagnetic particles. J. Appl. Phys. 1997, 81(6): 2749-54.
    [151] 章小飞,胡波.粒度对陶瓷粉体介电损耗及微波加热性能的影响.江苏陶瓷.2005,38(3):7-9.
    [152] Tbostenson E T, Chou T W. Microwave processing: fundamental and applications. Composites: Part A. 1999, 30(9): 1055-71.
    [153] Clark D E, Folz D C, West J K. Processing materials with microwave energy. Mater. Sci. & Eng. 2000, 287A(2): 153-58.
    [154] Mather P J, Thomas K M. Carbon black/high density polyethylene conducting composite materials. Part Ⅱ. J. Mater. Sci. 1997, 32(7): 1711-15.
    [155] 葛副鼎,朱静,陈利民.吸收剂颗粒形状对吸波材料性能的影响.宇航材料工艺.1996,(5):42-49.
    [156] Ishimaru A. Electromagnetic wave propagation, radiation and scattering. New Jersey: Prentice Hall. 1991.
    [157] 夏熙.二氧化锰及相关锰氧化物的品体结构、制备及放电性能.电池.2004,34(6):411-14.
    [158] Kumar V R, Veeraiah N. Dielectric properties of ZnF_2-PbO-TeO_2 glasses. J. Phys. Chem. Solids. 1998, 59(1): 91-97.
    [159] Kayan A, Tarcan E, Kadiroglu U, et al. Electrical and dielectrical properties of the MnO_2 doped with As_2O_3 and SnO. Materials Letters. 2004, 58(16): 2170-74.
    [160] Yue Z, Zhou J, Li L, et al. Effects of MnO_2 on the electromagnetic properties of NiCuZn ferrites prepared by sol-gel auto-combustion. J. Magn. & Magn. Mater. 2001, 233(3): 224-29.
    [161] Nam J H, Hur W G, Oh J H. The effect of Mn substitution on the properties of NiCuZn ferrites. J. Appl. Phys. 1997, 81(8): 4794-96.
    [162] Rao B P, Rao K H. Effect of sintering conditions on resisitivity and dielectric properties of Ni-Zn ferrites. J. Mater. Sci. 1997, 32(22): 6049-54.
    [163] 刘列,张明雪,胡连成等.薄、轻、宽吸波涂层的优化设计.宇航材料工艺.1996,(4):8-11.
    [164] Scaife B K P. Principles of dielectrics. Clarendon Press. 1989.
    [165] Cohen R W, Cody G D, Coutts M D, et al. Optical properties of granular silver and gold films. Phys. Rev. B. 1973, 8(8): 3689-3701.
    [166] Braggeman D A G. The calcaulation of various physical constants of heterogeneous substances. I: The dielectric constants and conductivities of mixtures composed of isotropic substances. Annalen Der Physik. 1935, 24(5): 636-64.
    [167] Sheng P. Theory for the dielectric function of granular composite media. Phys. Rev. Lett. 1980, 45 (1): 60-63.
    [168] Chew W C, Friedrich J A, Geiger R. A multiple scattering solution for the effective permittivity of a sphere mixture. IEEE Trans. on Geosciences & Remote Sensing. 1990, 28 (2): 207-14.
    [169] Lakhtakiab A. Application of strong permittivity fluctuation theory of isotropic, cubically nonlinear composites mediums. Optical communications. 2001, 192(3-6): 145-51.
    [170] Stefano G. Effective medium permittivity theory for dispersions of dielectric ellipsoids. Journal of Electrostatics. 2003, 58(1-2): 59-76.
    [171] 高正娟,曹茂盛,朱静.复合吸波材料等效电磁参数计算的研究进展.宇航材料工艺.2004,(4):12-15.
    [172] 刘述章,邱才明.含涂层椭球粒子随机混合媒质的等效电磁参数的计算.应用科学学报.1996,14(1):67-72.
    [173] 邱才明,刘述章,林为干.含强散射体的随机混合媒质的等效电磁参数.电子学报.1993,21(6):6-13.
    [174] 吴明忠,赵振声,何华辉.层状多品体纤维吸波材料的等效电磁参数.磁性材料及器件.1998,29(1):31-35.
    [175] 吴明忠,赵振声,何华辉.多品体纤维吸收剂微波复磁导率和复介电常数的理论计算.功能材料.1999,30(1):91-94.
    [176] 何华辉,吴明忠,赵振声.多晶铁纤维吸收剂微波电磁参数的各向异性研究.物理学报.1999,48(Suppl.):138-43.
    [177] Wu M Z, Zhang H J, Yao X, et al. Microwave characterization of ferrite particles. J. Phys. D: Appl. Phys. 2001, 34(6): 889-95.
    [178] Lakhtakiab A, Slepyan G Y, Maksimenko S A. Effective medium theory of the microwave and the infrared properties of caomposites with carbon nanotube inclusions. Carbon. 1998, 36(12): 1833-39.
    [179] Videen G, Chylek P. Scattering by a composite sphere with an absorbing inclusion and effective medium approximation. Optics Communications. 1998, 158(1-6): 1-6.
    [180] Sihvola A, Kong J A. Effective permittivity of dielectric mixtures. IEEE Trans. Geosci & Remote Sensing. 1998, 26(4): 420-29.
    [181] Lakhtakia A, Mackay T G. Size-dependent Bruggeman approach for dielectric-magnetic composite materials. Int. J. Electron. Commun. (AEU) 2005, 59(6): 348-51.
    [182] Sihvola A H. Self-consistency aspects of dielectric mixing theories. IEEE Transactions on Geosci. and Remote Sensing. 1989, 27(4): 403-15.
    [183] Sihvola A, Lindell I V. Polarizability and effective permittivity of layered and continuously inhomogeneous dielectric spheres. J. Electromagnetic Waves & Applications. 1989, 3(1): 37-60.
    [184] Kong J A著,吴季译.电磁波理论.北京:电子工业出版社.2003:122.
    [185] 张晓宁.Fe-Ni软磁合金吸波材料的设计与制备.北京:北京工业大学博士学位论文.2003:16-20.
    [186] 苏毅,刘谋盛,李国斌.聚乙烯醇粘结剂的应用研究.粘结.2001,22(6):37-40.
    [187] 胡慧萍,黄可龙,陈启元等.焦炭粉冷固成型用粘结剂—改性水玻璃的研制.化学世界.2000,(7):248-52.
    [188] 刘亮,刘兴三.PAM作为分散剂的应用技术探讨.黑龙江造纸.2002,(2):30-31.
    [189] 阳开新.聚乙烯醇的特性及其在铁氧体生产中的作用.磁性材料及器件.2002,33(4):40-43.
    [190] 倪红军,周炯之,罗金才.改善水玻璃粘结剂及相关设备的研究.南通工学院学报.1998,14(3):17-21.
    [191] Calleja F J B, Bayer R K, Ezquerra T A. Electrical conductivity of polyethylene-carbon fiber composites mixed with carbon black. J. Mater. Sci. 1988, 23(4): 1411-15.
    [192] Scheng P. Fluctuation-induced tunneling conduction in disordered materials. Phys. Rev. B 1981, 21(6): 2180-95.
    [192] Chung D D L. Review: Electrical applications of carbon materials. J. Mater. Sci. 2004, 39(8): 2645-61.
    [193] Chung D D L. Review: Electromagnetic interference shielding effectiveness of carbon materials. Carbon. 2001, 39(2): 279-85.
    [194] 刘顺华,郭辉进,段玉平等.炭黑/ABS/金属网复合材料电磁屏蔽性能的研究.材料工程.2004,(9):27-32.
    [195] Kaynak A, Polat A, Yilmazer U. Some microwave and mechanical properties of carbon fiber-polypropylene and carbon black-polypropylene composites. Mater. Res. Bull. 1996, 31(10): 1195-1206.
    [196] 宣兆龙,易建政,杜仕国.高聚物/炭黑复合材料导电性能的研究.塑料科技.1999,(6):38-40.
    [197] Kaynak A, Unsworth J, Beard G E, et al. Study of conducting Polypyrrole films in the microwave region. Mater. Res. Bull. 1993, 28(11): 1109-25.
    [198] 何显运,张兴华,童速玲等.炭黑/掺杂盐酸聚苯胺复合材料的吸波特性.广东工业大学学报.2003,20(1):16-19.
    [199] Leyva M E, Barra G M O, Moreira C F, et al. Electric, dielectric and dynamic mechanical behavior of carbon black/styrene-butadiene-styrene composites. J. Polym. Sci. Part B: Polymer Physics. 2003, 41(23): 2983-97.
    [200] 张兴华,何显运,梁健军等.炭黑/无机材料填充聚合物复合材料的微波吸收特性.材料导报.2002,16(7):76-77.
    [201] 杨显清,赵家升,王园编著.电磁场与电磁波.北京:国防工业出版社.2003:175.
    [202] Frysz C A, Shui X, Chung D D L. Carbon filaments and carbon black as a conductive additive to the manganese dioxide cathode of a lithium electrolytic cell. J. Power Sources. 1996, 58(1): 41-54.
    [203] Beyene N W, Kotzian P. (Bio)sensors based on manganese dioxide-modified carbon substrates: retrospections, further improvements and applications. Talanta. 2004, 64(5): 1151-59.
    [204] 努尔买买提,夏熙.纳米α-MnO_2的制备及其性能研究.无机材料学报.2000,15(5):802-06.
    [205] 郭再萍,刘洪涛,夏熙.粘结剂对可充二氧化锰电极性能的影响.电池.1998,28(5):195-198.
    [206] 赵志曼.微波辐照煤矸石陶瓷砖应用研究.昆明:昆明理工大学博士论文.2003:112.
    [207] 刘顺华,管洪涛,赵彦波等.二氧化锰复合材料吸波特性研究.功能材料.2006,37(2):197-99.
    [208] Hongtao Guan, Yanbo Zhao, Shunhua Liu, Shunping Lv. Application of manganese dioxide to electromagnetic wave absorber: effective permittivity and absorbing property. European Physical Journal Applied Physics. 2006.
    [209] Hongtao Guan, Shunhua Liu, Yanbo Zhao, et al. Electromagnetic characteristics of nanometer manganese dioxide composite materials. J. Electron. Mater. 2006, 35(5): 892-96.
    [210] 步文博,丘泰,徐洁等.AlN-C复相材料微波衰减性能的研究.电子元件与材料.2003,22(2):1-3.
    [211] 熊政专,段海平,段玉平等.CB/MnO_2/ABS复合平板材料的吸波性能.塑料工业.2005,33(8):68-70.
    [212] Chen P W, Chung D D L. Improving the electrical conductivity of composites comprised of short conducting fibers in a non-conducting matrix: The addition of a non-conducting particulate filler. J. Electron. Mater. 1995, 24(1): 47-51.
    [213] 吴晓光,车晔秋.国外微波吸收材料.长沙:国防科技大学出版社.1992.
    [214] Gupta S C, Agrawal N K, kumar C. Design of a single layer broadband microwave absorber using cobalt-substituted barium hexagonal ferrite. Microwave Symposium Digest, IEEE MTT-S International. USA: Albuquerque. 1992, vol. 1: 317-20.
    [215] Costa M R, Altafim R A C. Dielectric behavior of polyvinyl alcohol (PVA) and its influence on LCDs. Mol. Cryst. Liq. Cryst. 2003, 393(1): 49-55.
    [216] 李华基,谢卫东.水玻璃砂微波加热工艺及工程应用方案研究.重庆大学学报(自然科学版).1999,22(6):24-29.
    [217] 李华基,谢卫东.水玻璃砂微波加热过程温度场测试与分析.重庆大学学报(自然科学版).2000,23(1):17-19.
    [218] 卢晨,朱纯熙.脱水水玻璃的结构及强度.铸造.1998,(2):26-27.
    [219] Kobayashi M, Kasashima Y, Nakagawa H. Anti-radio wave transmission curtain wall used in buildings. J. Japan Soc. Composite Mater. 1998, 24(1): 32-34.
    [220] Kimura K I, Hashimoto O. A fundamental study on the improvement of indoor propagation for wireless LAN communication by an EM wave absorber. Microwave & Optical Technology Letters. 2004, 43(3): 226-28.
    [221] Mizumoto T, Naito Y, Yamane T, et al. Development of wide band ferrite absorber for glass curtain wall. 1999 International Symposium on Electromagnetic Compatibility. Japan: Tokyo. 1999: 496-99.
    [222] Kohling K. The manufacture of lightweight concrete using pre-expanded Styropor particles as aggregate. Brtonstein-Zeitung. 1960, 26: 208-12.
    [223] Cook D J. Expanded polystyrene concrete. In Concrete Technology & Design. Vol. 1: New Concrete Composites. Ed. R. N. Swamy. London: Surrey University Press. 1983: 41-69.
    [224] Cook D J. Expanded polystyrene beads as lightweight aggregate for concrete. Precast Concrete. 1983, 45(12): 691-93.
    [225] Bahu K G, Bahu D S. Behaviour of lightweight expanded polystyrene concrete containing silica fume. Cement & Concrete Research. 2003, 33(5): 755-62.
    [226] Chen B, Liu J Y. Properties of lightweight expanded polystyrene concrete reinforced with steel fiber. Cement & Concrete Research. 2004, 34(7): 1259-63.
    [227] 陈兵,陈龙珠.EPS轻质混凝土力学性能研究.混凝土与水泥制品.2004,(3):41-45.
    [228] 赵彦波,刘顺华,管洪涛.水泥基多孔复合材料吸波性能研究.硅酸盐学报.2006,34(2):221-24.
    [229] 管洪涛,刘顺华,段玉平等.EPS水泥基复合材料的吸波性能研究.建筑材料学报.2006.(已录用)
    [230] 管洪涛,刘顺华,段玉平等.EPS水泥复合材料的吸波性能与抗压性能研究.材料科学与工程学报.2006,24(4):1-5.
    [231] Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles. A Wiley-International Publication. 1983: 287.
    [232] 葛副鼎,朱静,陈利民.超微颗粒吸收与散射截面.电子学报.1996,(6):82-85.
    [233] Duan Y P, Liu S H, Wen B, et al. A discrete slab absorber: absorption efficiency and theory analysis. Journal of Composite Materials. 2006 (in press).
    [234] 彭家惠,陈明凤,张建新.EPS表面改性及其保温砂浆的耐候性与抗裂性.重庆大学学报(自然科学版).2002,25(1):24-27.
    [235] Chung D D L. Electrical conduction behavior of cement-matrix composites. J. Mater. Eng. & Perf. 2002, 11(2): 194-204.
    [236] Cao J Y. Electrical behavior of structural cement-based materials: Science and Applications. Ph. D. dissertation, State University of New York at Buffalo. 2004.
    [237] Zhang X, Ding X Z, Lim T H, et al. Microwave study of hydration of slag cement blends in early period. Cement & Concrete Res. 1995, 25(5): 1086-94.
    [238] Camp P R, Bilotta S. Dielectric properties of Portland cement paste as a function of time since mixing. J. Appl. Phys. 1989, 66(12): 6007-14.
    [239] Zhang X, Ding X Z, Ong C K, et al. Dielectric and electrical properties of ordinary Portland cement and slag cement in the early hydration period. J. Mater. Sci. 1996, 31(3): 1345-52.
    [240] Musil J, Zacek F. Microwave Measurements of Complex Permittivity by Free Space Methods and Their Applications. Elsevier, New York. 1986.
    [241] Truong V T, Riddell S Z, Muscat R F. Polypyrrole based microwave absorbers. J. Mater. Sci. 1998, 33(20): 4971-76.
    [242] Oh J H, Oh K S, Kim C G, et al. Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges. Composites Part B: Engineering. 2004, 35(1): 49-55.
    [243] Bandyopadhyay P C, Chaki T K, Srivastave S, et al. Dielectric behavior of polystyrene foam at microwave frequency. Polymer Engineering & Science. 1980, 20 (6): 441-46.
    [244] Ravindrarajah R S, Tuck A J. Properties of Hardened concrete containing treated expanded polystyrene beads. Cement & Concrete Composites. 1994, 16 (4): 273-77.
    [245] 张铁蓉,张雪松,李海涛.提高聚苯乙烯轻集料混凝土多相复合材料界面粘结性能的研究.河北建筑工程学院学报.2005,23(1):54-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700