ZnO和ZnO/MgO复合层薄膜的PLD法制备及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)是一种直接带隙宽禁带(3.37eV)Ⅱ-Ⅵ族化合物半导体材料,具有较大的激子束缚能(60 meV),理论上可以在室温下实现紫外光的受激发射。同时,ZnO还是优质的压电、气敏及光电材料。ZnO薄膜的制作方法很多,传统方法有:磁控溅射(magnetron sputtering)、化学气相沉积(CVD)、溶胶凝胶法(sol-gel)、喷雾热解法(spay pyrolysis)、热氧化法(thermal oxidation)、分子束外延(MBE)等,新的生长技术如脉冲激光沉积(PLD)、金属有机物化学气相沉积(MOCVD)、原子层外延生长法(ALE)、激光分子束外延(L-MBE)等也开始广泛应用。由于ZnO在结构、能带、电学和光学方面的诸多优点,加上ZnO薄膜的制作方法很多,可以适应不同的应用需求,ZnO在器件应用方面具有广阔的应用范围,潜力很大,前景极好。它可以被用来制作透明电极、压敏电阻、太阳能电池窗口、表面声波器件、气体传感器、发光二极管等。在短波区域,ZnO可用于制造紫外发光器件和紫外激光器,对于提高光记录密度及光信息的存取速度起着非常重要的作用。
     脉冲激光沉积是近年来发展起来的先进的薄膜生长技术,能够制备出高质量的薄膜。它的工作原理是在高真空背景下用高能激光烧蚀ZnO靶材生成蒸发物淀积在加热衬底上生长晶体薄膜。有多种衬底可以生长ZnO薄膜,目前使用最多的是Al_2O_3衬底,已经以Al_2O_3为衬底制备出高质量的ZnO薄膜。而Si是最重要和使用最广泛的半导体材料,它的优点是价格便宜,已经拥有成熟的加工工艺。本论文中用脉冲激光沉积方法在Si(111)衬底上按照衬底温度、脉冲激光重复频率、环境氧压等不同条件生长了ZnO薄膜,并用X射线衍射(XRD)、荧光光谱(PL)、扫描电子显微镜(SEM)、原子力显微镜(AFM)以及台阶仪和电子探针等测试手段进行了表征。根据对ZnO薄膜的结构和发光特性的研究,找到了生长薄膜的优化条件,得到了高度c-轴(002)取向的结晶质量较高的ZnO薄膜。发现在温度为650℃左右、氧压50Pa左右、频率5Hz左右的范围内能生长出结晶质量较好的薄膜,并能得到半高宽较窄,强度较大的紫外发光峰。
     同时研究了ZnO薄膜的发光机理,认为薄膜紫外峰源自自由激子复合发光,绿光峰的发光机制与锌位氧O_(zn)关系密切,氧空位是蓝光发射的重要原因。
     PLD方法的一个优点是可以对生长的薄膜进行原位监测,反射式高能电子衍射仪(RHEED)是本试验中用来对ZnO薄膜生长进行原位监测的重要仪器。通过观察研究了ZnO薄膜的生长方式,对观测到的Si(111)衬底和Al_2O_3衬底的RHEED图像进行了结构分析,发现了ZnO薄膜的两种RHEED电子衍射点阵并对它们进行了标定。
ZnO is a compound semiconductor with wide direct band gap of 3.37eV and a large exciton binding energy of 60meV at room temperature. Theoretically, it can realize stimulated ultraviolet (UV) emission at room temperature. ZnO is also an ascendant piezoelectric, gas sensitive and optoelectronic material. There are many growth methods for ZnO films such as magnetron sputtering, chemical vapor deposition, sol-gel, spay pyrolysis, thermal oxidation and molecular beam epitaxy (MBE). Recently, some new growth methods such as pulsed laser deposition (PLD), metal organic chemical vapor deposition (MOCVD), atomic layer epitaxy and laser molecular beam epitaxy have been widely used. Because ZnO thin film has so many advantages in structural and electrical properties and can be grown through many methods, it can suit many different applied demands. ZnO thin films can be used to fabricate transparency electrode, piezoresistor, cell battery window, surface acoustic wave device, gas sensor and light-emitting diode etc.. In short wave region, ZnO can be used to fabricate UV light emitting and UV laser devices, which is very important for improvement of memory density and optical information access speed.PLD is a newly developed film growth technique which can fabricate high-quality films. In this technique, high density laser ablates the target and produces ZnO plume depositing on heated substrate in high vacuum background. Many kinds of substrates can be used to grow ZnO thin films. At present, the most abroad used substrate is Al_2O_3 and high-quality ZnO films have been obtained on it. Si is the most important and abroad used semiconductor material. It is cheap in price and has mature processing technique. In this paper, ZnO films were prepared on Si (111) substrates at various substrate temperatures, pulsed laser repetition frequencies and oxygen pressures. The films were examined by X-ray diffraction (XRD), photoluminescence spectra (PL), scan electron microscopy (SEM), atomic force microscopy (AFM), surface profiler and electronic probe. Through the research of the structural and optical properties of ZnO films, optimized conditions for growing ZnO films were obtained. The results suggested that high quality ZnO films with highly c-axis oriented can be prepared by PLD. The narrower and stronger UV peak of ZnO films with excellent crystallinity can be found from the samples grown at about 650°C, 50Pa and 5Hz.Light emission mechanics of ZnO films were also studied. It is found that the UV emission is origin from free exciton recombination radiation. The green peak is closely related
    with oxygen atom at the zinc position in the crystal lattice, OZn and blue peak is from oxygen vacancy, Vo.One of the merits of PLD technique is that the growth of films can be monitored in situ. In our experiments, we observed the growth of ZnO thin films maily using reflection high-ernergy electron diffraction instrument. The growth procedure of ZnO thin films was examined by RHEED and the growth mode of ZnO films was analysed. The RHEED images of Si (111) and A12O3 substrates were analysed in structure. Two kinds of RHEED electron diffraction dot matrixes of ZnO films were found and indexed.MgO has a band gap of about 6.7eV and different optical index of refraction with ZnO. For the purpose of modulating the ernergy band gap structure and light emission properties of ZnO and making Bragg reflector to improve the UV emission of ZnO films using their different optical index of refraction, ZnO/MgO multilayer films with different growth periods were fabricated using ZnO and MgO targets. The structure and the PL properties of ZnO/MgO multilayer films were explored. Compared with highly c-axis orientation ZnO films, in the multilayer films the position of (002) peak of ZnO have a excursion toward larger diffraction angle and UV peak of ZnO have a blue shift because of the doping of Mg. These made the energy band gap of ZnO in multilayer films increas about 0.05 eV than that of ZnO films. From TEM images, the film is found to be polycrystal grains and have more crystal direction than ZnO films. In TEM images, the crystal characters and area distribution of the multilayer films were obtained. The TEM images suggest that the doping of Mg atoms into ZnO lattice resuted in that distorted lattice in the (001) plane and the increase of lattice constant a and the decrease of lattice constant c of hexangular ZnO. The other area formed MgO and ZnxMgi.xO polycrystal grains determined by the different diffusion extent. All these work made a primary foundation for later research.
引文
[1] H P Maruska, J J Tietjen. The Preparation and Properties of Vapor-Deposited Single-Crystal-Line GaN. Applied Physics Letters, 1969, 15(10): 327-329.
    [2] I hkasaki, S Sota, H Sakai et al. Shortest Wavelength Semiconductor Laser Diode. Electronics Letters, 1996, 32(12): 1105-1106.
    [3] G Fasol. Longer Life for the Blue Laser. Science, 1997, 278 (5345): 1902-1903.
    [4] Hang Ju Ko, Yefan Chen, Soon Ku Hong, et al. MBE Growth of Gigh-Quality ZnO Films on Epi-GaN. Journal of Crystal Growth, 2000, 209(4): 816-821.
    [5] G A Rozgonyi, W J Polito. Preparation of ZnO Thin Films by Sputtering of the Compound in Oxygen and Argon. Applied Physics Letters, 1966, 8(9): 220-221.
    [6] N F Foster, G A Rozgonyi. Zinc Oxide Film Transducers. Applied Physics Letters, 1966, 8(9): 221-223.
    [7] E L Paradis, A J Shuskus. RF Sputtered Epitaxial ZnO Films on Sapphire for Integrated Optics. Thin Solid Films, 1976, 38(2): 131-141.
    [8] L P Solie. Piezoelectric Acoustic Surface Waves for a Film on Substrate. Applied Physics Letters, 1971, 18(4): 111-112.
    [9] L A Coldren. Zinc-Oxide-on-Silicon Acoustically Scanned Imager with Positive Sensitivity and Storage Capabilities. Applied Physics Letters, 1975, 27(1): 6-8.
    [10] C R Gorla, N W Emanetoglu, S Liang, et al. Structural, Pptical, and Surface Acoustic Wave Properties of Epitaxial ZnO Films Grown on (01(1)2) Sapphire by Metalorganic Chemical Vapor Deposition. Journal of Applied Physics, 1999, 85(5): 2595-2602.
    [11] N W Emanetoglu, C R Gorla, Y Liu et al. Epitaxial ZnO Piezoelectric Thin Films for Saw Filters. Materials Science in Semiconductor Processing, 1999, 2(3): 247-252.
    [12] G S Kino, R S Wagers. Theory of Interdigital Couplers on Nonpiezoelectric Substrates. Journal of Applied Physics, 1973, 44(4): 1480-1488.
    [13] P Zu, Z K Tang, G K L Wong, M Kawasaki et al. Ultraviolet Spontaneous and Stimulated Emissions from ZnO Microcrystallite Thin Films at Room Temperature. Solid State Communications, 1997, 103(8): 459-463.
    [14] Z K Tang, G K L Wong, P Yu et al. Room-Temperature Ultraviolet Laser Emission from Self-Assembled ZnO Microcrystallite Thin Films. Applied Physics Letters, 1998, 72(25): 3270-3272.
    [15] Shuji Nakamura, Masayuki Senoh, Shin-ichi Nagahama et al. Room-Temperature Continuous-Wave Operation of InGaN Multi-Quantum-Well Structure Laser Diodes. Applied Physics Letters, 1996, 69(26): 4056—4058.
    [16] A Ohtomo, M Kawasaki, Y Sakurai, Y Yoshida, et al. Room Temperature Ultraviolet Laser Emission from ZnO Nanocrystal Thin Films Grown by Laser MBE. Materials Science & Engineer: B, 1998, 54(1-2): 24-28.
    [17] Shuji Nakamura, Takashi Mukai, Masayuki Senoh. Candela-Class High-Brightness InGaN/AlGaN Double-Heterostructure Blue-Light-Emitting Diodes. Applied Physics Letters, 1994, 64(13):1687-1689.
    [18] D M Bagnall, Y F Chen, T Yao, et al. Optically Pumped Lasing of ZnO at RoomTemperature. Journal of Applied Physics, 1997, 70(17):2230—2232.
    [19] P R Tavernier, P M Verghese, D R Clarke. Photoluminescence from Laser Assisted Debonded Epitaxial GaN and ZnO films. Journal of Applied Physics, 1999, 74(18):2678-2680.
    [20] P Yu, Z K Tang, G K L Wong, et al. Room-Temperature Gain Spectra and Lasing in Microcrystalline ZnO Thin films. Journal of Crystal Growth, 1998, 184/185:601-604.
    [21] S Liang, H Sheng, Y Liu, et al. ZnO Schottky Ultraviolet Photodetectors. Journal of Crystal Growth, 2001, 225(2-4)110-113.
    [22] B P Zhang, N T Binh, K Wakatsuki et al. Growth of ZnO/MgZnO Quantum Wells on Sapphire Substrates and Observation of the Two-Dimensional Confinement Effect. Applied Physics Letters, 2005(86):032105(1-3).
    [23] G N Panin, A N Baranov, Y J Oh, et al. Effect of Thermal Annealing on the Structural and the Optical Properties of ZnO/MgO Nanostructures. Journal of Crystal Growth, 2005, 279(3-4):494-500.
    [24] Shizuo Fujita, Hiroshi Tanaka, Shigeo Fujita. MBE Growth of Wide Band Gap Wurtzite MgZnO Quasi-alloys with MgO/ZnO Superlattices for Deep Ultraviolet Optical Functions. Journal of Crystal Growth, 2005, 278(1-4):264-267.
    [25] Zhong Lin Wang. Zinc Oxide Nanostructures: Growth, Properties and Applications. Journal of Physics Condensed Matter, 2004, 16:R829 - R858.
    [26] Q Wan, Q H Li, Y J Chen et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied Physics Letters, 2004, 84(18): 3654-3656.
    [27] K Minegishi, Y Koiwai, Y Kikuchi et al. Growth of P-type Zinc Oxide Films by Chemical Vapor Deposition. Japanese Journal of Applied Physics, Part2, 1997, 36 (11A): L1453-L1455.
    [28] M Joseph, H Tabata and T Kawai. P-type Electrical Conduction in ZnO Thin Films by Ga and N Codoping. Japanese Journal of Applied Physics, Part2, 1997, 38 (11A): L1205-L1207.
    [29] T Yamamoto and H K Yoshida. Solution Using a Codoping Method to Unipolarity for the Fabrication of P-type ZnO. Japanese Journal of Applied Physics, Part2, 1997, 38(2B): L166-L169.
    [30] D C Look, D C Reynolds, C W Litton, et al. Characterization of Homoepitaxial P-Type ZnO Grown by Molecular Beam Epitaxy. Appled Physics Letters, 2002, 81(10): 1830-1832.
    [31] K K Kim, H SKim, D K Hwang et al. Realization of P-type ZnO Thin Films via Phosphorus Doping and Thermal Activation of the Dopant. Appled Physics Letters, 2003, 83 (1): 63-65.
    [32] A V Singh and R M Mehra. P-type Conduction in Codoped ZnO Thin Films. Journal of Applied Physics, 2003, 93 (1): 396-399.
    [33] M Joseph, H Tabata, H Saeki, et al. Fabrication of the Low-resistive P-type ZnO by Codoping Method. Physica B: Condensed Matter, 2001, 302/303: 140-148.
    [34] Xin-Li Cup, Hitoshi Tabata, Tomoji Kawai. Pulsed Laser Reactive Deposition of P-Type ZnO Film Enhanced by an Electron Cyclotron Resonance Source. Journal of Crystal Growth, 2001, 223(1-2): 135-139.
    [35] Xin-Li Cup, Hitoshi Tabata, Tomoji Kawai. Epitaxial Growth and Optoelectronic Properties of Nitrogen-doped ZnO Films on (11-20) Al_2O_3 substrate. Journal of Crystal Growth, 2002, 237/239, Part 1: 544-547.
    [36] T Yamamoto. Codoping for the Fabrication of P-type ZnO. Thin Solid Films, 2002, 420/421: 100-106.
    [37] Kyu-Hyun Bang, Deuk-Kyu Hwang, Min-Chul Park, et al. Formation of P-type ZnO Film on InP Substrate by Phosphor Doping. Applied Surface Science, 2003, 210(3-4): 177-182.
    [38] Zhi-Zhen Ye, Zhu-Ge Fei, Jian-Guo Lu, et al. Preparation of P-type ZnO Films by Al+N-codoping Method. Journal of Crystal Growth, 2004, 265(1-2): 127-132.
    [39] J G Lu, L P Zhu, Z Z Ye, et al. Dependence of Properties of N-Al CodopedP-Type ZnO Thin Films on Growth Temperature. Applied Surface Science, 2005, 245(1-4): 109-113.
    [40] Y R Ryu, S Zhu, D C Look, et al. Synthesis of P-Type ZnO Films. Journal of Crystal Growth, 2000, 216(1-4): 330-334.
    [41] Y R Ryu, W J Kim, H W White. Fabrication of Homostructural ZnO P-N Junctions. Journal of Crystal Growth, 2000, 219(4): 419-422.
    [42] X L Cup, J H Choi, H Tabata et al. Fabrication and Optoelectronic Properties of a Transparent ZnO Homostructural Light-emiting Diode. Japanese Journal of Applied Physics, Part2, 2001, 40 (3A): L177-L180.
    [43] Jeff Nause, Ming Pan, VaratharajanRengarajan et al. ZnO Semiconductors for Lighting. Proceedings of SPIE. 2005, 5941: 29410D(1-8).
    [44] 邹璐,叶志镇,黄靖云等.脉冲激光沉积法生长Zn_(1-x)Mg_xO薄膜.半导体学报,2002,23(12):1291-1294.
    [45] 郭宝增,王永青,宗晓萍等.ZnO材料的电子输运特性.半导体学报,2003,23(7):723-728.
    [46] 马勇,王万录,廖克俊等.ZnO薄膜的光致发光.功能材料,2004,35(2):139-144.
    [47] 徐伟中,叶志镇,周婷等.MOCVD法以NO气体为掺杂源生长p型ZnO薄膜.半导体学报,2005,26(1):38-41.
    [48] 温战华,于立,方文卿等.退火温度对ZnO薄膜结构和发光性能的影响.半导体学报,2005,26(1):498-501.
    [49] 张德恒.用射频偏压溅射制备的具有快速紫外光响应的ZnO薄膜.半导体学报,1995,16(10):79-782.
    [50] Zhuxi Fu, Bixia Lin, Guihong Liao, et al. The Effect of Zn Buffer Layer on Growth and Luminescence of ZnO Films Deposited on Si Substrates. Journal of Crystal Growth, 1998, 193(3): 316-320.
    [51] Xu peng-shou, Sun Yu-ming, Shi Chao-shu, et al. Electronic Structure of ZnO and It' s Defects. Science in China (A), 2001, 31(4): 358-365.
    [52] J M Bian, X M Li, X D Gao et al. Deposition and Electrical Properties of N-In Codoped p-type ZnO Films by Ultrasonic Spary Pyrolysis. Applied Physics Letters, 2004, 84 (4): 541-543.
    [53] B M Bian, X M Li, C Y Zhang et al. Synthesis and Characterization of Two-Layer-Structured ZnO p-n Homojunctions by Ultrasonic Spray pyrolysis. Applied Physics Letters, 2004, 84 (19): 3783-3785.
    [54] 矫淑杰,张振中,吕有明等.在蓝宝石衬底上生长的氧化锌p-n同质结发光二极管.发光学报,2005,26(4):542-544.
    [55] 刘恩科,朱秉升,罗晋生等.半导体物理学.北京:国防工业出版社,2001.
    [56] J E Jafe and h C Hess. Hartree-Fock Study of Phase Changes in ZnO at High Pressure. Physics Review B, 1993, 48(11): 7903-7909.
    [57] 马勇.ZnO薄膜制备及性质研究:(博士毕业论文).重庆:重庆大学,2004.
    [58] D C Reynolds, D C Look B Jogai. Optically Pumped Ultraviolet Lasing From ZnO, Solid State Communications, 1996, 99(12): 873-875.
    [59] C Klingshim. The Luminescence of ZnO Under nigh One-and Two-Quantum Excitation. Physica Status Solidi B, 1975, 71(2): 547-559.
    [60] 王金忠.ZnO薄膜材料的MOCVO生长、退火及掺杂研究:(博士毕业论文).长春:吉林大学,2002.
    [61] G B Zhang, C S Shi, Z F Hart, et al. Photoluminescent Properties of ZnO Films Deposited on Si Substrates. Chinese Physics Letters, 2001, 18 (3): 441-442.
    [62] B J Jin, H S Woo, S Im. Et al. Relationship Between Photoluminescence and Electrical Properties of ZnO Thin Films Grovn by Pulsed Laser Deposition, Applied Surface Science, 2001, 169-170: 521-524.
    [63] W I Lee, R L Young. Defects and Degradation in ZnO Varistor. Applied Physics Letters, 1996, 69(4): 526-528
    [64] K Vanheusden, W L Warren, C H Seager, Mechanisms Behind Green Photoluminescence in ZnO Phosphor Powders, Journal of Applied Physics, 1996, 79(10): 7983-7990.
    [65] 叶志镇,张银珠,徐伟中等.ZnO薄膜p型掺杂的研究进展.无机材料学报,2003,18(1):11-18.
    [66] 许小亮,杨晓杰,付竹西.p型ZnO和ZnO同质p-n结的研究进展,功能材料,2003,34(2):121-125.
    [67] 徐彭寿,孙玉明,施朝淑等.ZnO及其缺陷电子结构对光谱特性的影响.红外与毫米波学报,2002,21(S1):91-96
    [68] K Vanheusden, C H Seager, W L Warrmen et al. Conelation Between Photoluminescence and Oxygen in ZnO Phosphors. Applied Physics Letters, 1996, 68(3): 403-405.
    [69] Jin B J, Im S, Lee S Y. Violet and UN Luminescence Emitted from ZnO Thin Films Grown by Pulsed Laser Deposition. Thin Solid Film, 2000, 366(1-2): 107-110.
    [70] M Inamit, N Antoh, T Akatas. UN Emission From Sputtered Zinc Oxide Thin Films. Thin Solid Film 1983, 109(4): 379-384.
    [71] 林碧霞,傅竹西,贾云波.非掺杂ZnO薄膜中紫外与绿色发光中心.物理学报,2001,50(11):2208-2211
    [72] 王卿璞,张德恒,薛忠营等.射频磁控溅射法制备ZnO薄膜的发光特性.发光学报,2003,24(1):69-72.
    [73] B J Jin, S H Bae, S Y Lee. Effects of Native Effects on Optical and Electrical Properties on ZnO Prepared by Pulsed Laser Deposition, Materials Science & Engineering B, 2000, 71(1-3): 301-305.
    [74] 徐小亮,施朝淑.纳米微品结构ZnO及其紫外激光.物理学进展,2000,20(4):357-368.
    [75] Z K Tang, G K L Wong, P Yu et al. Room-Temperature Ultraviolet Laser Emission from Self-Assembled ZnO Microcrystallite Thin Films. Applied Physics Letters, 1998, 72(25): 3270-3272.
    [76] Cao H, Zhao Y G, Ho S T, et al. Random Laser Action in Semiconductor Powder. Physics Review Letters, 1999, 82(11): 2278—2280.
    [77] 王卿濮.ZnO薄膜的制备及发光特性的研究:(博士毕业论文).济南:山东大学,2003.
    [78] M Kawasaki, A Ohtomo, I Ohkubo et al. Excitonic Ultraviolet Laser Emission at Room Temperature from Naturally Made Cavity in ZnO Nanocrytal Thin Films. Materials Science and Engineering: B, 1998, 56(2-3): 239-244.
    [79] Weirana D S and Lajindljk A. Light Diffusion with Gain and Random Lasers. Physics Review E, 1996, 54(4): 4256-4261.
    [80] H Cao, J Y Wu, H C Ong et al. Second Harmonic Generation in Laser Ablated Zinc Oxide Thin Films. Applied Physics Letters, 1998, 73(5): 572-574.
    [81] Cao H, ZhaoY Gong H C, et al. Ultraviolet Lasing in Resonators Formed by Scattering in Semiconductor Polycrystalline Films. Applied Physics Letters, 1998, 73(25): 3656-3658.
    [82] T Detchprohm, K Hitamatsu. Hydride Vapor Phases Epitaxial Growth of a High Quality GaN Films Using a ZnO Buffer Layer. Applied Physics Letters, 1992, 61(22): 2688-2690.
    [83] 陈光华.新型电子薄膜材料.北京:化学工业出版社,2002.
    [84] E A Kafadaryan, S L Petrosyan, A G Hayrapetyan. Infrared 45° Reflectometry of Li DopedZnO Films. Journal of Applied Physics, 2004, 95(6): 3005-3009.
    [85] Andrew P Lee, Brian J Reedy. Temperature Modulation in Semiconductor Gas Sensing. Sensors and Actuators B 1999, 60(1):35-42
    [86] K S Weibenrieder, J Muller. Conductivity Model for Sputtered ZnO-thin Film Gas Sensors. Thin Solid Films, 1997, 300 (1-2):30-41.
    [87] R Puyane. Applications and Product Development in Varistor Technology, Journal of Materials Processing Technolog, 1995, 55(3-4):268-277.
    [88] L M Levinson, H R Philipp. Zinc Oxide Varistors-A Review. Ceramic Bulletin, 1986, 65 (4):639-646.
    [89] Y Yano, Y Takai, H Morooka. Interface states in ZnO Varistor with Mn, Co, and Cu Impurities. Journal of Materials Research, 1994, 9(1):112-118.
    [90] J Bwmasconi, S Strassler, B Knecht et al. Zinc Oxide Based Varistors: A possible Mechanism. Solid State Communications, 1977, 21(9):867-870.
    [91] G D Mahan, L M Levinson, H R Philipp. Theory of Conduction in ZnO Varistors. Journal of Applied Physics, 1979, 50(4):2799-2812.
    [92] Q Blater, F Greiner. Electrical Breakdown at Semiconductor Grain Boundaries, Physics Review B, 1986, 34(12):8555-8572.
    [93] M Singhal, V Chhabra, P Kang, et al. Synthesis of ZnO Nanoparticles for Varistor Application Using Zn-Substituted Aerosol of Microemulsion. Materials Research Bulletin, 1997, 32(2)-.239-247.
    [94] R N Viswanath, S Ramasamy, R Ramamoorthy et al. Preparation and Characterization of Nanocrystalline ZnO Based Materials for Varistor Applications. Nanostructured Materials, 1995, 6(5-8):993-996.
    [95] Y Tajahashi, Kanamod M, KondohA , et al . Photoconductivity of Ultrathin Zinc Oxide Films. Japanese Journal Applied Physics, part 1, 1994, 33(12A):6611-6615.
    [96] D H Zhang, D E Brodie. Photo Response of Polycrystalline ZnO Films Deposited by RF Bias Sputtering. Thin Solid Films, 1995, 261(1-2):334-339.
    [97] D H Zhang, D E Brodie. The Effect on Polycrystalline ZnO Film Surfaces due to an Ar Plasma Introduced by a Vacuum Gauge. Thin Solid Films, 1995, 257(1):58-62.
    [98] H Fabricius, T Skettrup, P Bisgaar. Ultraviolet Detectors in Thin Sputtered ZnO Films. Applied Optics, 1986, 25(16) :2764-2767.
    [99] Y Li u, C R Gorla, S Liang, et al. Ultraviolet Detectors Based on Epitaxial ZnO Films Grown by MOCVD, Journal of Electronics Materials, 2000, 29(1):69-74.
    [100] RM White, FWVoltmer. Direct Piezoelectric Coupling to Surface Elastic Waves, Applied Physics Letters, 1965, 7(12): 314-316.
    [101] Y C Lee, S H Kuo, A New Point-Source/Point-Receiver Acoustic Transducer for Surface Wave Measurement, Sensors and Actuators A, 2001, 94(3):129-135.
    [102] M D Whitfield, B Audic, C M Flannery, et al. Acoustic Wave Propagation in Free Standing CVD Diamond: Influence of Film Quality and Temperature. Diamond Related Materials, 1999, 8(2-5): 732-737.
    [103] H Nakahata, A Hachigo, K Higaki, et al. Theoretical Study on SAW Characteristics of Layered Structures Including a Diamond Layer. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 1995, 42(3): 362-375.
    [104] M B Assouar, E Benedic, O Elmazria, et al. MPACVD Diamond Films for Surface AcousticWave Filters, Diamond Related Materials, 2001, 10(3-7): 681-685.
    [105] Y Igasaki, T Naito, K Murakami, et al. The Effects of Deposition Conditions on the Structural Properties of ZnO Sputtered Films on Sapphire Substrates. Applied Surface Science, 2001, 169/170: 512-516.
    [106] Y Yoshino, T Makino, Y Katayama, et al, Optimization of Zinc Oxide Thin Film for Surface Acoustic Wave Filters by Radio Frequency Sputtering, Vacuum, 2000, 59(2-3): 538-545.
    [107] 中国大百科全书,物理卷.北京:中国大百科全书出版社,1987.
    [108] B Bi, W S Huang, J Asmussen, et al. Surface Acoustic Waves on Nanocrystalline Diamond, Diamond Related Materials. 2002, 11(3-6): 677-680.
    [109] P B Kirby, M D G Poter, W M Y Lim. Thin Film Piezoelectric Property Considerations for Ssurface Acoustic Wave and Thin Film Bulk Acoustic Resonators, Journal of the European Ceramic Society, 2003, 23(14): 2689-2692.
    [110] S H Seo, W C Shin, J S Park. A Novel Method of Fabricating ZnO/Diamond/Si Multilayers for Surface Acoustic Wave (SAW) Device Applications. Thin Solid Films, 2002, 416(1-2): 190-196.
    [111] J D Mackenzie, C R Abernathy, J D Stewart et al. Growth of Group Ⅲ Nnitrides by Chemical Beam Epitaxy. Journal Crystal Growth, 1996, 164(I-4): 143-148.
    [112] YamadaY, Mishina, et al. Time-Resolved Nonlinear Luminescence of Biexcitons in ZnSe-Zn_xMg_(1-x)S_ySe(1-y) Single Quantum Wells. Physics Review B. 1995, 52(4): R2289-R2292.
    [113] J A Long, V G Riggs and WD Johnston. Growth of Fe-doped semi-insulating InP by MOCVD. Journal of Crystal Growth, 1984, 69(1): 10-14.
    [114] Shuji Nakarmura, Takashi Mukai, Masayuki Senoh. Candela-Cass High-Brightness InGaN/AlGaN Double-Heterostructure Blue-Light-Emitting Diodes. Applied Physics Letters, 1994, 64 (13): 1687-1689.
    [115] C K kau, S K Tiku, K M Lakin. Growth of. Epitaxial ZnO Thin Films by Organometallic. Chemical Vapor Deposition. Journal of the Electrochemical Society, 1980, 127(8): 1843-1847.
    [116] S K Ghandhi, R J Field, J R Shealy. Highly Oriented Zinc Oxide Films Grown by the Oxidation of Diethylzinc. Applied Physics Letters, 1980, 37 (5): 449-451.
    [117] K Tabuchi, W W Wenas, A Yamada et al. Optimization of ZnO Films for Amorphous Silicon Solar Cells. Japan journal of Applied Physics. Part1, 1993, 32(9A): 3764-3769.
    [118] M Shimizu, A Monma, T Shiosake et al. Effects of UV Light Irradiation on The Growth of ZnO Films. Journal of Crystal Growth, 1989, 94(4):895-900.
    [119] G A Rozgonyi and W J Polito. Preparation of ZnO Thin Films by Sputtering of the Compound in Oxygen and Argon. Applied Physics Letters, 1966, 8 (9):220-221.
    [120] G L Dybwad. C-Axis Orientation of Sputtered ZnO Films Journal Applied Physics, 1971, 42(12):5192-5194.
    [121] T Mitsuyu, S Ono, and K Wasa. Structures and SAW Properties of RF-Sputtered Single-Crystal Films of ZnO on Sapphire. Journal Applied Physics, 1980, (15):2464-2470.
    [122] N Fujimura, T Nishihara, S Goto et al. Control of Preferred Orientation for ZnO Films: Control of Self-texture. Journal of Crystal Growth, 1993, 130(1-2):269-279.
    [123] H Ieki, H Tanaka, J Koike, T Nishikawa. Microwave Low Insertion Loss SAW Filter by Using ZnO/Sapphire Substrate with Ni Dopant. IEEE, MTT-S Digest. New York, 1996:409-412.
    [124] V Craciun, J Elders, J G E Gardeniers et al. Characteristics of High Quality ZnO Thin Films Deposited by Pulsed Laser Deposition. Applied Physics Letters, 1995, 65 (23): 2963-2965.
    [125] A Suzuki, T Matsushita, N Wada, Y Sakamoto et al. Transparent Conducting Al-Doped ZnO Thin Films Prepared by Pulsed Laser Deposition. Japan Journal Applied Physics Part2, 1996, 35 (1A):L56-L59.
    [126] S H ayamizu, H Tabata, H Tanaka et al. Preparation of Crystallized Zinc Oxide Films on Amorphous Glass Substrates by Pulsed Laser Deposition. Journal of Applied Physics, 1996, 80(2):787-791.
    [127] V Srikanth, V Sergo and D R Clarke. Defect Equilibria and Electrical Properties. Journal of Am. Ceramic Society, 1995, 78 (7):1931-1934.
    [128] S. A. Studenikin, Nickolay Golego, and Michael Cocpvera. Fabrication of Green and Orange Photoluminescent, Undoped ZnO Films Using Spray Pyrolysis. Journal of Applied Physics, 1998, 84(4): 2287-2294.
    [129] Y Yamamoto, K Saito, K Takahashi et al. Preparation of Boron-doped ZnO Thin Films by Photo-atomic Layer Deposition. Solar Energy Materials & Solar Cells, 200165 (1-4):125-132.
    [130] M N Kamalasanan, Subhas Chandra. Sol-gel Synthesis of ZnO Thin Films. Thin solid films, 1996, 288(1-2): 112-115.
    [131] Sankur H, Cheng J T. Formation of Dielectric and Demiconductor Thin Films by Laser Assisted Evaporation. Applied Physics A, 1988, 47(8):271-284.
    [132] Francombe M H, Krishnaswamy S V. Growth and Properties of Piezoelectric and Ferroelectric Films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1990, 8 (3) :1382-1390.
    [133] Narayan J, Tiwari P, Chen. X et al. Epitaxial Growth of TiN Films on (100) Silicon Substrates by Laser Physical Vapor Deposition. Applied Physics Letters, 1992, 61(11): 1290-1292.
    [134] Vispute R D, Talyansky V, Sharma R P et al. Growth of Epitaxial GaN Films by Pulsed Laser Deposition. Applied Physics Letters, 1997, 71 (1): 102-104.
    [135] T Znotins. Thomas Industrial Applications of Excimer Lasers. Excimer Lasers and Optics, TS Luk, Prec. SPIE 710, 1986, 55-62.
    [136] Dijkkamp D, Venkatesan T, Wu X D et al. Preparation of Y_2Ba_2CuOxide Superconductor Thin Films Using Pulsed Laser Vaporation from High T_c Bulk Material. Applied Physics Letters, 1987, 51 (8): 619-621.
    [137] 李美成,陈学康,杨建平等.脉冲激光纳米薄膜制备技术.红外与激光工程,2000,29(6):31-35.
    [138] 陈学康.大功率脉冲激光纳米薄膜制备技术.真空科学与技术,1995,15(2):86-91.
    [139] Toshiyuki Nakamura, Hideki Minoura, Hachizio Mute. Fabrication of ZnO(0001) Epitaxial Films on the Cubic(111) Substrate with C6 Symmetry by Pulsed Laser Ablation. Thin Solid Films, 2002, 405(1-2): 109-116.
    [140] 黄胜涛.固体X射线学.北京:高等教育出版社,1985.
    [141] 方容川.固体光谱学.合肥:中国科学技术大学出版社,2001.
    [142] Wang Y G, Lau S P, Zhang X H, et al. Enhancement of Near-Band-Edge Photoluminescence from ZnO Films by Face-to-face Annealing. Journal of Crystal Growth, 2003, 259(4): 335-342.
    [143] Wang Y G, Lau S P, Zhang X H, et al. Evolution of Visible Luminescence in ZnO by Thermal Oxidation of Zinc Films. Chemical Physics Letters, 2003, 375(1-2): 113-118.
    [144] Lin B, Fu Z, Jia Y. Green Luminescent Center in Undoped Zinc Oxide Films Deposited on Silicon Substrates. Applied Physics Letters, 2001, 79 (7): 943-945.
    [145] Kang H S, Kang J S, Pang S S, et al. Variation of Light Emitting Properties of ZnO Thin Films Depending on Post-annealing Temperature. Materials Science and Engineering B, 2003, 102(1-3): 313-316.
    [146] Kang J S, Kang H S, Pang S S, et al. Investigation on the Origin of Green Luminescence from Llaser-ablated ZnO Thin Film. Thin Solid Films, 2003, 443(1-2): 5-8.
    [147] Kang a S, Kang J S, Kim J W, et al. Annealing Effect on the Property of Ultraviolet and Green Emissions of ZnO Thin Films. Journal of Applied Physics, 2004, 95(3): 1246-1250.
    [148] Wang Q P, Zhang D H, Xue Z Y. et al. Mechanisms of Green Emission from ZnO Films Prepared by RF Magnetron Sputering. Optical Materials, 2004, 26(1): 23-26.
    [149] Wang J, DuG, Zhang Y, et al. Luminescence Properties of ZnO Films Annealed in Growth Ambient and Oxygen. Journal of Crystal Growth, 2004(1-4), 263: 269-272.
    [150] Ma Y, Du G T, Yang T P, et al. Effect of the Oxygen Partial Pressure on the Properties of ZnO Thin Films Grown by Metalorganic Vapor Phase Epitaxy. Journal of Crystal Growth, 2003, 255 (3-4): 303-307.
    [151] Wang Zhao-yang, nu Li-zhong, Zhao Jie, et al. Effect of the Variation of Temperature on the Structural and Optical Properties of ZnO Thin Films Prepared on Si (111) Substrates Using PLD. Vacuum, 2005, 78(1) 53-57.
    [152] F. K. Shah, B. C. Shin, S. W. Jang, Y. S. Yu, Substrate Effects of ZnO Thin Films Prepared by PLD Technique. Journal of the European Ceramic Society, 2004, 24 (6): 1015-1018.
    [153] Sang Sub Kim, Byung Teak Lee. Effects of Oxygen Pressure on the Growth of Pulsed laser Deposited ZnO Films on Si(001). Thin Solid Films, 2004, 446 (2): 307-312.
    [154] Kang H S, Kang J S, Kim J W et al. Annealing Effect on the Property of Ultraviolet and Green Emissions of ZnO Thin Films. Journal of Applied Physics, 2004, 95(3): 1246-1250.
    [155] 张德恒,王卿濮,薛忠营.不同衬底上的ZnO薄膜紫外光致发光.物理学报,2003,52(6):1484-1487.
    [156] 朱俊杰.ZnO薄膜的异质外延和特性研究:(博士毕业论文).合肥:中国科学技术大学,2005.
    [157] 方俊鑫,陆栋.固体物理学.上海:上海科学技术出版社,1980.
    [158] J A Van Vechten. Simple Theoretical Estimates of the Schottky Constants and Virtual Enthalpies of Single Vacancy Formation in Zinc. Journal of Electrochemic Society, 1975,122 (U2): 419-423.
    [159] Zhuxi Fu, Bixia Lin, Guihong Liao et al. The Effect of Zn Buffer Layer on Growth and Luminescence of ZnO Films Deposited on Si Substrates. Journal of Crystal Growth, 1998, 193(3): 316-321.
    [160] Q P Wang, D H Zhang, Z Y Xue, et al. Violet Luminescence Emitted from ZnO Films Deposited on Si Substrate by rf Magnetron Sputtering. Applied Surface Science, 2002, 201(1-4): 123-128.
    [161] Zebo Fang, YinyueWang, Dayin Xu et al. Blue Luminescent Center in ZnO Films Deposited on Silicon Substrates. Optical Materials, 2004, 26 (3): 239-242.
    [162] Xinqiang Wang, Shuren Yang, Xiaotian Yang et al. ZnO Thin Film Grown on Silicon by Metal-organic Chemical Vvapor Deposition. Journal of Crystal Growth, 2002, 243 (1): 13-18.
    [163] Eun Sub Shim, Hong Seong Kang, Jeong Seok Kang et al. Effect of the Variation of Film Thickness on the Structural and Optical Properties Deposited on Sspphire Substrate Using PLD. Applied Surface Science, 2002, 186(1-4): 474-476.
    [164] Jiangnan Dai, Hechu Liu, Wenqing Fang et al. Comparisons of Structural and Optical Properties of ZnO Films Grown on (0001) Sapphire and GaN/(0001) Sapphire Template by Atmospheric-pressure MOCVD. Materials Science and Engineering B, 2006, 127 (2-3): 280-284.
    [165] W. G. Hart, S. G. Kang, T. W. Kim et al, Effect of Thermal Annealing on the Ooptical and Electronic Properties of ZnO Thin Films Grown on p-Si Substrates. Applied Surface Science, 2005, 245 (1-4): 384-390.
    [166] 曲喜新,过壁君.薄膜物理.北京:电子工业出版社,1994.
    [167] 杨烈宇,观文铎,顾卓明.材料表面薄膜技术.北京:人民交通出版社,1991.
    [168] 陆家和,陈长彦.现代分析技术.北京:清华大学出版社,1995.
    [169] 郎家红.GaN ECR-PEMOCVD生长表面PHEED图像研究:(硕士毕业论文).大连:大连理工大学,2004.
    [170] 秦福文.RHEED原位监测的PEMOCVD方法及GaN基薄膜低温生长:(博士毕业论文).大连:大连理工大学,2004.
    [171] W Braun. Applied RHEED Reflection High-Energy Electron Diffraction During Crystal Growth. Berlin Heideberg: Springer-Verlag, 1999.
    [172] I Hernandez-Calderon and H Hochst. New Method for the Analysis of Reflectior High-Energy Electron Diffraction: a-Sn (001) and InSb (001) Surfaces. Physical review B, 1983, 27(8): 4961-4965.
    [173] L C Snyder, Z Wasserman and J W Moslowitz. Milk-Stool Model for Si (111) Surface Reconstruction. Journal of Vacuum Science Technology, 1979, 16(5): 1266-1269.
    [174] 郭可信.电子衍射图在晶体学中的应用.北京:科学出版社,1983.
    [175] J W Edington. The Operation and Calibration of the Electron Microscope. Eindhoven: N V Phillips' Gloeilampenfabrieken, 1974.
    [176] 王志俊.PLD法制备MgO薄膜及其表征:(硕士毕业论文).大连:大连理工大学,2006.
    [177] 朱建国,郑文琛,郑家贵等.固体物理学.北京:科学出版社。2005.
    [178] 王华馥.固体物理实验方法.北京:高等教育出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700