用户名: 密码: 验证码:
应用基因沉默技术调节大豆脂肪酸代谢进而选育高油和高油酸大豆新材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应用基因工程技术调节大豆脂类代谢途径,探索相关基因的调控机制,对于大豆脂肪酸合成的基础研究和品质育种是一项有效和快捷的途径。本论文以吉林大豆为材料,以蛋白质和脂肪酸代谢的“底物竞争”假说为依据,采用基因工程技术,探讨大豆fad2(脂肪酸脱氢酶)基因和pepc(磷酸烯醇式丙酮酸羧化酶)基因在调控大豆种子脂肪酸合成代谢中的作用,进而选育高油酸和高油的转基因大豆材料。根据基因沉默原理,克隆了大豆fad2和pepc基因的片段,分别构建了基因沉默ihpRNA高效表达载体pBIGFP-FAD2、pBI-FAD2和pBI-PEP;以农杆菌介导的遗传转化方法并结合嫁接技术转化和筛选大豆吉林35,对再生植株进行分子鉴定,基因功能检测和一系列生理生化实验,分析和研究了pepc基因和acc基因在大豆种子发育过程中的时间表达模式。
     通过农杆菌介导的遗传转化方法将pBIGFP-FAD2载体转化三个高油大豆品种吉林35,吉林47和吉科豆1号。检测报告基因GFP的表达,结果表明,吉林35是大豆胚尖再生系统中最敏感的品种,其表达效率可达到42.9%。本实验优化了大豆胚尖转化系统的卡那霉素筛选压力,并首次尝试将嫁接技术应用到大豆再生系统中替代生根炼苗过程,再生苗的成活率从10%提高到80%,炼苗周期由45天缩短到10天。pBI-FAD2转化吉林35共获得180株再生植株,其中34株PCR阳性植株经分子检测证明外源基因已经整合到植物基因组中,8份材料种子油酸含量有不同程度的提高。阳性材料通过Southern和Northern杂交检测、脂肪酸含量及油酸脱氢比例(ODP)分析,证明ihpRNA沉默fad2基因,导致了油酸含量增加、亚油酸含量降低的效果,并且具有孟德尔单因素遗传规律。阳性植株种子脂肪酸检测表明,油酸含量从对照的17.5%提高到50%左右。
     通过农杆菌介导转化pBI-PEP载体到吉林35大豆中,共获得再生植株265株,PCR阳性植株64株,Southern杂交证明目的基因整合至基因组中。75%阳性植株(48株)的油含量有不同程度的提高,其中9份阳性材料T1-T4代大豆油含量平均为22.55%,比对照(20.75%)提高了1.8%个百分点;蛋白质含量平均为34.07%,比对照(36.77%)下降2.7%。选取其中4份材料,检测阳性材料(T3代种子)的脂肪酸组分表明,高油材料与对照差异很小。在种子的五个不同发育期检测这4份材料的PEPC酶活性,结果表明其PEPC酶活均较对照低。使用Real-timePCR检测4份种子不同发育期pepc基因和acc基因的表达,结果表明不同发育期阳性种子pepc基因的表达量均比对照低,是同时期对照表达量的0.9倍、0.78倍、0.56倍、0.15倍和0.03倍。在种子不同发育期,阳性材料acc基因的表达量均比同时期对照高,分别是同时期对照表达量的1.23倍、1.56倍、3.01倍、1.72倍和18.78倍。转化阳性材料通过Southern杂交、pepc基因和acc基因的荧光定量表达、脂肪含量、蛋白质含量及酶活的分析,证明ihpRNA沉默pepc基因达到了油脂含量提高,蛋白质含量下降的效果,为验证植物脂肪酸代谢的“底物竞争”假说提供了新的证据。
     总之,本研究将含有fad2基因和pepc基因的沉默表达载体分别转化大豆,在转基因材料中获得了较好的fad2基因和pepc基因的沉默效果,并筛选出高油酸和高油大豆材料。为深入研究基因工程调控大豆油脂代谢和培育高油、高油酸大豆等方面提供了一定的基础和依据。同时在大豆遗传转化中利用嫁接技术,是提高胚尖转化系统再生频率的有效手段,为大豆再生系统的优化提供了新方法。
It is an effective and efficient way for the study of soybean fatty acid synthesisand quality breeding using soybean genetic engineering regulation of lipid metabolicpathways and to explore mechanisms of gene regulation. In this paper, Jilin soybeanswere chosen as materials, base on protein and fatty acid metabolism of the "substratecompetition" hypothesis and using genetic engineering techniques to explore roles ofsoybean fad2 (fatty acid desaturase) gene and pepc (phosphoenolpyruvate carboxylase)gene in the regulations of soybean seeds fatty acid synthesis metabolism, and thenselect high-oleic and high oil breedings of genetically modified soybean. In this study,gene silencing vectors pBIGFP-FAD2、pBI-FAD2 and pBI-PEP were constructedaccording to gene silencing principle in plant, which contained fatty acid metabolismgenes fad2 (oleic acid dehydrogenase) and pepc (Phosphoenolpyruvate carboxylase),They were transformed into soybeans to regulate fatty acid matabolizm withenhancing fatty acids synthesis and oleic acid accumulation, and then, to screen outhigh oleic and high oil soybean materials.
     The pBIGFP-FAD2 vector was transformed into Jilin 35, Jilin 47 and Jike 1 usingAgrobacterium tumefaciens mediated method espectively, which were three high-oilcultivars in Jilin Province. The expression of GFP showed that, Jilin 35 is the mostsensitive cultivar in embryonic tip regeneration system. Transformation efficiency wasup to 42.9%. In this study, we optimized kanamycin concentration in embryonic tipregeneration system and attempted to applicate graft technology instead of thetraditional rooting method in soybean regeneration system for the first time. Graftingmethod survival rate can be up to 80% compare to 10% in root acclimatization method,the cycle was deduced from 45 days to 10 days. Total 180 regenerated plants wereobtained in the pBI-FAD2 transformation Jilin 35 soybean study. Molecular detectionshowed that the exogenous DNAs intergrated in 34 transgenic positive plantsgenomes. Southern hybridization, Northern hybridization, fatty acid contents and oleicacid proportion (ODP) assays indicated that fad2 gene expression was inhibited by theihpRNA construct, which consistant with high oleic acid and low linoleic acid in theseeds and a single-gene segregation pattern of Mendel. The fatty acid analysis of thetransgenic positive seeds showed that oleic acid content increased from 17.5% to 41-52%.
     Expression vector pBI-PEP was transformed into Jilin 35 soybeans by A.tumefaciens method. Total 265 regenerated plants and 64 PCR-positive transgenicplants were obtained. Southern hybridization showed that targeted genes wereintegrated into the plants genomes. 48 regenerated plants with different degrees of oilcontent, number of them accounted for 75% in the positive transformation materials.Nine materials of these soybeans had 22.55% oil content in T1-T4 on average, 1.8%higher than the control (20.75%). The average protein content of these 9 positivematerials was 34.07%, down 2.7% compared with the control (36.77%). Four seedpositive materials were chosen to analyze fatty acid composition in T3 showed littledifference between the controls. At five different developing stages, four positivematerials were detected PEPC activity. The result showed PEPC activitys of positivematerials at different stages were lower than that of control respectively. Expressionsof pepc and acc in developing seeds assay using Real-time PCR showed that, pepcexpressions at all detected stages were lower than the expressions of the control at thesame stage respectively, the expressions of them were 0.9 times, 0.78 times and 0.56times, 0.15 times and 0.03 times of the controls. Acc expressions of transgenicmaterials at all stage are larger than the control respectively, the expressions of themwere 1.23 times, 1.56 times and 3.01 times, 1.72 times and 18.78 times of the controls.The positive materials were assayed by Southern blot, fluorescence quantitative geneexpressions of pepc and acc, fat composition, protein content and enzyme activityanalysis, the results confirmed ihpRNA silence pepc genetically improved oil contentand decreased protein content with fatty acid metabolism in plants, it provided newevidence to verify the "substrate competition" hypothesis.
     Overall, we constructed two silence vectors contained fad2 and pepc andtransformed them into soybeans. We obtained better silencing effect on fad2 and pepcexpression then had screened high oleic acid and high oil soybean materials. Itprovided a foundation and basis materials to study lipid metabolism and breeding highoil, high oleic acid soybeans. For the first time we showed the graft could be apply inembryonic tip regeneration system in soybean seedlings. Graft improves the frequencyof embryonic tips regeneration system. It is provides a new approach for optimizatingof soybean regeneration system.
引文
[1] Broun P,Gettner S,Somerville C. Genetic engineering of plant lipids[J].Annual Review ofNutrition,1999,19:197-216.
    [2] Sleight P. Cholesterol and coronary heart disease mortality [J]. Internal Med J,1992,22(5):576-579.
    [3]张卫明,史劲松,顾龚平.生物质能的利用和能源植物的开发[J].南京师大学报,2007,30(3):8-13.
    [4]徐颖,刘鸿雁.能源植物的开发利用与展望[J].中国农学通报,2009,25(3):297-300.
    [5]王茂丽.美国发展生物柴油对中国大豆市场的影响一基于博弈论的方案分析[D]:[博士学位论文].武汉:华中农业大学生经济管理学院,2009.
    [6]佳尼斯,布阮娜,周升.必需脂肪酸在美容化妆品中的应用[J].日用化学品科学,2005,28(8):45-48.
    [7]焦广宇,周春凌,孙长颢.中链脂肪酸复合物和亚油酸对卵巢癌多细胞球体化疗效果的影响[J].中国临床营养杂志,2008,16(2): 85-88.
    [8]孙琳.添加纳米粒子对大豆油润滑性能的影响[D]:[硕士学位论文].长春:吉林大学生物与农业工程学院,2007.
    [9] Shay E C. Diesel fuel from vegetable oils: status and opportunities [J]. Biomass and Bioenergy,1993,4(4):227-242.
    [10]盖钧镒.发展我国大豆遗传改良事业解决国内大豆供给问题[J].中国工程科学,2003,5(5):1-6.
    [11]王安顺.我国大豆进口贸易的现状分析及对策研究[J].黑龙江对外经贸,2009(11):18-19.
    [12] Billek G.Health aspects of thermoxidized oils and fats [J]. Euro J Lipid sci Tech,2000,102(8-9):587-593.
    [13] Mozaffarian D,Katan M B,Ascherio A,et al. Trans fatty acids and cardiovascular disease [J]. NEngl J Med,2006,354:1601-1613.
    [14]杨桂英,马绍宾,何瀚.大豆的遗传特点、品质改良与育种难点[J].贵州农业科学,2002,30 (6):57-60.
    [15] Conner,Paschal E H,et al. The challenges and potential for future agronomic traits in soybeans [J].AgBioForum,2004,7(1):47-50.
    [16]任波,李毅.大豆脂肪酸合成代谢的研究进展[J].分子植物育种,2005,3(3):301-306.
    [17]陈锦清,黄锐之,郎春秀等.油菜PEP基因的克隆及PEP反义基因的构建[J].浙江大学学报(农业与生命科学版),1999,25(4):365-367.
    [18]陈锦清,郎春秀,胡张华等.反义PEP基因调控油菜籽粒蛋白质/油脂含量比率的研究[J].农业生物技术学报,1999,7(4):316-320.
    [19]吴关庭,郎春秀,胡张华,等.应用反义PEP基因表达技术提高稻米脂肪含量[J].植物生理与分子生物学学报,2006,32(3):339-344.
    [20]赵桂兰,陈锦清,尹爱萍,等.获得转反义PEP基因超高油大豆新材料[J].分子植物育种,2005,3(6):792-796.
    [21] Kinney A J. Development of genetically engineered soybean oils for food applications [J]. Journalof Food Lipids,1996,3(4),273-292.
    [22] Buhr T,Sato S,Ebrahim F,et al. Ribozyme termination of RNA transcripts down-regulate seedfatty acid genes in transgenic soybean [J]. Plant J,2002,30(2):155-163.
    [23] Waterhouse P M,Graham M W,ang M B. Virus resistance and gene silencing in plants can beinduced by simultaneous expression of sense and anti-sense RNA [J]. Proc Natl Acad Sci,1998,95(23):13959-13964.
    [24] Chuang C,Meyerowitz E. Specific and heritable genetic interference by double -stranded RNA inArabidopsis thialiana [J]. Proc Natl Acad Sci,2000,97(9):4985-4990.
    [25]杨庆凯,宁海龙,孔凤江,等.从国家大豆行业标准看我国油用大豆发展趋势[J].大豆通报,2002(2): 24.
    [26]吕晓波.大豆保护性施氮技术及其应用前景[J].大豆科学,2001, 20(2): 138-140.
    [27]邱丽娟,李英慧,关荣霞,等.大豆核心种质和微核心种质的构建、验证与研究进展[J].作物学报,2009,35(4): 571-579.
    [28]常汝镇,孙建英,邱丽娟.中国大豆种质资源研究进展[J].作物杂志,1998 (3):7-9.
    [29]张彩英,张丽娟,段会军,等.大豆种质资源的分类鉴定研究[J].中国油料作物学报,2002,24(1):33-37.
    [30]李为喜,朱志华,刘三才.中国大豆( Glycine max)品种及种质资源主要品质状况分析[J].植物遗传资源学报,2004,5( 2):185-192.
    [31]张健,李福林,曲刚,等.吉林省大豆品种品质分析[J].吉林农业科学,2005,30(6): 25-26,63
    [32]宋启建,盖钧缢,马育华.大豆蛋白质和油分含量生态特点研究[J].大豆科学,1990,9(2) :121-128.
    [33]吴景良,邵荣春,吴百灵,等.东北地区大豆品种资源脂肪酸组成的分析研究[J].作物科学,1990,16(4):349-356.
    [34] Lackey J A. Chromosome numbers in the Phaseoleae and their relation to taxonomy [J]. Am JBot,1980,67(4): 595-602.
    [35]杨喆,关荣霞,王跃强,等.大豆遗传图谱的构建和若干农艺性状的QTL定位分析[J].植物遗传资源学报,2004,5(4): 309-314.
    [36]吴晓雷,王永军,贺超英,等.大豆重要农艺性状的QTL分析[J].遗传学报,2001,28(10): 947-955.
    [37]张忠臣,战秀玲,陈庆山,等.大豆油分和蛋白性状的基因定位[J].大豆科学,2004,23(2): 81-85.
    [38]杨文杰.大豆MYB转录因子的克隆及其表达研究[D]:[博士学位论文].成都:四川农业大学农学院,2007.
    [39]王安娜.大豆CH4基因克隆与生物学信息分析[D]:[硕士学位论文].沈阳:东北农业大学生命科学与理学院,2010.
    [40] Anderson J V,Lutz S M,Gengenbach B G,et al. Genomic sequence for a nuclear gene encodingacetyl-coenzyme A carboxylase (accession No. L42814) in soybean (PGR95-055) [J]. PlantPhysiol,1995,109:338.
    [41] Bourlaye Fofana,Scott Duguid and Sytvie Cloutier. Cloning of fatty acid biosynthetic genesβ-ketoacyl CoA synthase,fatty acid elongase,stearoyl-ACP desaturase,and fatty acid desaturaseand analysis of expression in the early developmental stages of flax(Linum usitatissimumL.)seeds[J]. Plant science,2004,166(6): 1487-1496.
    [42] Aghoram K,Wilson R F,Burton J W,et al. A mutation in a 3-keto-acyl-ACP synthase II gene isassociated with elevated palmitic acid levels in soybean seeds [J]. Crop Sci,2006,46(6):2453-2459.
    [43] Dehesh K,Jones A,Kuntzon D S,et al. Production of high levels of 8:0 and 10:0 fatty acid intransfenic canola by overexpression of ChFatB2,a thioesterase cDNA from Cuphea bookeriana[J] . Plant J,1996,9(2):167-172.
    [44] Cardinal A J,Burton J W,Camacho-Roger A M,et al. Molecular analysis of soybean lines withlow palmitic acid content in the seed oil [J]. Crop Sci,2007,47(1):304-310.
    [45] Chen L,Moon Y,Shanklin J,et al. Cloning and sequence of a cDNA encoding stearoyl-acylcarrier protein desaturase from Glycine max [J]. Plant Physiol,1994,109: 1498.
    [46] Li L,Wang X,Gai J,et al. Molecular cloning and characterization of a novel microsomal oleatedesaturase gene from soybean [J]. J. Plant Physiol,2007,164 (11):1516-1526.
    [47] Heppard E P,Kinney A J,Stecca K L,et al. Developmental and growth temperaturre regulation oftwo different microsomal [omega]- 6 desaturase genes in soybeans [J]. Plant Physiol,1996,110(1): 311-319.
    [48] Byfield G E,Upchurch R G. Effect of temperature on delta-9 stearoyl-ACP and microsomalomega-6 desaturase gene expression and fatty acid content in developing soybean seeds [J]. CropSci,2007,47(4):1698-1704.
    [49] Bilyeu K D,Palavalli L,Sleper D A,et al. Three microsomal omega-3-fatty acid desaturase genescontribute to soybean linolenic acid levels [J]. Crop Sci,2003,43(5):1833-1838.
    [50] Kathryn Lardizabal,Roger Effertz,Charlene Levering,et al. Expression of Umbelopsisramanniana DGAT2A in Seed Increases Oil in Soybean[J]. Plant Physiology,2008,148(1):89-96.
    [51] Cocking E C. Method for the Isolation of Plant Protoplasts and Vacuoles [J]. Nature,1960,187:962-963.
    [52] Kimball S L,Bingham E T. Adventitious bud development of soybean hypocotyl sections inculture [J]. Crop Sci,1973,13(6): 758-760.
    [53] Ivers D R,Palmer R G,Fehr W R. Anther culture in soybeans [J]. Crop Sci,1974,14(6): 891-893.
    [54]王萍,王罡,吴颖,等.大豆组织培养的研究进展[J].大豆科学,2003, 22(2): 142-145.
    [55] Kartha K K,Pahl K,Leung N L,et al. Plant regeneration from meristems of grain legumes :soybean,cowpea,peanut,chickpea,and bean[J] . Can J Bot,1981,59(9):1671 -1679.
    [56] Christianson M L,Warnick D A. Carlson P S. A morphogenetically competent soybean suspensionculture [J]. Science,1983,222(4624) :632- 634.
    [57]卫志明,许智宏.大豆原生质体培养再生植株[J].植物生理学通讯,1988(2):53-54.
    [58]陈云昭,王玉国.大豆外植体培养再生植株的研究[J] .山西农业大学学报,1983,3(1) :41 -45.
    [59]冯新华,蒋兴邨,邵启全.大豆(Glycine max L. Merr.)未成熟子叶组织的体细胞胚胎诱导和植株再生的研究[J].中国科学B辑,1988(9): 939-943.
    [60]简玉瑜.大豆原生质体的游离、培养和愈伤组织的生成[J] .大豆科学,1983,2 (2) :101-103.
    [61]罗希明,赵桂兰,简玉瑜.大豆原生质体的植株再生[J].植物学报,1990,32 (8):616-621.
    [62] Dhir Sawan K,Dhir Seema,Savka Michael A,et al. Regeneration of transgenic soybean (Glycinemax) plants from electroporated protoplasts [J]. Plant Physiol,1992,99(1):81-88.
    [63] Dhir Sarwan K,Dhir Seema,Widholm Jack M. Regeneration of fertile plants from protoplasts ofsoybean (Glycine max L. Merr.): Genotypic differences in culture response [J]. Plant Cell Rep,1992,11(5-6):285- 289.
    [64]吕慧能,盖钧镒,马育华.不同激素条件下大豆原生质体培养和植株再生[J].作物学报,1993,19 (4) : 328-333.
    [65]张贤泽,小松田隆夫.大豆原生质体经体细胞胚再生植株[J].中国科学B辑,1993,23 (2):154-158.
    [66]肖文言,王连铮.大豆幼荚子叶原生质体培养及植株再生[J].作物学报,1994,20 (6) :665-669.
    [67]肖文言,王连铮.大豆原生质体培养研究进展[J].作物杂志,1994(3): 23-25.
    [68]杨振棠,陈泽光,刘志东,等.大豆叶片的离体培养及再生植株的诱导[J].科学通报,1984(16):1012-1016.
    [69] Wright M S,Ward D V,Hinchee M A,et al. Regeneration of soybean (Glycine max L. Merr. ) fromcultured primary leaf tissue[J]. Plant Cell Rep,1987,6(2):83-89.
    [70] Kim J H,LaMotte C E,Hack E,et al. Plant regeneration in vitro from primary leaf nodes ofsoybean (Glycine max) seedlings [J]. J Plant Physiology,1990,136(6) :664-669.
    [71]吉林省农业科学院作物育种所大豆组织培养组.从大豆下胚轴愈伤组织诱导植株成功[J].植物学报,1976,18 (3) :258-262.
    [72] Kameya T,Widholm J. Plant regeneration from hypocotyl sections of Glycine species [J]. PlantScience Letters,1981,21(3):289-294.
    [73]蒋兴邨,邵启全.野生大豆(Glycine Soja)下胚轴和子叶的愈伤组织获得幼苗[J].大豆科学,1983(l):25-29.
    [74] Kaneda Y,Tabei Y,Nishimura S,et al. Combination of thidiazuron and basal media with low saltconcentrations increases the frequency of shoot organogenesis in soybeans (Glycine max (L.)Merr. ) [J]. Plant Cell Rep,1997,17(1):8-12.
    [75]张晓娟,方小平,罗丽霞,等. TDZ和BA对诱导大豆胚轴植株再生的影响[J].中国油料作物学报,2000,22 (1) :24-26.
    [76] Grant J E. Plant regeneration from cotyledonary tissue of Glycine canescens,a perennial wildrelative of soybean [J]. Plant Cell Tiss Org,1984,3(2):169-173.
    [77] Mante S,Scorza R,Cordts J. A simple, rapid protocol for adventitious shoot development frommature cotyledons of (Glycine max) cv Bragg [J]. In Vitro Cellular & Developmental Biology,1989, 25 (4):385-388.
    [78] Gai Junyi,Guo Zibiao. Efficient plant regeneration through somatic embryogenesis fromgerminated cotyledon of the soybean [J]. Soybean Genetics News letter, 1997, 24 (3):41-44.
    [79] Barwale U B,Kerns H R,Widholm J M. Plant regeneration from callus cultures of several soybeangenotypes via embryogenesis and organogenesis [J]. Planta,1986,167(4):473-481.
    [80] Ranch J P,Oglesby L,Zielinski A C,et al. Plant regeneration from embryo-derived tissue culturesof soybeans [J]. In Vitro Cellular & Developmental Biology,1985,21(11): 653-658.
    [81]周思君.从大豆幼胚诱导器官发生再生植株[J].大豆科学,1990,9(4):285-291.
    [82] Cheng T-Y,Saka H,Voqui-Dinh T H. Plant regeneration from soybean cotyledonary nodesegments in culture [J]. Plant Science letters,1980,19(2):91-99.
    [83] Yang Y-S,Wada K,Futsuhara Y. Comparative studies of organogenesis and plant regeneration invarious soybean explants [J]. Plant Science,1990,72(1):101-108.
    [84]袁鹰,刘德璞,郑培和,等.大豆组织培养再生植株研究[J].大豆科学,2001,20 (1) :9-13.
    [85]王萍,王军军,商德虎,等.影响大豆子叶节丛生芽形成的诱导因子研究[J].吉林农业科学,2001,26 (6): 20-23
    [86]尹光初.大豆花粉育株的研究[J].黑龙江农业科学,1981(l):12-14.
    [87]叶兴国,王连铮.大豆花药愈伤组织的分化及其内源激素分析[J].作物学报,1997,23(5):555-561.
    [88]程林梅,王玉国.大豆不同外植体植株再生的研究[J].中国油料作物学报,1998,20(2):21-24.
    [89]王关林,方宏筠.植物基因工程[M]:(第二版).北京:科学出版社,2002. 297-303.
    [90] Le V Q,Belles-Isles J,Dusabenyagasani M,et al. An improved procedure for production of whitespruce (Picea glauca) transgenic plants using Agrobacterium tumefaciens [J]. J Exp Bot,200152(364): 2089-2095.
    [91] Fang Y-D,Akula C,Altpeter F. Agrobacterium-mediated barley (Hordeum vulgare L)transformation using green fluorescent protein as a visual marker and sequence analysis of the TDNA:barley genomic DNA junctions [J]. J Plant Physiol,2002,159(10): 1131-1138.
    [92] Hinchee M A W,Connor-Ward D V,Newell C A,et al. Production of transgenic soybean plantsusing Agrobacterium-mediated DNA transfer [J]. Nature Biotechnology,1988 (6):915-922.
    [93] Danaldson P A,Simmonds D H. Susceptibility to Agrobacterium tumefaciens and cotyledonarynode transformation in short- season soybean [J]. Plant Cell Rep,2000,19(5): 478- 484.
    [94]卜云萍,李明春,胡国武,等.大豆子叶节组培再生系统与农杆菌介导的基因转化系统的比较研究[J].南开大学学报(自然科学版),2003,36(1):103-108.
    [95]刘海坤,卫志明.利用根癌农杆菌介导转化大豆成熟种胚尖获得转基因植株[J].植物生理与分子生物学学报,2004,30( 6) : 631-636.
    [96] Ko T-S,Lee S,Farrand S K,et al. A partially disarmed vir helper plasmid,pKYRT1,inconjunction with 2,4-dichlorophenoxyactic acid promotes emergence of regenerable transgenicsomatic embryos from immature cotyledons of soybean [J]. Planta,2004,218(4): 536-541.
    [97]许耀,贾敬芬,郑国锡.酚类化合物促进根癌农杆菌对植物离体外植体的高效转化[J].科学通报,1988(22): 1745-1748.
    [98] Clemente T E,LaValle B J,Howe A R,et al. Progeny analysis of glyphosate selected transgenicsoybeans derived fromAgrobacterium-mediated transformation [J]. Crop Sci,2000,40(3): 797-803.
    [99] Olhoft P M,Lin K,Galbraith J,et al. The role of thiol compounds in increasing Agrobacteriummediatedtransformation of soybean cotyledonary-node cells [J]. Plant Cell Rep,2001,20(8):731-737.
    [100] Olhoft P M,Flagel L E,Donovan C M,et al. Efficient soybean transformation using hygromycinB selection in the cotyledonarynode method [J]. Planta,2003,216(5): 723- 735.
    [101]王亚琴,梁承邺.硝酸银在水稻农杆菌转化中的作用[J].湖南大学学报(自然科学版),2004,31(2): 28-32.
    [102] Trick H N,Dinkins R D,Samtarém E R. Recent adwances in soybean transformation [J]. PlantTissue Culture and Biotechnology,1997,3(1): 9-26.
    [103] Loganathan M,Maruthasalam S,Shiu L Y,et al. Regeneration of soybean (Glycine max L.Merrill) through direct somatic embryogenesis from the immature embryonic shoot tip [J]. InVitro Cellular & Developmental Biology - Plant,2010,46(3):265-273.
    [104] Wright M S,Williams M H,Pierson P E. Initiation and propagation of Glycine max L. Merr.:plants from tissue cultured epicotyls [J]. Plant Cell Tiss Org,1987,8(1): 83-90.
    [105]朱家红,彭世清.茉莉酸及其信号传导研究进展[J].西北植物学报,2006,26(10):2166-2172.
    [106]林文慧.拟南芥磷脂酰肌醇信号传导途径相关基因的表达谱分析及多磷酸肌醇-5-磷酸酶的生理功能研究[D]:[博士学位论文].上海:中国科学院研究生院上海生命科学研究院,2005.
    [107] Adkinsa Yuriko,Kelley Darshan S. Mechanisms underlying the cardioprotective effects ofomega-3 polyunsaturated fatty acids [J]. J Nutr Biochem,2010,21(9):781-792.
    [108] Ohrogge J B,Kuhn D N,Stumpf P K. Subcellular localization of acyl carrier protein in leafprotoplasts of Spinacia oleracea [J]. Proc Natl Acad Sci,1979,76(3): 1194-1198.
    [109]王德龙.棉花种子油脂形成期全长cDNA文库构建与pepc基因克隆[D]:[硕士学位论文].北京:中国农业科学研究院棉花所,2009.
    [110]王幼平,曾宇,罗鹏,等.植物脂肪酸代谢工程研究进展[J]中国油料作物学报,1998,20(4):88-92
    [111]Thelen J J,Ohlrogge J B. Metabolic Engineering of Fatty Acid Biosynthesis in Plants [J].Metabolic Engineering,2002,4(1):12-21.
    [112] T?pfer R,Martini N,Schell J. Modification of plant lipid synthesis [J]. Science,1995,268(5211):681- 686.
    [113] Pollard M,Ohlrogge J B,Testing models of fatty acid transfer and lipid synthesis in spinach leafusing in vivo oxygen-18 labeling[J]. Plant Physiol,1999,121(4): 1217-1226.
    [114] Stymne S,Stobart A K,Glad G. The role of acyl-CoA pool in the synthesis of polyunsaturated18-carbon fatty acids and triacylglycerol in the microsomes of developing sunflower seeds [J].Biochemicaet Biophy sica Acta,1983,752(2):198-208
    [115] Durrett T P,Benning C,Ohlrogge J. Plant triacylglycerols as feedstocks for the production ofbiofuels [J]. Plant Journal,2008,54(4):593-607.
    [116] Gengenbach.Transgenic plants expressing maize acetyl CoA carboxylase gene and method ofaltering oil content[P].US Patent,6222099,2001,4.
    [117] Roessler P,Ohlrogge J B. Cloning and characterization of the gene that encodes acetylcoenzymeA carboxylase in the Alga Cycoltella cryptica [J]. J BioL Chem,1993,268:19254-19259.
    [118] Christopher John T,Holtum Joseph A M. Dicotyledons lacking the multisubunit form of theherbicide-target enzyme acetyl coenzyme A carboxylase may be restricted to the familyGeraniaceae [J]. Aust J of Plant Physiol,1999,27(9):845-850.
    [119]谢禄山,谭晓风.乙酰辅酶A羧化酶基因研究综述[J].中南林学院学报,2005,25(4): 89-95.
    [120]王伏林,吴关庭,郎春秀.植物中的乙酰辅酶A羧化酶(ACCase) [J].植物生理学通讯,2006,42(l): l0-14.
    [121] Roesler K R,Shorrosh B S,Ohlrogge J B. Structure and expression of an Arabidopsis acetylcoenzymeA carboxylasegene [J]. Plant Physiol,1994,105(2):611-617.
    [122] Schulte W,Schell J,Topfer R. A gene encoding acetyl-coenzyme A carboxylase from Bassicanapus[J]. Plant Physiol,1994,106(2):793-794.
    [123] Shorrosh B S,Dixon R A,Ohlrogge J B. Molecular cloning,characterization,and elicitation ofacetyl-CoA carboxylase from alfalfa[J]. Proc Natl Acad Sci USA,1994,91(10):4323-4327.
    [124] Podkowinski J,Sroga G E,Haselkom R,et al. Structure of a gene encoding acytosolic acetyl-CoA carboxylase of hexaploid wheat [J]. Proc Natl Acad Sci USA, 1996, 93(5):1870-1874.
    [125] Egli M A,Lutz S M,Somers D A,et al. A maize acetyl-coenzyme A carboxylase cDNA sequence[J]. Plant Physiol,1995,108(3):1299-1300.
    [126]范正琪.麻风树pep1基因克隆及其调控烟草蛋白质和油脂合成的作用分析[D]:[博士学位论文].北京:林业科学研究院,2010.
    [127] Hansen L,von Wettstein-Knowles P. The barley genes Acl1 and Acl3 encoding aeyl carrierproteins and are located on different chromosomes [J]. Mol Gen Genet,1991,229(3):467-478.
    [128] Hlorsek-Radojoin A,Post-Beitternmiller D,Ohlrogge D. Expression of constitutive and tissuespecific acyl carrier protein isoforms in Arabidopsis [J]. Plant Physiol,1992,98(l):206-214.
    [129] Shintani D K,Ohlrogge J B.The charaeterization of a mitochondrial acyl carrier protein isoformisolated fromArabidopsis thaliana[J].Plant Physiol,1994,104(4):1221-1229.
    [130] Seherer D E,Knauf V C. Isolation of a cDNA clone for the acyl carrier Protein-I ofspinach[J].Plant Mol Biol,1987,9(2):127-134.
    [131]谭晓风,王威浩,刘卓明,等.油茶ACP基因的全长cDNA克隆及序列分析[J].中南林业科技大学学报,2008,28(4):8-14.
    [132] Mackintosh R W,Hardie D G,Slahas A R. A new assay procedure to study the induction ofβketoacyl-ACP synthaseⅠandⅡ,and the complete purification of 3-ketoacyl-ACPsynthaseⅠfrom develoving seeds of oil seed rape (Brassica napus) [J]. Biochim Biophts Acta,1989,1002(1):114-124.
    [133] Siggaard-Andersen M,KauppinenS,von Wettstein-Knowles P. Primary structure of aceruleninbinding 3-ketoacyl [acyl carrier protein] synthase from barley chloroplasts [J]. Proc Natl Acad SciUSA,1991,88(10): 4114-4118.
    [134] Clough R C,Matthis A L,Bamum S R,et al. Purification and characterization of 3-ketoacyl-acylcarrier protein synthase-III from spinach: a condensing enzme utilizing acetyl-coenzyme-A toinitate fatty acid synthesis [J]. J Biol Chem,1992,267(29): 20992-20998.
    [135] Tai H,Post-Beittenmiller D,Jaworski J G. Cloning of a cDNAencoding 3-ketoacyl-acyl carrierprotein synthase III fromArabidopsis [J]. Plant Physiol,1994,106(2):801-802.
    [136] Chen J PBD. Molecular cloning of a cDNA encoding 3-ketoacyl-acyl carrier protein synthase IIIfrom leek [J]. Gene,1996,182(1-2): 45-52.
    [137]张羽航,鲍时翔,王延平,等.脂肪酸脱饱和的应用进展[J].生物工程进展,2001,21(2): 46-51.
    [138]李冠,杜钰,黄琼,等.脂肪酸脱氢酶研究进展[J].食品与生物技术学报,2007,26(2) :121-126.
    [139] Knutzon D S, Scherer D E, Schreckengost W E. Nucleotide sequence of a complementary DNAclone encoding stearoyl-acyl carrier protein desaturase from castor bean, Ricinus communis [J].Plant Physiol,1991,96(l): 344-345.
    [140] Thompson G A,Scherer D E,Aken S F,et al.Primary structures of the precursors and matureforms of stearoyl-acyl carrier protein desaturase form safflower embryos and requirement offerredoxin for enzyme activity [J]. Proc Natl Acad Sci USA,1991,88(6): 2578-2582.
    [141]范妙华,李纪元,范正琪等。千年桐SAD基因克隆与分析及其丝状真菌表达载体构建[J].西北植物学报,2008,28(l): 18-22.
    [142] Nishida I,Beppu T,Matsuo T,et al. Nucleotide sequence of a cDNA clone encoding a prescursorto stearoyl-[aeyl-carrier-protein] desaturase from spinach, Spinacia oleracea [J]. Plant Mol Bio,1992,19(4):711-713.
    [143] Hironzori A,Tadashi B, Hiroaki S, et al. Nucleotide sequence of stearoyl-acyl carrier proteindesaturase cDNA from developing seeds of rice [J]. Plant Physiol,1995,108(2):845-846.
    [144]戴晓峰,肖玲,武玉花,等.植物脂肪酸去饱和酶及其编码基因研究进展[J].植物学通报,2007,24( 1) : 105- 113.
    [145] Okuley J,Ughtner J,Feldmann K,et al. Arabidopsis FAD2 gene encodes the enzyme thatessential for polyunsaturated lipid synthesis [J].Plant Cell,1994,6(l):147-158.
    [146] Seheffler J A,Sharpe A G,Schmidt H,et al. Desaturase multigene families of Brassica n upusarose through genome duplication[J].Theor Appl Genet,1997,94(5):583-591.
    [147] Jung S,Powell G,Moore K,et al. The high oleate trait in the cultivated peanut [Arachis hypogaeaL.] Molecular basis and genetics of the trait [J]. Molecular and Generas Genetics,2000,263(5):806-811.
    [148] Pirtle I L,Kongcharoensuntorn W,Nampaisansuk M,et al. Molecular cloning and functionalexpression of the gene for a cotton Delta-12 fatty acid desaturase (FAD2) [J]. Biochim Biophy,2001,522(2):122-129.
    [149] Banilas G,Moressis A,Nikoloudakis N,et al. Spatial and temporal expressions of two distinctoleate desaturases from olive (Oleaeuropaea L.) [J]. Plant Sci,2006,168(2):547-555.
    [150] Jin U H,Lee J W,Chung Y S,et al. Characterization and temporal expression of omega-6 fattyaeid desaturase cDNA from sesame (Sesamum indicum L.) seeds [J]. Plant Science,2001,161(5):935-941.
    [151] Dyer J M,Chapital D C,Kuan J C W,et al. Molecular analysis of a bifunctional fatty acidconjugase/desaturase from tung implications for the evolution of plant fatty acid diverstiy [J].Plant Physiol,2002,130(4): 2027-2038.
    [152]周洲,张德强,卢孟柱.毛白杨油酸去饱和酶基因PtFAD2的克隆与表达分析[J].林业科学,2007,43(7):16-21.
    [153] Lei N,Peng S,Niu B,et al. Molecular cloning and characterization of a novel microsomaloleate desaturase gene DiFAD2 from Davidia involucrata Baill [J]. Biol Plant,2010,54 (1):41-46.
    [154] Mietkiewska E,Brost J M,Giblin E M,et al. A Tropaeolum majus FAD2 cDNA complements thefad2 mutation in transgenic Arabidopsis plants [J]. Plant Sci,2006,171 (2):187-193.
    [155] Arondol V,Lemieux B,Hwang I,et al. MaP-based cloning of gene controlling omega-3 fatty aciddesaturation in Abidopsis [J]. Science,1992,258(5086): 1353-1355.
    [156] Yadav N S,Wierzbicki A,Aergerter M,et al. Cloning of higher plant omega- 3 fatty aciddesaturase [J]. Plant Physiol,1993,103(2):467-476.
    [157] Vandeloof J,Someville C. Plasmidω-3 fatty acid desaturase cDNA from Ricinus communis [J].Plant Physiol,1994,105(l): 443-444.
    [158] Horiguchi G,Iwakawa H,Kodama H,et al. Expression of a gene for plastidω-3 fatty aciddesaturase and changes in lipid and fatty acid compositions in light and dark-grown wheat leaves[J]. Physiologia Plantarum,1996,96(2): 275-283.
    [159] Chung C H,Kim J L,Lee Y C,et al. Cloning and characterization of a seed-specificω-3 fatty aciddesaturase cDNA from perilla frutescens [J]. Plant Cell Physiol,1999,40(l): 114-118.
    [160] Kunst L,Taylor D C,Underhill E W. Fatty acid elongation in developing seed of Arabidopsisthalian [J]. Plant Physiol Biochem,1992,30(4): 425-434.
    [161] Schneider-Belhaddad F,Kolattukudy P. Solubilization,partial purification,and characterizationof a fatty aldehyde decarbonylase from a higher plant,Pisum sativum[J]. Arch Biochem Biophys,2000,377(2):341-349
    [162] Fourmann M,Barret P,Renard M,et al. The two genes homologous to Arabidopsis FAE1 cosegregate with the two loci governing erucic acid content in Brassica napus [J].Theor ApplGenet,1998,96(6):852-858.
    [163] Barrett P B,Halwood T L. Characterization of fatty acid elongase enzymes from germinating peaseeds [J]. Phytochemistry,1998,48(8):1295-1304.
    [164] Todd J,Post-Beittenmiller D,Jaworski J G. KCS1 encodes a fatty acid elongase 3-ketoacyl-CoAsynthase affecting wax biosynthesis inArabidopsis thaliana [J]. Plant J,1999,17(2): 119-130.
    [165] Moon H,Smith M A,Kunst L. A condensing enzyme from the seeds of Lesquerella fendleri thatspecifically elongates hydroxy fatty acids [J]. Plant Physiol,2001,127(4):1635-1643.
    [166] Kajikawa M,Yamaoka S,Yamato KT,et al. Functional analysis of a beta-ketoacyl-CoA synthasegene,MpFAE2,by gene silencing in the liverwort Marchantia polymorpha L[J]. BiosciBiotechnol Biochem,2003,67(3): 605-612.
    [167] Zheng Z,Qun X,Melanie D,etal. Arabidosis AtGPAT1,a member of the membrane-boundglycerol-3-Phosphate acyltransferase gene family,is essential for tapetum differentiation andmale fertility[J]. Plant Cell,2003,15(8):1872-1887.
    [168] Bourgis F,Kader J-C,Barret P,et al. A Plastidial Lysophosphatidic Acid Acyltransferase fromOilseed Rape [J]. Plant Physiol,1999,120(3): 913-922.
    [169] Kim Hyun Uk and Huang Anthony H C,et al. Plastid Lysophosphatidyl Acyltransferase IsEssential for Embryo Development inArabidopsis [J]. Plant Physiol,2004,134(3): 1206-1216.
    [170]马海明,施启顺,柳小春. DGAT相关基因研究进展[J].遗传学报,2005,32 (12) : 1327-1332.
    [171] Hobbs H D,Chaofu L,Hills M. Cloning of a cDNA encoding acyltransferase fromArabidosisthaliana and its functional expression [J]. Febs Lett,1999,452(3):145-149.
    [172] Pierreue B N. Expressionin yeast and tobacco of Plant cDNAs encoding acylCoA:diacylglycerolacyltransferase [J]. Eur J Biochem,2000,267(1):85-96.
    [173] Wang Jun,Soisson Stephen M,Young Katherine,et al. Platensimycin is a selective FabF inhibitorwith potent antibiotic properties [J].Nature,441:358-361.
    [174]刘晓博,李玉艳,尤启冬.β-酮脂酰-ACP合成酶(FabH)抑制剂研究进展[J].2009,21(9) 1930-1938.
    [175]夏晗,王兴军,李孟军,等.利用基因工程改良植物脂肪酸和提高植物含油量的研究进展[J].生物工程学报,2010,6 (26): 735-743.
    [176] Dehesh K,Tai H,Edwards P,et al. Overexpression of 3-ketoacyl-acyl-carrier protein synthaseIIIs in plants reduces the rate of lipid synthesis [J]. Plant Physiol,2001,125(2): 1103-1114.
    [177] Pidkowich M S,Nguyen H T,Heilmann I,et al. Modulating seed beta-ketoacyl-acyl carrierprotein synthase II level converts the composition of a temperate seed oil to that of a palm-liketropical oil[J]. Proc Natl Acad Sci USA,2007,104(11): 4742-4747.
    [178] Kodoma H,Hamada T,Horiguchi G,et al. Genetic Enhancement of Cold Tolerance byExpression of a Gene for Chloroplast [omega]-3 Fatty Acid Desaturase in Transgenic Tobacco [J].Plant Physiol,1994,105(2):601- 605.
    [179]马建忠,刘丹,傅幼英.菠菜硬脂酰基载体蛋白去饱和酶(SAD)基因的分子克隆[J]. 1996,4(1) : 33-37.
    [180] Polashock J T,Chin CK,Martin C E. Expression of the YeastΔ-9 Fatty Acid Desaturase inNicotiana tabacum [J]. Plant Physiol,1992,100(2): 894-901.
    [181] Wada H,Combos Z,Murata N. Enhancement of chilling tolerance of a cyanobacterium bygenetic manipulation of fatty acid desaturation [J]. Nature,1990,347: 200-203.
    [182] Voelker T A,Hayes T R,Cranmer A M,et al. Genetic engineering of a quantitative trait:Metabolic and genetic parameters influencing the accumulation of laurate in rapeseed [J]. Plant J1996,9(2):229-241.
    [183] Voelker T A,Worrell A C,Anderson L,et al. Fatty acid biosynthesis redirected to medium chainsin transgenic oilseed plants [J].Science,1992,257 (5066):72–74.
    [184] D?rmann Peter, Voelker Toni A, Ohlrogge John B. Accumulation of Palmitate in ArabidopsisMediated by the Acyl-Acyl Carrier Protein Thioesterase FATB1 [J]. Plant Physiology,2000,123(2): 637-644.
    [185] Jones A,Davies H M,Voelker T A. Palmitoyl-acylcarrier protein (ACP) thioesterase and theevolutionary origin of plant acyl-ACP thioesterases [J]. Plant Cell,1995,7(3):359-371.
    [186] Knutzon D S,Thompson G A,Radke S E,et al. Modification of Brassica seed oil by antisenseexpression of a stearoyl-acyl carrier protein desaturase gene [J]. Proc Natl Acad Sci USA,1992,89(7): 2624- 2628.
    [187] Liu Q,Singh S,Green A. Genetic modification of cotton seed oil using inverted-repeat genesilencingtechniques [J]. Biochem Soc Trans,2000,28(6):927-929.
    [188] Hawkins D J,Kridl J C. Characterization of acyl-ACP thioesterases of mangosteen (Garciniamangostana) seed and high levels of stearate production in transgenic canola[J]. Plant J,1998,13(6):743-752.
    [189] Cahoon E B,Shanklin J,Ohlrogge J B. Expression of a coriander desaturase results inpetroselinic acid production in transgenic tobacco [J]. Proc Natl Acad Sci USA,1992,89(23):11184- 11188.
    [190] Stoutjesdijk P A,Hurlestone C,Singh S P,et al. High-oleic acid Australian Brassica napus and B.juncea varieties produced by co-suppression of endogenousΔ-12 desaturases [J]. Biochem SocTrans,2000,28(6),938-940.
    [191] Okuley J,Ughtner J,Feldmann K,et al. Arabidopsis FAD2 gene encodes the enzyme thatessential for polyunsaturated lipid synthesis [J].Plant Cell,1994,6(l):147-158.
    [192] Stoutjesdijk P A,Singh S P,Liu Q,et al. hpRNA-mediated targeting of the Arabidiosis FAD2gene gives highly efficient and stable silencing[J]. Plant Physiology,2002, 129(4): 1723-1731.
    [193] Ursin V,Knutzon D,Radke S,et al.Production of beneficial dietary omega-3 and omega-6 fattyacids intransgenic canola. In‘‘Abstracts of the 14th International Symposium on Plant Lipids’’p.13.
    [194] Reddy A S,Thomas T L. Expression of a cyanbacterialΔ6-desaturase gene results inγ-linolenicacid production in transgenic plants [J]. Nat Biotechnol,1996,14: 639- 642.
    [195] Cahoon E B,Carlson T J,Ripp K G,et al. Biosynthetic origin of conjugated double bonds:Production of fatty acid components of high-value drying oils in transgenic soybean embryos[J].Proc Natl Acad Sci USA,1999,96(22):12935-12940.
    [196] Cahoon E B,Shanklin J. Substrate-dependent mutant complementation to select fatty aciddesaturase variants for meta-bolic engineering of plant seed oils[J]. Proc. Natl. Acad. Sci. USA,2000,97 (22):12350-12355.
    [197] Lassner M W,Lardizabal K,Metz JG. Ajojobaβ-ketoaeyl-CoA synthase cDNA complements thecanola fatty acid elongation mutation in transgenie plants [J]. Plant Cell,1996,8(2):281-292.
    [198]陈柳,毛善婧,陆莉,等.导入LPAAT和KCS基因对油菜种子芥酸含量的影响[J]. 2006,32(8): 1174-1178.
    [199] Singh S,Thomaeus S,Lee M,et al. Inhibition of polyunsaturated fatty acid accumulation inplants expressing a fatty acid epoxygenase [J]. Biochem Soc Trans,2000,28(6), 940-942.
    [200] Lardizabal K D,Metz J G,Sakamoto T,et al. Purification of a jojoba embryo wax synthase,cloning of its cDNA,and production of high levels of wax in seeds of transgenic Arabidopsis[J].Plant Physiol,2000,122(5),645-656.
    [201] Sellwood C,Slabast A R,Rawsthorne S. Effeets of manipulating expression of acetyl-CoAcarboxylase in Brassica napus L.embryos [J]. BioChemical Society Transactions,2000,28(6):598-600.
    [202] Jain R K,Coffey M,Lai K,et al. Enhancement of seed oil content by expression of glycerol-3-phosphate acyltransferase genes [J]. Biochem Soc Trans,2000,28(6):958-961.
    [203] Zou J,Katavic V,Giblin E M,et al. Modification of seed oil content and acyl composition in thebrassicaceae by expression of a yeast sn-2 acyltransferase gene[J]. Plant Cell,1997,9(6): 909-923.
    [204]张发云.二脂酰甘油酰基转移酶基因(DGAT1)的沉默对烟草油脂合成的影响[D]:[博士学位论文].北京:中国科学院研究生院植物研究所,2005.
    [205] Gidda S K,Shockey J M,Rothstein S J,et al. Arabidopsis thaliana GPAT8 and GPAT9 arelocalized to the ER and possess distinct ER retrieval signals: functional divergence of the dilysineER retrieval motif in plant cells[J]. Plant Physiol Bioch,2009,47(10): 867-879.
    [206] Maisonneuve S,Bessoule J J,Lessire R,et al. Expression of rapeseed microsomallysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis[J]. PlantPhysiol,2010,152(2): 670-684.
    [207]张志刚.油菜种子含油量相关基因PEPC和DGAT的克隆及遗传转化研究[D]:[博士学位论文].长沙:湖南农业大学农学院,2006.
    [208] Nakamura T,Yoshioka I,Takahashi M,et al. Cloning and sequence analysis of the gene forphosphoenol pyruvate carboxylase from an extreme thermophile,Thennus sp [J]. J Biochem,1995,118(2): 319-324.
    [209] Lepiniec Lo?c,Vidala Jean,Cholletb Raymond,et al. Phosphoenolpyruvate carboxylase:structure,regulation and evolution[J]. Plant Science,1994,99(2):111-124.
    [210] Kai Y,Matsumura H,Inoue T,et al.Three-dimensional structure of phosphoenolpyruvatecarboxylase: a proposed mechanism for allosteric inhibition [J]. Proc Natl Acad Sci USA,1999,96(3): 823-828。
    [211] Izui Katsura,Matsumura Hiroyoshi,FurumotoTsuyoshi,et al. PHOSPHOENOLPYRUVATECARBOXYLASE: A New Era of Structural Biology [J]. Annu Rev Plant Biol,2004,55: 69-84.
    [212] Kai Yasushi,Matsumuraa Hiroyoshi,Izuib Katsura,et al. Phosphoenolpyruvate carboxylase:three-dimensional structure and molecular mechanisms [J]. Archives of Biochemistry andBiophysics,2003,414 (2): 170-179.
    [213] Matsumura Hiroyoshi, XieYong, Shirakata Shunsuke,et al. Crystal Structures of C4 Form Maizeand Quaternary Complex of E. coli Phosphoenolpyruvate Carboxylases [J]. Structure,2002,10(12):1721-1730.
    [214] Chollet Raymond,Vidal Jean,O'Leary Marion H. PHOSPHOENOLPYRUVATECARBOXYLASE: A Ubiquitous, Highly Regulated Enzyme in Plants [J].Annu Rev Plant PhysiolPlant Mol Biol,1996,47:273-298.
    [215] Jeanneau M,Gerentes M,Vidal J,et al.Manipulating PEPC levels in plants [J]. Joural ofExperimental Botany,2002,53(376):1837-1845.
    [216]蔡小宁,陈茜,杨平,等.磷酸烯醇式丙酮酸狡化酶的生物信息学分析[J].安徽农业科学,2008,36(3):914-916.
    [217]张边江,周梅仙,姚淑. C4光合作用的基因工程研究进展[J].安徽农学通报, 2006,12(7):44-46.
    [218]潘瑞炽,董愚得.植物生理学[M]:第3版.高等教育出版社,1995. 103.
    [219] Cotelle V,Pierre J N,Vavasseur A. Potential strong regulation of guard cell phosphoenolpyruatecarboxylase through phosphorylation [J]. J Ex Bot,1999,50(335):777-783.
    [220] Riehard L,Hudpeth,John W G. Structure and expression of the maize gene encoding thephosphoenolpyruvate carboxylase is enzyme involved in C4 photosynthesis [J]. Plant MoleeularBiology,1989,12(5):579-589.
    [221] Lepiniec L,Philippe H,Keryer E,et al. Sorghum phosphoenolpyruvate carboxylase genefamily:structure,function and molecular evolution[J].Plant Moleeular Biology,1993,21(3):487-502.
    [222] Besnard G,Pingon G,D’Hont A,et al. Characterisation of the phosphoenolpyruvate carboxylasegene family in sugarcane (Saccharum spp.) [J]. TAG Theoretical and Applied Geneties,2003,107(3):470-478.
    [223]张桂芳,赵明,丁在松等.稗草磷酸烯醇式丙酮酸羧化酶(PEPcase)基因的克隆与分析[J].作物学报,2005,31(10):1365-1369.
    [224] Sugimoto T,Tanaka K. Phosphoenolpyruvate carboxylase level in soybean seed highly correlatesto its contents of protein and lipid [J]. Agric Biol Chem,1989,53(3):885-887.
    [225] Merkelbach S,Jonanna G,Martin D,et al. Cloning,sequence analysis and expression of a cDNAencoding active phosphoenolpyruvate carboxylase of the C3 Plant Solanum tuberosum[J]. PlantMolecular Biology,1993,23(4):881-888.
    [226] Cushaln J C,Meyer G,Michalowski C B,et al. Salts tress leads to differential expression of twoisogenes of Phosphoenolpyruvate carbxylase during crassulacean acid metabolism induction inthe common icc plant[J].The Plant Cell,1989,l(7),715-725.
    [227] Ku M S B,Agarie S,Nomura M,et al. High-level expression of maize phosphoenolpyruvatecarboxylase in transgenic rice plants [J]. Nature Biotechnology,1999,17(1): 76-80.
    [228]焦德茂,李霞,黄雪清,等.转PEPC基因水稻的光合CO2同化和叶绿素荧光特性[J].科学通报,2001,46(5): 414-418.
    [229]李霞,焦德茂,戴传超,等.转育PEPC基因的杂交水稻的光合生理特性[J].作物学报,2001,27(2):137-143.
    [230]李霞,焦德茂,戴传超.转PEPC基因水稻对光氧化逆境的响应[J].作物学报,2005,31(4):408-413.
    [231]王德正,迟伟,王守海,等.转C-4光合基因水稻特征特性及其在两系杂交稻育种中的应用[J].作物学报,2004,30(3):248-252.
    [232]王德正,焦德茂,吴爽,等.转玉米pep基因的杂交水稻亲本的选育[J].中国农业科学,2002,35(10):1165-1170.
    [233]王德正,王守海,吴爽,等.玉米pep基因在杂交转育的转基因水稻后代中的传递和表达特征[J].遗传学报,2004,31(2):195-201.
    [234]张方,迟伟,金成哲,等.高粱C4型磷酸烯醇式丙酮酸梭化酶基因的分子克隆及其转基因东水稻的培育[J].科学通报,2003,48(14):1542-1546.
    [235]陈绪清,张晓东,梁荣奇,等.玉米C4型pepc基因的克隆及其在小麦的转基因研究[J].科学通报,2004,49(19):1976-1982.
    [236] Hedspeth R L,Grula W J,Dai Z,et al.Expression of maize phosphoenopyruvate carboxylase i ntransgenic tobacco: effects on biochemistry and physiology [J]. Plant Physiol,1992,98(2):458-464.
    [237] Sangwan R S,Singh N,PlaxtonW C. Phosphoenolpyruvate carboxylase activity andconcentration in the endosperm of developing and germinating castor oilseeds [J]. Plant Physiol,1992,99(2): 445-449.
    [238] Kubis Sybille E,Pike Marilyn J,Everett Christopher J. The import of phosphoenolpyruvate byplastids from developing embryos of oilseed rape,Brassica napus (L.),and its potential as asubstrate for fatty acid synthesis[J]. Journal of Experimental Botany,2004,55(402): 1455-1462.
    [239] Singa H R,Sheoran I S,Singh R. Photosynthetic carbon fixation characteristics of fruitingstructures of Brassica campestris L [J]. Plant Physiol,1987,83(4): 1043-1047.
    [240] Zhao J,Becker H C,Zhang D,et al. Conditional QTL mapping of oil content in rapeseed withrespect to protein content and traits related to plant development and grain yield [J]. Theoreticaland Applied Genetics,2006,113(1): 33-38.
    [241]龙丽坤.大豆PEP梭化酶反义基因的克隆和载体构建[D]:[硕士学位论文].长春:吉林农业大学农学院,2003.
    [242]郎春秀,王建民,胡张华等.反义PEP转基因油菜超油1号的品系特性和栽培要点[J].浙江农业科学2006(4):411-413.
    [243]张志刚,白德朗,陈烈臣等.甘蓝型油菜pep基因片段的克隆和种子特异性反义表达载体的构建[J].湖南农业大学学报(自然科学版),2005,31(3):249-252.
    [244]张银波,江木兰,胡小加.油菜PEPase基因的克隆及其对应RNAi载体的构建[J].中国油料作物学报,2005,27(1):1-4.
    [245]汪承刚,谢好,李长春,等.甘蓝型油菜三种种子储藏蛋白和丙酮酸梭化酶基因片段的克隆及hnRNA表达载体的构建[J].中国油料作物学报,2006,28(3):245-250.
    [246]张勇,付绍红,张汝全等.甘蓝型油菜pepc基因保守序列的克隆和种子特异性ihPRNA表达载体的构建[J].分子植物育种,2005,6(4):775-780.
    [247] Napoli C,Lemieux C,Jorgensen R. Introduction of a chimeric chalcone synthase gene intoPetunias results in reversible cosuppression of homologous genes in trans [J]. Plant Cell,1990,2(4):279-289.
    [248] Guo S,Kemphues K J,Par-1,a gene required for establishing polarity in C.elegans embryos,encodes a putative Ser/Thr kinase that is asymmetrically distributed [J]. Cell,1995,81(4):611-620.
    [249] Fire A,Xu S,Montgomery M K,et al. Potent and specific genetic interference by double-strandedRNA in Caenorhabditis elegans [J]. Natrue,1998,391:806-811.
    [250] Waterhouse P M,Wang M B,Lough T,Gene silencing as an adaptive defence against viruses[J].Nature,2001,411:834-842.
    [251] Wang M B,Metzlaff M. RNA silencing and antiviral defense in plants [J]. Current Opinion inPlant Biology,2005,8(2):216-222.
    [252] Tuschl T,Zamore P D,Lehmann R,et al. A targeted mRNA degradation by double-stranded RNAinvitro [J]. Genes Dev,1999,13:3191-3197.
    [253] Hamilton Andrew J,Baulcombe David C. A Species of Small Antisense RNA inPosttranscriptional Gene Silencing in Plants [J]. Sciense,1999,286 (5441): 950-952.
    [254] Zamore P D,Tuschl T,Sharp P A,et al. RNAi: double-stranded RNA directs the ATP-dependentcleavage of mRNA at 21 to 23 nucleotide intervals [J]. Cell,2000(1),101:25-33.
    [255] Baulcombe D C. RNA as a target and an initiator of post-transcriptional gene silencing intransgenic plants [J]. Plant Mol Biol,1996,32(12) : 79-88.
    [256] Hammond S M,Bernstein E,Beach D,et al. An RNA-directed nuclease mediates posttranscription algene silencing in Drosophila cells [J]. Nature,2000,404(6775): 293-296.
    [257]黄冰艳,吉万全,郭蔼光,等.转录后基因沉默( PTGS)及其在作物遗传改良中的应用[J].中国生物工程杂志,China Biotechnology,2005,25( 5): 1-5.
    [258] Lipardi Concetta,Baek Hye Jung,Wei Qin,et al. Analysis of Short Interfering RNA Function inRNA Interference by Using Drosophila Embryo Extracts and Schneider Cells [J]. Methods inEnzymology,392:351-371.
    [259] Sijen T,Fleenor J,Simmer F,et al. On the role of RNA amplification in dsRNA-triggered genesilencing [J]. Cell,2001,107(4): 465-476.
    [260] Voinnet O,Vain P,Angell S,et al. Systemic spread of sequence-specific transgene RNAdegradation in plants is initiated by localized introduction of ectopic promoterless DNA [J]. Cell,1998,95(2):177-187.
    [261] Yin D M, Deng S Z, Zhan K H,et al. High-oleic peanut oils produced by hpRNA-mediatedgene silencing of oleate desaturase[J]. Plant Mol Bio Rep,200725:154-163.
    [262] Ganesan S,LeAnne M C,Lorraine P,et al. Engineering cotton seed for use in human nutrition bytissue -specific reduction of toxic gossypol [J]. PNAS,2006,103 (48): 18054-18059.
    [263] Diretto G,Tavazza R,Welsch Rf,et al. Metabolic engineering of potato tuber carotenoids throughtuber-specific silencing of lycopene epsilon cyclase [J]. BMC Plant Biology,2006,6: 13.
    [264] Segal G,Song R,Messing J. A new opaque variant of maize by a single dominant RNA–interference- inducing transgene [J]. Genetics,2003,165: 387-397.
    [265] Ahmed R,Anthony B,David T,et al. High amylose wheat generated by RNA in terferenceimproves indices of large bowel health in rats [J]. PNAS,2006,130(10): 3546-3551.
    [266] Kirsten J,Soren B,Peter K B,et al. Cassava plants with a depleted cyanogenic glucoside contentin leaves and tubers distribution of cyanogenicg lucosides,their site of synthesis and tran sport,and blockage of the biosynthesis by RNA interference technology [J]. Plant Physiol,2005,139(1): 363-374.
    [267]金太成.大豆DREB基因gmDREB1改良紫花苜蓿耐盐性研究[D]:[博士学位论文].长春:东北师范大学生命科学学院,2010.
    [268]李望丰. SsNHXI基因在紫花苜蓿中的表达及其耐盐性研究[D]:[博士学位论文].长春:东北师范大学生命科学学院,2010.
    [269]宋凯.应用基因沉默技术培育高油酸大豆[D]:[硕士学位论文].长春:东北师范大学生命科学学院,2005.
    [270] Smith N A,Singh S P,Wang M B,et al. Gene expression: Total silencing by intron-splicedhairpin RNAs [J]. Nature,2000,407: 319-320.
    [271] Wesley S V,Helliwell C A,Smith N A. Construct design for efficient,effective and highthroughputgene silencing in plants [J].The Plant Journal,2001,27(6) : 581-590.
    [272] Browse J,Somerville C R. Glycerolipid synthesis: biochemistry and regulation [J]. Annu RevPlant Physiol Plant Mol Biol,1991,42: 467-506.
    [273] Liu Q,Singh S P,Brubaker C,et al. Molecular cloning and expression of a cDNA encoding amicrosomalω-6 Fatty acid desaturase in cotton (Gossypium hirsutum) [J]. Aust J Plant Physiol,1996,26(2):101-106.
    [274] JoséM,Martínez R,Petra S,et al. Spatial and temporal regulation of three different microsomaloleate desaturase genes (FAD2) from normal-type and high-oleic varieties of sunflower(Helianthus annuus L.) [J]. Molecular Breeding,2001,8 (2):159-168.
    [275] Vodkin L O,Rhodes P R,Goldberg R B. A lectin gene insertion has the structural features of atransposable element [J]. Cell,1983,34(3): 1023-1031.
    [276] Yuan B,Latek R,Hossbach M,et al. siRNA Selection Server: an automated siRNAoligonucleotide prediction server [J]. Nucleic Acids Res,2004,32( suppl 2): w130-w134.
    [277] Lazzeri P A,Hildebrand D F,Collns G B. A procedure for plant regeneration from immaturecotyledon tissue of soybean [J].Plant Molecure Biology Reports,1985,3(4):160-168.
    [278] Birch R G. Plant transformation: Problems and strategies for practical application [J]. Annu RevPlant Physiol and Plant Molecular Biology,1997,48: 297-326.
    [279] Liu H K,Yang C,Wei Z M. Efficient Agrobacterium tumefaciens-mediated transformation ofsoybeans using an embryonic tip regeneration system [J]. Planta,2004,219(6):1042-1049.
    [280] Somers D A,Samac D A,Olhoft P M. Recent advances in legume transformation [J]. PlantPhysiol,2003,131(3):892-899.
    [281] Paz Margie M,Shou Huixia,Guo Zibiao,et al. Assessment of conditions affectingAgrobacterium-mediated soybean transformation using the cotyledonary node explant [J].Euthytica,2004,136(2):167-179.
    [282] Murashige Toshio,Skoog Folke. A revised medium for rapid growth and bioassays with tobaccotissue cultures [J]. Physiol Plant,1962,15(3):473-497.
    [283] Gamborg O L,Miller R A,Ojiama K. Nutrient requirements of suspension culture of soybeanroot cells[J]. Exp Cell Res,1968,50(1): 151-158.
    [284]施华中,杨弘远,周嫦,等.根癌农杆菌的高效电激转化[J].武汉大学学报(自然科学版):1995,41(6):724-728.
    [285]蔡一荣.农杆菌介导的高油酸大豆遗传转化方法的建立[D]:[硕士学位论文].长春:东北师范大学生命科学学院,2006.
    [286] Bailey M A,Boerma H R,Parrott W A. Inheritance of Agrobacterium tumefaciens-InducedTumorigenesis of Soybean [J]. Crop Sci,1994,34(2):514-519.
    [287] Opabode Jelili T. Agrobacterium-mediated transformation of plants: emerging factors thatinfluence efficiency [J]. Biotechnology and Molecular Biology Review,2006,1 (1):12-20.
    [288] Luo J H,Gould J H. In vitro shoot-tip grafting improves recovery of cotton plants from culture[J]. Plant Cell Tiss Org,1999,57(3): 211-213.
    [289] Jiang B G. Optimization of Agrobacterium mediated cotton transformation using shoot apicesexplants and quantitative trait loci analysis of yield and yield component traits in upland cotton(Gossypium hirsutum L.) [D]:[博士学位论文].Baton Rouge:Graduate Faculty of LouisianaState University,2004.
    [290] Voinnet O,Lederer C,Baulcombe D C. A viral movement protein prevents spread of the genesilencing signal in Nicotiana benthamiana [J]. Cell,2000,103(1):157-167.
    [291] Voinnet O,Pinto Y M,Baulcombe D C. Suppression of gene silencing: a general strategy used bydiverse DNA and RNA viruses of plants [J]. PNAS,2000,96(24):14147-14152.
    [292] Singh S P,Green A G,Stoutjesdijk PA,et al. Inverted-repeat DNA: a new gene-silencing tool forseed lipid modification [J]. Biochem Soc Trans,2000,28: 925-927.
    [293] Fehr W R,Caviness C E,Burmood D T,et al. Stage of Development Descriptions for Soybeans,Glycine Max (L.) Merrill [J]. Crop Sci,1971,11(6): 929-931.
    [294]丁耀魁,杜海波,陈桂颖.自动脂肪测定仪在大豆脂肪测定中的应用[J].粮油食品科技,2004,12(4): 42-44.
    [295] Mroczka A,Roberts P D,Fillatti J J,et al. An intron sense suppression construct targetingsoybean FAD2-1 requires a double-stranded RNA-producing inverted repeat T-DNA insert [J].Plant Physiol,2010,153(2): 882-891.
    [296] Liu Q,Surinder S,Allen G. High-steric and-oleic cottonseed oils produced by hairpin RNAmediatedpost-transcriptional gene silencing [J]. Plant Physiol,2002,129 (4):1732-1743.
    [297] Deng Xiaodong,LiYajun,FeiXiaowen. The mRNA abundance of pepc2 gene is negativelycorrelated with oil content in Chlamydomonas reinhardtii [J]. Biomass and Bioenergy,doi:10.1016/j.biombioe.2011.01.005
    [298] Sasaki Y,Nagano Y. Plant acetyl-CoA carboxylase: structure,biosynthesis,regulation,andgene manipulation for plant breeding[J]. Biosci Biotechnol Biochem,2004,68(6):1175-1184.
    [299]胡亚平.油料作物油脂合成相关基因的转录、克隆和功能比较研究[D]:[博士学位论文].北京:中国农业科学院油料作物研究所,2009.
    [300]李永忠.大豆脂肪酸及其组成成分的相关和通径分析[J].大豆科学,1987,6(3) :203-208.
    [301]李晓丹,吴刚,武玉花,等.大豆种子发育过程中脂肪酸积累模式研究[J].大豆科学,2007,26(4): 506-510.
    [302] Wu J G,Shi C H,Zhang H Z. Partitioning genetic effects due to embryo, cytoplasm and maternalparent for oil content in oilseed rape (Brassica napus L.) [J]. Genet Mol Biol,2006,29 (3),533-538.
    [303]曲杰.栽培因子对高油大豆产量和脂肪含量的影响[J].农业科技通,2008(7): 66-67.
    [304]张大勇,宁海龙,等.东北三省大豆蛋白质\油分含量的地点\年份效应分析[J].大豆科学,2004,23(l):30-35.
    [305] Cober E R,Voldeng H D. Developing high-protein,high-yield soybean population and lines [J].Crop Sci,2000,40(1):39-42.
    [306] Voldeng H D,Cober E R,Hume D G,et al. Fifty eight year of genetic improvement of shortseasonsoybean cultivars in Canada [J]. Crop Sci,1997,37(2):428-431.
    [307]任红玉,崔振才,沈能展,等.大豆干物质积累与水分动态变化的关系[J].中国油料作物报,2005,27(3):41-44.
    [308]李远明,刘伟,鲁振明,等.大豆蛋白质脂肪积累动态及与产量的关系[J].大豆通报,2001(4):6-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700