壳聚糖基纳米复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米复合材料是指至少有一维方向的尺寸在纳米尺度范围内。具有量子尺寸效应,小尺寸效应以及表面效应等纳米材料所特有的性质,性能优于一般块体材料。壳聚糖作为一种天然的高分子,展现了良好的生物适应性、生物可降解性和水性吸附能力,可以广泛应用在生物医学领域和水污染处理方面。壳聚糖纤维在特殊织物方面具有潜在的应用价值。此外,由于高聚物空心纳米球结构在包覆性能、可控渗透性和表面功能性上的优势,使得其在化学、生物和材料科学方面的应用受到了相当大的关注。因此,壳聚糖纳米复合材料的制备和性能研究将具有非常广阔的应用前景。
     本文主要研究了壳聚糖/TiO_2一维复合纤维和壳聚糖/聚丙烯酸包覆SiO_2的纳米微球以及Eu~(3+)掺杂的壳聚糖/聚丙烯酸纳米球,并对它们的光学性质进行了初步研究。
     一、实验中所得壳聚糖/TiO_2一维复合材料表现出比较好的荧光性能。壳聚糖和TiO_2均分散于NaOH溶液中,表面活性剂在产物的生长过程中起到了关键作用,且阴离子表面活性剂十二烷基硫酸钠(SDS)效果最好。实验中还研究了各个反应条件对产物最终形貌的影响,比如:表面活性剂、反应温度和反应时间。对产物的生长机理作出了初步推测。荧光测试分析表明,当激发光为紫外光时,壳聚糖/TiO_2一维复合材料表现出比较好的光致发光性能,这将使得这种无毒的一维纳米复合材料可能应用在将来的荧光织物中。
     二、壳聚糖与丙烯酸可以自组装为球形结构,高聚物纳米球的空心结构通过内部丙烯酸单体的聚合而形成。采用这种方法成功制备了壳聚糖与聚丙烯酸的(CS/PAA)纳米微球。将壳聚糖直接溶解于丙烯酸溶液中,在N_2保护下,加入引发剂引发聚合。在反应后期再加入戊二醛引发壳聚糖表面交联致密,即得所需要的纳米微球。在此基础上,制备了CS/PAA包覆SiO_2纳米微球,运用扫描电子显微镜、透射电子显微镜、X射线衍射仪、傅立叶转变红外光谱仪和光致发光光谱等技术对所得产物的形貌、分散性及荧光性能进行表征,并简单探讨其形成机理。
     三、CS/PAA的纳米球通过丙烯酸单体聚合后交联壳聚糖高分子链制得,在壳聚糖未交联之前将Eu~(3+)加入到反应液中,然后加入交联剂戊二醛,得到Eu~(3+)掺杂的CS/PAA纳米球,并对具体的实验过程进行了详细描述。荧光性能研究表明,产物中含有Eu~(3+)的特征峰,明显改善了CS/PAA纳米球的荧光性能。鉴于壳聚糖优良的生物相容性,本文所制备的Eu~(3+)掺杂CS/PAA纳米球在生物标识方面将具有良好的应用前景。
The nanocomposites have at least one characteristic length scale that is of the order of nanometers. Due to the special properties, such as quantum size effects, small size effect and surface effect, nanocomposites show excellent properties compared with the bulk materials. As a natural polymer, chitosan intrinsically exhibits enticing properties such as biocompatibility, biodegradability, and aqueous adsorption capabilities. These properties make chitosan an ideal polymer for a wide variety of fields and industrial applications such as biomedical applications and the treatment of water pollution. Chitosan nanofibers have potential applications in specific textile. Furthermore, polymeric hollow nanospheres have attracted considerable research attention due to their large variety of applications in chemistry, biotechnology, and materials science. The advantages of polymeric hollow nanosphere include its encapsulation property, controllable permeability, and surface functionality. Therefore, the synthesis and property of nanocomposites based on chitosan will exhibit an attractive application prospect.
     In this paper, the synthesis and optical properties of one-dimensional (1-D) hybrid materials based on chitosan/titania (TiO_2) have been reported, and the chitosan/polyacrylic acid (CS/PAA) nanospheres containing silicon dioxide (SiO_2) cores and Eu-doped CS/PAA nanospheres have been also investigated.
     1-D hybrid materials based on chitosan/titania featuring fascinating fluorescence are reported in this paper. Chitosan and TiO_2 were dispersed using a single chemical species of NaOH solution. Surfactants have a key contribution to the growth of production. The anionic surfactant sodium dodecyl sulfate (SDS) is the best guide. The effects of reaction parameters, such as surfactant, reaction temperature and reaction time, on the morphology of the products were investigated. The growth mechanism of the 1-D hybrid materials was proposed. Photoluminescence (PL) investigation shows that the 1-D hybrid materials exhibit inspiring emissions under UV excitation, indicating that these nontoxic emissive 1-D nanomaterials may find use as fluorescent fabrics in the future.
     The hollow structure of polymeric nanospheres is spontaneously formed by polymerization of acrylic acid monomers inside the chitosan-acrylic acid assemblies. CS/PAA nanospheres were successfully prepared with acrylic acid and chitosan via this method. Firstly, chitosan was directly dissolved in acid solution, then initiator was added to initiate polymerization in N2 atomosphere. Finally, the surface of CS/PAA nanospheres was cross-linked by glutaraldehyde. Based on this, SiO_2 nanospheres were in-situ coating by CS/PAA. The morphology, dispersity and fluoresent properties of the products were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), fourier transform infrared (FT-IR) spectrometry, and PL. The formation mechanism of the products was simply discussed.
     Eu-doped CS/PAA nanospheres were successfully prepared. The CS/PAA nanospheres were formed by polymerization of acrylic acid and cross-linking of chitosan at the end of polymerization. Eu~(3+) was added in the reaction solution before the cross-linking of chitosan, and then the products were synthesized by adding glutaraldehyde as the crosslinking agent. The whole reaction process was described in detail. Fluorescence studies suggested that the characteristic peaks of Eu~(3+) was detected in the product, which greatly improved the fluorescence properties of CS/PAA nanospheres. Combine with the excellent biocompatibility of CS, Eu-doped CS/PAA nanosphere may have potential applications in biolabelling.
引文
[1]蒋挺大,甲壳素,北京:化学工业出版社,2003,1-3.
    [2] Roy R., Komameni S, Roy D.M., et. al, Multi-phase ceramic composites made by sol-gel technique, Mater. Res. Soc. Symp. Proc., 1984, 32: 347-351.
    [3] Messersmith P. B., Giannelis E. P., Synthesis and characterization of layered silicate-epoxy nanocomposites, Chem. Mater., 1994, 6: 1719-1725.
    [4] Vaia R. A., Vasudevan S., Krawiec W., et. al, New polymer electrolyte nanocomposites: melt intercalation of poly (ethylene oxide) in mica-type silicates, Adv. Mater., 1995, 7: 154-156.
    [5] Ruiz-Hitzky E., Aranda P., Casal B., et. al, Nanocomposite materials with controlled ion mobility, Adv. Mater., 1995, 7: 180-185.
    [6] Komarneni S., Nanocomposite micromechanics modeling of mechanical behavior is discussed as a function of clay platelet dispersion, J. Mater. Chem., 1992, 2: 1219-1230.
    [7] Giannelis E. P., New strategy for synthesizing polymer-ceramic nanocomposites, J. Minerals, Metals & Materials Soc., 1992, 44:28-30.
    [8]李维芬,纳米材料的性质,现在化工,1999,19:120-123.
    [9] Ruel-Gariépy E., Leroux J. C., Chitosan: a natural polycation with multiple applications, Polysaccharides for Drug Delivery and Pharmaceutical Applications, 2006, 934: 243-259.
    [10]张善贵等,甲壳素/壳聚糖及其在澄清果汁中的应用,食品工业科技,1992,(1):39-40.
    [11] Ohkawa K., Minato K. I., Kumagai G., et. al, Chitosan nanofiber, Biomacromolecules, 2006, 7 (11): 3291-3294.
    [12] Grant J. Allen C., Chitosan as a biomaterial for preparation of depot-based delivery systems, Polysaccharides for Drug Delivery and Pharmaceutical Applications, 2006, 934: 201-225.
    [13]蓝凤祥,壳聚糖的应用和制备,化工新型材料,2002,30 (3):22-25.
    [14] Belalia R., Grelier S., Benaissa M., et. al, New bioactive biomaterials based on quaternized chitosan, J. Agric. Food Chem., 2008, 56 (5): 1582-1588.
    [15]谢雅明,新型吸附剂的研究,化学世界,1983,24 (4):118-121.
    [16] Desai K., Kit K., Li J.J., et. al, Morphological and surface properties of electrospun chitosan nanofibers, Biomacromolecules, 2008, 9 (3): 1000-1006.
    [17] Hoffmann M.R., Martin S.T., Choi W., et. al, Environmental applications of semiconductor photocatalysis, Chem. Rev., 1995, 95: 69-96.
    [18] Gratzel M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, 353, 737-740.
    [19] Birkefeld L.D., Azad A.M., Akbor S.A., Carbon monoxide and hydrogen detection by anatasemodification of titanium dioxide, J. Am. Ceram. Soc., 1992, 75: 2964-2972.
    [20]解宪英,纳米级二氧化钛的制备及其应用进展,上海化工,2001,26 (5):16-18.
    [21]刘俊渤,臧玉春,吴景贵等,纳米二氧化硅的开发与应用,长春工业大学学报,2003,24 (4):9-12.
    [22]张密林,丁立国,景晓艳等,纳米二氧化硅的制备、改性与应用研究进展,应用科技,2004,31 (6):64-66.
    [23]郭宇,吴红梅,尹桂丽,溶胶-凝胶法制备纳米二氧化硅,天津化工,2005,19 (1):34-35.
    [24] Chen X.Y., Wang H.Z., Wang X., et. al, Synthesis of novel copper sulfide hollow spheres generated from copper(II)-thiourea complex, J. Cryst. Growth, 2004, 263: 570-574.
    [25] Yin Y. D., Lu Y., Sun Y. G., et. al, Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica, Nano Lett., 2002, 2: 427-430.
    [26] Grijavala H., Inoue M., Buggavarapu S., et. al, Crystallinity with a large amount of unreacted Se and CuI, J. Mater. Chem., 1996, 7: 1157-1160.
    [27] Sun X. M., Chen X., Li Y. D., Large-scale synthesis of sodium and potassium titanate nanobelts, Inorg. Chem., 2002, 41: 4996-4998.
    [28]李燕,陈祖耀,水热晶化法制备TiO2纳米粉体,中国陶瓷,1997,33 (3):14-15.
    [29]黄晖,罗宏杰,杨明等,水热沉淀法制备TiO2纳米粉体的研究,硅酸盐通报,2000,4:8-12.
    [30] Aruna S.T., Tirosh S., Zaban A., Nanosize rutile titania particle synthesis via a hydrothermal method without minerallizers, 2000, 10: 2388-2391.
    [31] Zheng Y. Q., Shi E. W., Chen Z. Z., et. al, Influence of solution concentration on the hydrothermal preparation of titania crystallites, J. Mater. Chem., 2001, 11: 1547-1551.
    [32] Zheng Y. Q., Shi E. W., Cui S. X., et. al, Hydrothermal preparation of nanosized brookite powder, J.Am.Cerama.Soc., 2000, 83 (10): 2634-2636.
    [33] Sasaki T., Nakano S., Yamauchi S., Watanabe M., Fabrication of titanium dioxide thin flakes and their porous aggregate, Chem. Mater., 1997, 9: 602-608.
    [34] Revathi B. R., Micheal G., Rutile formatipn in hydrothermally crystallized nanosized titania, J.Am.Cerama.Soc., 1996, 79 (8): 2185-2188.
    [35] Yang J., Sen M., Ferreira J., et. al, Hydrothermal synthesis of nanosized titania powders: Infiuence of peptization and peptizing agents on the crystalline phase and phase transitions, J.Am.Cerama.Soc., 2000, 83 (6): 1361-1368.
    [36]陈代荣,孟永德,樊悦朋,由工业硫酸钛制备TiO2纳米粉体,无机化学学报,1995,11 (3):228-231.
    [37] Ogata N., Jimenez G., Kawai H., et. a1, Study on the effect of the interlayer on the adhesion of400μm thick film, Polym Sci Part B: Polym. Phys., 1997, 35: 389-393.
    [38]王小萍,贾德民,陈玉坤,机械共混原位反应插层法制备天然橡胶/蒙脱土纳米复合材料的结构与性能,合成橡胶工业,2005,28 (2):145-151.
    [39]王益庆,张惠峰,吴友平等,黏土/天然橡胶纳米复合材料的制备及性能,合成橡胶工业,2005,28 (2):135-139.
    [40] Guo S. W., Ward M. D., Wesson J. A., Direct visualization of calcium oxalate monohydrate crystallization and dissolution with atomic force microscopy and the role of polymeric additives, Langmuir, 2002, 18: 4284-4291.
    [41] Kimberly G. C., Laurie B. G., Saeed R. K., et. al, Detection of viral infection in the respiratory tract of virus antibody free mice: advantages of high-resolution imaging for respiratory toxicology , Colloid. Interf. Sci., 2002, 256: 168-174.
    [42] Wilhelm H.M., Changes in bone mineral density and selected metabolic parameters over 24 months following renal transplantation, Polym. Int., 2005, 52: 1035-1042.
    [43] Yu A, Polysaccharides as a template for silicate generated by sol-gel processes, Colloid. J., 2005, 67 (3): 380-385.
    [44]林松柏,李云龙,张葵花,中国材料研讨会论文摘要集.北京,2004.
    [45] Son W. K., Youk J. H., Lee T. S., Macromol rapid strong and stable red photoluminescence from porous silicon prepared by Fe-contaminated silicon, Commun., 2004, 25: 1632-1637.
    [46] Ding Y., Hu Y., 16O13C18O: high-resolution absorption spectrum between 4000 and 9500 cm-1 and global fitting of vibration-rotational line positions, Angew. Chem. Int. Ed., 2004, 43: 6369-6374.
    [47] Barmak K., Kim J., Kim C. S., et. al, Grain boundary energy and grain growth in Al films: Comparison of experiments and simulations, Scr. Mater., 2007, 54 (6): 1059-1065.
    [48]王姗,房喻,胡道道等,壳聚糖-CdS复合膜制备及其对吡啶的传感特性,物理化学学报,2003,19:514-518.
    [49]黄琨,向明,周德惠等,核壳式无机-高分子纳米复合粒子的制备与表征,化工新型材料,2002,10:30-35.
    [50]于建,喻洁,高彦芳等,乙烯基高分子/无机粉体复合型纳米微球的合成制备,塑料,2001,30:6-11.
    [51] Reculusa S., Legrand C. P., Ravaine S., Christophe mingotaud, etienne duguet, and elodie bourgeat-lami, syntheses of raspberrylike silica/polystyrene materials, Chem. Mater., 2002, 14: 2354-2359.
    [52] Corcos F., Novat C., Lang J., et. al, Poly(styrene-b-ethylene oxide) copolymers as stabilizers for the synthesis of silica-polystyrene core-shell particles, Colloid. Polym. Sci., 1999, 277:1142-1151.
    [53]方华丰,周宜开,壳聚糖微球的研究进展,中国医院药学杂志,1999,19 (12):744-745.
    [54]丁明,施建军,皇甫立霞等,壳聚糖微球的制备研究,化学世界,1998,12:636-640.
    [55]何小立,邓瑞红,王国永等,不同类型壳聚糖及壳聚糖微球的制备与性质研究,江西化工,2005,9 (3):57-60.
    [56] Mi F L, Tab Y C, Liang H F, et. al, In vivo biocompatibility and degradability of a novel injectable chitosan based implant, Biomater, 2002, 23 (1): 181-191.
    [57] Berthold A., Cremer K., Kreuter J., Preparation and characterisation of chitosan microspheres as drug carrier for prednisolone sodium phosphate as model antiinflammatory drugs, J. Control. Release., 1996, 39: 17-25.
    [58]施丽莉,杨黎明,陈捷,壳聚糖/聚丙烯酸共聚物微球的制备及性能,精细化工,2004,21 (11):40-44.
    [59] Hu Y., Chen Y., Chen Q., et. al, Synthesis and stimuli-responsive properties of chitosan/poly (acrylic acid) hollow nanospheres, Polymer, 2005, 46: 12703-12710.
    [60] Filipovic-Grcic J., Perissutti B., Moneghini M., et. al, Spray-dried carbamazepine loaded chitosan and HPMC microspheres preparation and characterization, J. Pharm. Pharmacol., 2003, 55 (7): 921-931.
    [61] Giunchedi P., Juliano C., Gavini E., et. al, Formulation and in vivo evaluation of chlorhexidine buccal tablets prepared using drug-loaded chitosan microspheres, Eur. J. Pharm. Biopharm., 2002, 53 (2): 233-239.
    [62]安保礼,罗一帆,叶剑清等,稀土配合物Na3Eu(DPA)3掺杂PMMA树脂的制备及其发光性能,中国稀土学报,2001,19 (3): 268-271.
    [63] Zurawski A., Wirnhier E., Müller-Buschbaum K., Activator-controlled high temperature in-situ ligand synthesis for the formation of rare earth thiolate amide coordination polymers, European Journal of Inorganic Chemistry, 2009, (17): 2482-2486.
    [64] Balamurugan A., Reddy M. L. P., Jayakannan M., Single polymer photosensitizer for Tb3+ and Eu3+ ions: an approach for white light emission based on carboxylic-functionalized poly(m-phenylenevinylene)s, J. Phys. Chem. B, 2009, 113 (43): 14128-14138.
    [65] Ben-David Makhluf S., Arnon R., Patra C. R.., et. al, Labeling of sperm cells via the spontaneous penetration of Eu3+ Ions as nanoparticles complexed with PVA or PVP, J. Phys. Chem. C, 2008, 112 (33): 12801-12807.
    [66] Hou Z.Y., Yang P.P., Li C.X., et. al, Preparation and luminescence properties of YVO4: Ln and Y(V, P)O4:Ln (Ln=Eu3+, Sm3+, Dy3+) nanofibers and microbelts by sol-gel/electrospinning process, Chem.Mater., 2008, 20 (21): 6686-6696.
    [67] Hou Z.Y., Chai R.T., Zhang M.L.,et. al, Fabrication and luminescence properties of one-dimensional CaMoO4: Ln3+ (Ln = Eu, Tb, Dy) nanofibers via electrospinning process, 2009, 25 (20): 12340-12348.
    [68] Azab H. A., Abd El-Gawad Ibrahim I., Kamel Rasha M., Ternary complexes formed by the fluorescent probe Eu(III)-anthracene-9-carboxylic acid with pyrimidine and purine nucleobases, J. Chem. Eng. Data., 2009, 54 (11): 3069-3078.
    [69] Lei F., Yan B., Chen H. H., et. al, Surfactant-assisted hydrothermal synthesis of Eu3+-doped white light hydroxyl sodium yttrium tungstate microspheres and their conversion to NaY(WO4)2, Inorg, Chem., 2009, 48 (16): 7576-7584.
    [70] Li Y. J., Yan B., Lanthanide (Eu3+, Tb3+)/β-diketone modified mesoporous SBA-15/organic polymer hybrids: chemically bonded construction, physical characterization, and photophysical properties, Inorg, Chem., 2009, 48 (17): 8276-8285.
    [71] Chen X.D., Zhao Y. Y., Synthesis and photophysical characterization of teriumpolymer complexes containing salilylate ligand, J. Alloys & Compd., 1998, 265 (2): 81-86.
    [72] Wan C.Y., Li M., Bai X., et. al, Synthesis and characterization of photoluminescent Eu(III) coordination halloysite nanotube-based nanohybrids, J. Phys. Chem. C., 2009, 113 (36): 16238-16246.
    [73] Hantzschel N., Zhang F.B., Eckert F., et. al, Poly(N-vinylcaprolactam-co-glycidyl methacrylate) aqueous microgels labeled with fluorescent LaF3: Eu nanoparticles, Langmuir, 2007, 23 (21): 10793-10800.
    [74]李建宇,稀土高分子配合物发光材料的合成,现代化工,2001,21 (4):13-16.
    [75]刘力,吴友平,田明等,稀土/高分子复合材料的制备及结构与性能,合成橡胶工业,2001,24 (2):71-74.
    [76]杨程,刘力,张婉等,稀土铽三元配合物/橡胶复合材料的制备及荧光性能研究,橡胶工业,2004,51 (5):261-266.
    [77]林美娟,章文贡,王文,非水凝胶原位聚合法制备三异丙氧基/PMMA杂化材料的研究,高分子学报,2002,(5):613-617.
    [78] Kulshrestha A.S., Mahapatro A., Polymers for biomedical applications, Polymers for Biomedical Applications, 2008, 977: 1-7.
    [79] Kasemo B., Grunze M., Zauscher S., et. al, Quantitative biological surface science: challenges and recent advances, Acs. Nano., 2008, 2 (12): 2428-2436.
    [80] Sj?berg J., Albertsson A.C., Hartman J., et. al, Hydrogels from polysaccharides for biomedical applications, Materials, Chemicals, and Energy from Forest Biomass, 2007, 954: 153-167.
    [81] Wan W. K., Hutter J. L., Milton L., et. al, Bacterial cellulose and its nanocomposites forbiomedical applications, Cellulose Nanocomposites, 2006, 938: 221-241.
    [82] Sussman E. M., Jayagopal A., Haselton F. R., et, al, Engineering of solid lipid nanoparticles for biomedical applications, New Delivery Systems for Controlled Drug Release from Naturally Occurring Materials, 2008, 992: 139-152.
    [83] Fraser C. L., Fiore G.L., Adapting polymeric metal complexes for biomedical applications, Polymers for biomedical applications, 2008, 977: 95-115.
    [84] Ma D.L., Guan J.W., Veres T., et. al, Multifunctional nano-architecture for biomedical applications, Chem. Mater., 2006, 18 (7): 1920-1927.
    [85]李爱民,孙康宁,尹衍升等,生物材料的发展,山东大学学报(工学版),2002,32(3):287-293.
    [86] Qian F., Cui F. Y., Ding J. Y., et. al, Chitosan graft copolymer nanoparticles for oral protein drug delivery: preparation and characterization, Biomacromolecules, 2006, 7: 2722-2727.
    [87] Thongngam M., McClements D. J., Characterization of interactions between chitosan and an anionic surfactant, J. Agric. Food Chem., 2004, 52 (4): 987-991.
    [88]王珊,壳聚糖微球的制备,工艺与设备,2006,(8):13-15.
    [89]魏海霞,赵凯,纪鑫等,壳聚糖微球的制备及其在药物载体中的应用进展,中国新药杂志,2008,17 (13):1105-1108.
    [90]刘长岚,李成彬,崔文新,壳聚糖在医药领域的应用,山东科学,2003,16 (3):68-71.
    [91] Cheng D. M., Zhou X. D., Xia H. B., et. al, Novel method for the preparation of polymeric hollow nanospheres containing silver cores with different sizes, Chem. Mater., 2005, 17: 3578-3581.
    [92] Ding Y., Hu Y., Jiang X. Q., et. al, Polymer-Monomer pairs as a reaction system for the synthesis of magnetic Fe3O4-polymer hybrid hollow nanospheres, Angew. Chem. Int. Ed., 2004, 43: 6369-6372.
    [93] Cheng D. M., Xia H. B., Hardy Sze O. C., Facile fabrication of AgCl@polypyrrole-chitosan core-shell nanoparticles and polymeric hollow nanospheres, Langmuir, 2004, 20: 9909-9912.
    [94] Hu Y., Ding Y., Ding D., et. al, Hollow chitosan/poly (acrylic acid) nanospheres as drug carriers, Biomacromolecules, 2007, 8: 1069-1076.
    [95] Ding Y., Hu Y., Zhang L. Y., et. al, Synthesis and magnetic properties of biocompatible hybrid hollow spheres, Biomacromolecules, 2006, 7: 1766-1772.
    [96]毋伟,陈建峰,邵磊等,聚合物接枝改性超细二氧化硅表面状况及形成机理,北京化工大学学报,2003,30 (2):1-4.
    [97]张若桦,詹亚力,铕(III)的双亚砜混配配合物的合成、表征及其荧光性质,无机化学学报,1995,11 (2):140-146.
    [98] Okamoto Y., Kido J., Macromolecules complexes dynamic interaction and electronic processes, New York: VCH publishers, Inc, 1992: 142-173.
    [99]凌启淡,范希智,陈君等,一种含铽单体的合成及其电致发光研究,化学学报,2001, 59 (1):115-118.
    [100]朱卫国,苑同锁,魏孝强等,噻吩甲酰三氟丙酮-酰基吡唑啉酮-邻菲咯啉合铕(III)四元配合物的合成和表征,高等学校化学学报,1998,19 (11):1840-1843.
    [101]唐洁渊,章文贡,聚丙烯酸-铕-二苯甲酰甲烷配合物及其荧光性质的研究,高分子学报,2001,(4):480-484.
    [102] Wang L. H., Wang W., Zhang W. G., et. al, Synthesis and luminescence properties of novel Eu-containing copolymers consisting of Eu(III)-acrylate-β-diketonatecomplex monomers and methyl methacrylate, Chem. Mater., 2000, 12: 2212-2218.
    [103] Sano T., Fujita M., Fjii T., et.al., Novel europium complex for electroluminescent devices with sharp red emission, Jpn. J. App1. Phys., 1995 (34): 1883-1887.
    [104] Liang B., Zhu M. X., Zhu W. G., Synthesis and photoluminescence of new europium complex Eu(DBM)3(DPPZ) with dipyridophenazine ligand, Chinese Chemical Letters, 2003, 14 (1): 43-46.
    [105] Hu W. P., Matsumura M., Wang M. Z., et. a1, Red electrolumineseence from an organic europium complex with a triphenylphosphine oxide ligand, Jpn. J. App1. Phys, 2000 (39): 6445-6448.
    [106] Wang F., Zhang Y., Fan X. P., et. al, One-pot synthesis of chitosan/LaF3:Eu3+ nanocrystals for bio-applications, Nanotechnology, 2006, 17: 1527-1532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700