长烷基侧链对氟化甲基丙烯酸酯嵌段共聚物表面结构构筑的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以最低的氟化单体含量,得到最优异的表面疏水疏油性及最稳定的表面性质,是氟化高分子材料设计的理想目标。在课题组研究甲基丙烯酸丁酯(BMA)和甲基丙烯酸全氟辛基乙酯二嵌段共聚物(PBMA-b-PFMA)结构与性质的基础上,本论文首次合成了聚甲基丙烯酸丁酯-b-聚甲基丙烯酸十八酯-b-聚甲基丙烯酸全氟辛基乙酯(PBMA-b-PODMA-b-PFMA)、聚甲基丙烯酸丁酯-b-聚甲基丙烯酸十二酯-b-聚甲基丙烯酸全氟辛基乙酯(PBMA-b-PLMA-b-PFMA)三嵌段共聚物。利用接触角测试、X-射线光电子能谱(XPS)、衰减全反射红外光谱(ATR-IR)、X-射线衍射(XRD)、差示量热扫描(DSC)、动态光散射(DLS)、表面张力和和频振动光谱(SFG)等表征手段,研究了长烷基侧链的甲基丙烯酸酯类的引入对氟化丙烯酸丁酯嵌段共聚物表面性质、表面结构的影响。希望在此基础上加深理解聚合物表面结构与聚合物链结构的关系。得出以下结论:
     (1)当PBMA_(164)-b-PODMA_m-b-PFMA_n三嵌段共聚物中PFMA段长在3个单元以下时,随PODMA链长的增加,表面稳定性大大提高。在30℃水中浸泡达到平衡后,水和油的接触角下降值分别从两嵌段氟化聚合物的12.5°和20.2°减小到4.7°和7.6°。
     (2)当PBMA_(164)-b-PODMA_m-b-PFMA_n三嵌段共聚物中PFMA段长在3个单元以下时,随PODMA链长的增长,氟化组分在表面的富集程度增加,表明PODMA结晶可以推动含氟组分向表面离析;当PFMA段长在7个单元时,氟化组分在表面的富集程度与PODMA段的结晶关系不大,原因可能是PFMA段与PODMA段可以形成共晶,限制了氟化组分向表面的富集。
     (3)对于PBMA_(164)-b-PODMA_(52)-b-PFMA_n聚合物系列,氟化组分在表面的富集程度随PFMA段长的增加而下降,聚合物膜表面稳定性变差。
     (4)在PBMA_(164)-b-PFMA_n嵌段共聚物中引入聚甲基丙烯酸十二酯(PLMA)时,其表面氟化组分的富集程度远远低于引入聚甲基丙烯酸十八酯(PODMA)的氟化聚合物。
     (5)通过研究热处理PBMA_(164)-b-PODMA_(10)-b-PFMA_n膜发现,随PFMA段长的增加,氟化组分向表面的富集程度升高,氟化嵌段共聚物的层状结晶增强,膜表面稳定性提高。
It is challenging to fabricate stable ?uorinated polymer surfaces with excellent water and oil repellent properties as well as low ?uorine content. On the basis of our previous work about surface properties and surface structures of poly(butyl methacrylate)–poly(perfluorooctylethyl methacrylate ) diblock copolymers, a series of poly(butyl methacrylate)-b-poly(octadecyl methacrylate)-b-poly(perfluorooctyl ethyl methacrylate)(PBMA-b-PODMA-b-PFMA) and poly(butyl methacrylate) -b-poly(lauryl methacrylate)-b-poly(perfluorooctylethyl methacrylate) (PBMA-b -PLMA-b-PFMA) were synthesized by atom transfer radical polymerization for the first time. In order to find the correlation of surface structure and the chain architecture of block copolymer, the influence of methacrylate with long side alkyl chain on the surface properties and surface structure of ?uorinated poly(butyl methacrylate) triblock polymers was investigated using contact angle measurement, X-ray photoelectron spectroscopy (XPS), attenuated total re?ectance spectra of infrared (ATR-IR), X-ray diffraction (XRD) , differential scanning calorimetry ( DSC), dynamic light scattering (DLS), surface tension and sum frequency generation (SFG) vibrational spectroscopy. Some conclusions were obtained as follows.
     (1) When the units of the PFMA were below 3 in poly(butyl methacrylate) -b-poly(octadecyl methacrylate)-b-poly(2-perfluorooctylethyl methacrylate) (PBMA_(164)-b-PODMA_m-b-PFMA_n), the stability of surface properties were enhanced with increasing length of the PODMA. The decrease of the water and oil contact angle on PBMA_(164)-b-PODMA_(52)-b-PFMA_(1.43) films after immersed in 30℃water were 4.7°and 7.6°, respectively. But those on PBMA164-b-PFMA0.98 film surface were 12.5°and 20.2°, respectively.
     (2) When the units of the PFMA were below 3 in poly(butyl methacrylate) -b-poly(octadecyl methacrylate) -b-poly(2-perfluorooctyl ethyl methacrylate ) (PBMA _(164)-b-PODMA_m-b-PFMA_n), the enrichment extent of fluorine on the film surface was increased with increasing the length of the PODMA block, which indicated that crystallization could drive migration of the perfluoroalkyl segment to the surface. But when the units of the PFMA was about 7, there was no correlation between the enrichment extent of fluorine and the length of PODMA. The PFMA block and the PODMA block might form mixed-crystallization, which reduced the migration of the perfluoroalkyl segment to the surface.
     (3) The enrichment extent of fluorine on the film surface and the surface stability of PBMA_(164)-b-PODMA_(52)-b-PFMA_n decreased with increasing the length of the PFMA block. The decrease in the water and oil contact angle on PBMA_(164)-b-PODMA_(52)-PFMA_(1.43) after immersed in 30℃water were 4.7°and 7.6°, respectively. But those on PBMA_(164)-b-PODMA_(52)-b-PFMA_(8.5) were 12.5°and 20.2°, respectively.
     (4) The enrichment extent of fluorine on the surface of PBMA_(164)-b-PLMA_m- b-PFMAn film was much lower than that of PBMA164-b- PLMA_m-b-PFMA_n films.
     (5) The enrichment extent of fluorine and the layered structure of the fluorinated side chains on the annealed film surface of PBMA_(164)-b-PODMA_(10)-b-PFMA_n was enhanced greatly. Accordingly, the film surface became more stable with increasing length of the PFMA.
引文
[1] Fukushima H, Seki S, Nishikawa T, Takiguchi H. Microstructure, Wettability, and Thermal Stability of Semifluorinated Self-Assembled Monolayers (SAMs) on Gold[J]. J. Phys. Chem. B, 2000, 104: 7417-7423.
    [2] Touzin M, Chevallier P, Lewis F, Turgeon S, Holvoet S, Laroche G, Mantovani D. Study on the stability of plasma-polymerized ?uorocarbon ultra-thin coatings on stainless steel in water[J]. Surface & Coatings Technology, 2008, 202: 4884-4891.
    [3] Riess J G. Highly ?uorinated amphiphilic molecules and self-assemblies with biomedical potential[J]. Current Opinion in Colloid & Interface Science, 2009, 14: 294-304.
    [4] Yan H, Kurogib K, Tsujii K. High oil-repellent poly(alkylpyrrole) films coated with ?uorinated alkylsilane by a facile way[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, 292: 27-31.
    [5] Shibuichi S, Yamamoto T, Onda T, Tsujii K. Super Water- and Oil-Repellent Surfaces Resulting from Fractal Structure[J]. Journal of Colloid and Interface Science, 1998, 208: 287-294.
    [6] Churchley D, Rees G D, Barbu E, Nevella T G, Tsibouklis J. Fluoropolymers as low-surface-energy tooth coatings for oral care[J]. International Journal of Pharmaceutics, 2008, 352: 44-49.
    [7] Hamdy A S. Enhancing corrosion resistance of aluminum composites in 3.5% NaCl using pigmented epoxy ?uoropolymer[J]. Progress in Organic Coatings, 2006, 55: 218–224.
    [8] Revesz K, Hopp B, Bor Z. Excimer laser induced surface chemical modification of polytetrafluoroethylene[J]. Applied Surface Science, 2997, 109-110: 222-226.
    [9] Chae K H, Jang Y M, Kim Y H, Sohn O J, Rhee J I. Anti-fouling epoxy coatings for optical biosensor application based on phosphorylcholine[J]. Sensors and Actuators B, 2007, 124: 153-160.
    [10] Gudipati C S, Finlay J A, Callow J A, Callow M E, Wooley K L. The Antifouling and Fouling-Release Perfomance of Hyperbranched Fluoropolymer (HBFP)?Poly(ethylene glycol) (PEG) Composite Coatings Evaluated by Adsorption of Biomacromolecules and the Green Fouling Alga Ulv[J]. Langmuir, 2005, 21: 3044-3053.
    [11] Wang X P, Wang X B, Chen Z F. Study on reconstruction mechanism at the surface of a glassy polymer [J]. Polymer, 2007, 48: 522-529.
    [12] Yang J P, Ni H G, Wang X F, Zhang W, Wang X P. Creating stable hydrophobic surfaces by poly(butyl methacrylate) end-capped with 2-perfluorooctylethyl methacrylate units [J]. Polymer Bulletin, 2007, 59: 105-115.
    [13] Koberstein J T. Molecular Design of Functional Polymer Surfaces [J]. Journal of Polymer Science: Part B: Polymer Physics, 2004, 42: 2942-2956.
    [14] Schmidt D L, Brady R F, Jr , Lam K , Schmidt D C , Chaudhury M K .Contact Angle Hysteresis, Adhesion, and Marine Biofouling [J]. Langmuir, 2004, 20: 2830-2836
    [15] Wang X F, Ni H G, Xue D W, Wang X P, Feng R R. Solvent effect on the film formation and the stability of the surface properties of poly(methyl methacrylate) end-capped with ?uorinated units[J]. Journal of Colloid and Interface Science, 2008, 321: 373-383.
    [16] Tuminello W H, Gregory T D. Thermodynamics of poly(tetrafluoroethylene) solubility [J]. Macromolecules, 1994, 27: 669-676.
    [17] Honda K, Morita M, Otsuka H, Takahara A. Molecular Aggregation Structure and Surface Properties of Poly(fluoroalkyl acrylate) Thin Films[J]. Macromolecules, 2005, 38: 5699-5705.
    [18] Corpart J M, Girault S, JuhuéD. Structure and Surface Properties of Liquid Crystalline Fluoroalkyl Polyacrylates: Role of the Spacer[J]. Langmuir, 2001, 17: 7237-7244.
    [19] Guo J, Resnick P, Efimenko K, Genzer J, DeSimone J M. Alternative Fluoropolymers to Avoid the Challenges Associated with Perfluorooctanoic Acid[J]. Ind. Eng. Chem. Res. 2008, 47: 502-508.
    [20] Imae T. Fluorinated polymers[J]. Current Opinion in Colloid and Interface Science, 2003, 8: 307-314
    [21] Li Y, Meli L, Lim K T, Johnston K P, Green P F. Structural Inversion of Micellar Block Copolymer Thin Films[J]. Macromolecules, 2006, 39: 7044-7054.
    [22] Sa?di S, Guittard F, Guimon C, Géribaldi S. Low Surface Energy Perfluorooctyalkyl Acrylate Copolymers for Surface Modification of PET[J]. Macromol. Chem. Phys. 2005, 206: 1098-1105.
    [23] Yang S, Wang J G, Ogino K J, Valiyaveettil S, Ober C K. Low-Surface-Energy Fluoromethacrylate Block Copolymers with Patternable Elements [J]. Chem. Mater., 2000, 12: 33-40.
    [24] Hirao A, Koide G, Sugiyama K. Synthesis of Novel Well-Defined Chain-End- and In-Chain-Functionalized Polystyrenes with One, Two, Three, and Four Perfluorooctyl Groups and Their Surface Characterization[J]. Macromolecules, 2002, 35: 7642-7651.
    [25] Nishino T, Urushihara Y, Meguro M, Nakamae K. Surface properties and structures of diblock and random copolymers with perfluoroalkyl side chains[J]. J. Colloid Interface Sci., 2004, 279: 364-369.
    [26] Park I J, Lee S B, Choi Ch K. Surface Properties of the Fluorine-Containing Graft Copolymer of Poly((perfluoroalkyl) ethyl methacrylate)-g-poly(methyl methacrylate)[J]. Macromolecules, 1998, 31: 7555-7558.
    [27] Yokoyama H, Tanaka K, Takahara A, Kajiyama T, Sugiyama K, Hirao A. Surface Structure of Asymmetric Fluorinated Block Copolymers[J]. Macromolecules, 2004, 37: 939-945.
    [28] Grampel R D, Ming W, Gildenpfennig A, Krupers M J, Laven J, Linde R. Surface studies of partially ?uorinated polymethacrylates: a combined XPS and LEIS analysis[J]. Progress in Organic Coatings, 2002, 45: 273-279.
    [29] Li K, Wu P P, Han Z W. preparation of surface properities of fluorine-containing diblock copolymer [J]. Polymer, 2002, 43: 4079-4086.
    [30] Valtola L, Koponen A, Karesoja M, Hietala S, Laukkanen A, Tenhu H, Deni? P. Tailored surface properties of semi-?uorinated block copolymers by electrospinning[J]. Polymer, 2009, 50: 3103–3110.
    [31] Yang J P, Zhao Q D, Zhou B, Ni H G, Wang X P, Shen Z Q. Effect of Block Length on the Self-Assembly of End-Capping Perfluoroalkyl Moieties on the Polymer Surface[J]. 2009, 52: 2295-2306.
    [32] Urushihara Y, Nishino T. Effects of Film-Forming Conditions on Surface Properties and Structures of Diblock Copolymer with Perfluoroalkyl Side Chains[J]. Langmuir, 2005, 21: 2614-2618.
    [33] Synytska A, Appelhans D, Wang Z G, Simon F, Lehmann F, Stamm M, Grundke K . Perfluoroalkyl End-Functionalized Oligoesters: Correlation between Wettability and End-Group Segregation[J]. Macromolecules, 2007, 40: 297-305.
    [34] Ito H, Imae T, Nakamura T, Sugiura M, Oshibe Y. Self-association of water-soluble ?uorinated diblock copolymers in solutions[J]. Journal of Colloid and Interface Science , 2004, 276: 290-298.
    [35] Hwang H S, Kim H J, Jeong Y T, Gal Y S, Lim K T. Synthesis and Properties of Semifluorinated Copolymers of Oligo(ethylene glycol) Methacrylate and 1H,1H,2H,2H-Per fluorooctyl Methacrylate[J] . Macromolecules, 2004, 37: 9821-9825.
    [36] Lima K T, Leea M Y, Moonb M J, Leeb G D, HongbJasper S S, Dicksonc J L, Johnstonc K P . Synthesis and properties of semi?uorinated block copolymers containing poly(ethylene oxide) and poly(?uorooctyl methacrylates) via atomtransfer radical polymerization[J] . Polymer, 2002, 43: 7043-7049.
    [37]倪华钢(NI Hua-gang),王新平(WANG Xin-gang),沈之荃(SHEN Zhi-quan).中国科学(Science in China), B辑(Ser. B), 2008, 38(10): 1~8.
    [38] Nishino T, Urushihara Y, Meguro M, Nakamae K. Surface properties and structures of diblock copolymer and homoploymer with perfluoroalkyl side chains[J]. J. Colloid Interface Sci., 2005, 283: 533-538.
    [39] Arnold M E, Nagai K, Spontak R J, Freema B D, Lerou D, Bett D E, DeSimone M J, DiGiano F A, Stebbins C K, Linton R W. Microphase-Separated Block Copolymers Comprising Low Surface Energy Fluorinated Blocks and Hydrophilic Blocks: Synthesis and Characterization[J]. Macromolecules, 2002, 35: 3697-3707.
    [40] Park I J, Lee S B, Choi C K, Kim J. Surface Properties and Structure of Poly (Perfluoroalkylethyl Methacrylate) [J]. J. Colloid Interface Sci., 1996, 181: 284-288.
    [41] Lei Y J, Cheunga Z L, Ng K M, Lic L, Weng L T, Chana C M. Surface chemical and morphological properties of a blend containing semi-crystalline and amorphous polymers studied with ToF-SIMS, XPS and AFM[J]. Polymer 2003, 44: 3883-3890.
    [42] Schmitt R L, GardellJ A, Surface spectroscopic studies of polymer surfaces and interfaces: 2. Poly(tetramethyI-P-silphenylenesiloxane/ poly(dimethylsiloxane) block copolymers[J]. Polymer, 1987, 28: 1462-1466.
    [43] Clarke M L, Chen C Y, Wang J, Chen Z. Molecular Level Structures of Poly(n-alkyl methacrylate)s with Different Side Chain Lengths at the Polymer/Air and Polymer/Water Interfaces [J]. Langmuir, 2006, 22: 8800-8806.
    [44] Braunecker W A, Matyjaszewsk K. Controlled/living radical polymerization: Feature, developments, and perspectives[J]. Prog. Polym. Sci., 2007, 32: 93-146.
    [45] Matyjaszewsk K, Spanswick J. Controlled/Living radical polymerization[J]. materialstoday March, 2005, 8: 26-33.
    [46] Qin S H, Saget J, Pyun J, Jia S J, Kowalewski T, Matyjaszewski K. Synthesis of Block, Statistical, and Gradient Copolymers from Octadecyl(Meth)acrylates Using Atom Transfer Radical Polymerization[J]. Macromolecules, 2003, 36: 8969-8977.
    [47] Wu W, Huang J Y, Jia S J, Kowalewski T, Matyjaszewski K. Self-Assembly of pODMA-b-ptBA-b-pODMA Triblock Copolymers in Bulk and on Surfaces. A Quantitative SAXS/AFM Comparison [J]. Langmuir, 2005, 21: 9721-9727.
    [48]何卫东.高分子化学实验.合肥:中国科学技术大学出版社,2003: 17-19.
    [49]李鲲,郭建华,李欣欣,吴平平,韩哲文.原子转移自由基聚合合成甲基丙烯酸丁酯与丙烯酸全氟烷基乙酯两嵌段共聚物及其性能的研究[J].高分子学报. 2004, 2: 235-240.
    [50] Li Y, Meli L, Lim K T, Johnston K P, Green P F. Structural Inversion of Micellar Block Copolymer Thin Films[J]. Macromolecules, 2006, 39: 7044-7054.
    [51] Nanda A K, Matyjaszewski K. Effect of [bpy]/[Cu(I)] Ratio, Solvent, Counterion, and Alkyl Bromides on the Activation Rate Constants in Atom Transfer Radical Polymerization[J]. Macromolecules, 2003, 36: 599-604.
    [52] Luo Z H, He T Y, Yu H J, Dai L Z. A Novel ABC Triblock Copolymer with Very Low Surface Energy: Poly(dimethylsiloxane)-block-Poly(methyl methacrylate)-block-Poly(2,2,3,3,4,4,4-hepta fluorobutylmethacrylate)[J]. Macromol. React. Eng., 2008, 2: 398-406.
    [53] Karanam S, Goossens H, Klumperman B, Lemstra P.“Controlled”Synthesis and Characterization of Model Methyl Methacrylate/tert-Butyl Methacrylate Triblock Copolymers via ATRP[J]. Macromolecules, 2003, 36: 3051-3060.
    [54] Sart G D, Rachmawati R, Voet V, Ekenstein G A V, Polushkin E, Brinke G T, Loos K. Poly(tert-butyl methacrylate-b-styrene-b-4-vinylpyridine) Triblock Copolymers: Synthesis, Interactions, and Self-Assembly[J]. Macromolecules, 2008, 41: 6393-6399.
    [55] Zhou X D, Ni P H, Yu Z Q, Zhang F. Latices of Poly(fluoroalkyl mathacrylate)-b-Poly(butyl methacrylate) Copolymers Prepared via Reversible Addition-Fragmentation Chain Transfer Polymerization[J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2007, 45: 471-484.
    [56] Jakubowski W, Lutz J F, Slomkowski S, Matyjaszewski K. Block and Random Copolymers as Surfactants for Dispersion Polymerization. I. Synthesis via Atom Transfer Radical Polymerization and Ring-Opening Polymerization[J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2005, 43: 1498-1510.
    [57] Soldi R A, Oliveira A R S, Barbosa R V, Ce′sar-Oliveira M A F. Polymethacrylates: Pour point depressants in diesel oil[J]. European Polymer Journal, 2007, 43: 3671-3678.
    [58] Raghunadh V, Baskaran D, Sivaram S. Efficiency of ligands in atom transfer radical polymerization of lauryl methacrylate and block copolymerization with methyl methacrylate[J]. Polymer, 2004, 45: 3149-3155.
    [59] Cui X J, Zhong S L, Gao Y, Wang H Y. Preparation and characterization of emulsifier-free core–shell interpenetrating polymer network-fluorinated polyacrylate latex particles[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects 2008, 324: 14-21.
    [60] Okouchi M, Yamaji Y, Yamauchi K. Contact Angle of Poly(alkyl methacrylate)s and Effects of the Alkyl Group[J]. Macromolecules, 2006, 39: 1156-1159.
    [61] Hempel E, Beiner M, Huth H, Donth E. Temperature modulated DSC for the multiple glass transition in poly(n-alkyl methacrylates)[J]. Thermochimica Acta, 2002, 39: 219-225.
    [62] M Krupers M, MoilerM. Semifluorinated diblock copolymers. Synthesis,characterisation and amphiphilic properties[J]. Macromol. Chem. Phys. 1997,19: 2163-2179.
    [63] Pederson C J, Frensdorff H K. Angew. Chem., Inr. Ed. Engl. 1972, 11: 16.
    [64] Izat R M, Terry R E, Haymore B L, Hansen L D, Dalbey N K, Avondet A G, Christensen J J. Calorimetric titration study of the interaction of several uni- and bivalent cations with 15-crown-5, 18-crown-6, and two isomers of dicyclohexo-18-crown-6 in aqueous solution at 25.degree.C and .mu. = 0.1[J]. J. Am. Chem. Soc, 1976, 98: 7620-7626.
    [65] Chen N P, Hong L. Surface phase morphology and composition of the casting films of PVDF-PVP blend[J]. 2002, 43: 1429-1436.
    [66] Zisman W A. Contact Angle, Wettability, and Adhesion, Advances in Chemistry Series 43, Am. Chem.Soc.: Washington DC, 1964.
    [67] Langmuir I. The constitution and fundamental properties of solids and liguids. Part I. solids [J]. J. Am. Chem. Soc., 1916, 38: 2221-2295.
    [68] Neugebauer D, Theis M, Pakula T, Wegner G. Densely Heterografted Brush Macromolecules with Crystallizable Grafts. Synthesis and Bulk Properties[J]. Macromolecules, 2006, 39: 584-593.
    [69] Wu W, Huang J Y, Jia S J,KowalewskiT, MatyjaszewskiK. Self-Assembly of pODMA-b-ptBA-b-pODMA TriblockCopolymers in Bulk and on Surfaces. A Quantitative SAXS/AFM Comparison[J]. Langmuir, 2005, 21: 9721-9727.
    [70] Sheiko S, Lermann E, Moller M. Self-Dewetting of Perfluoroalkyl Methacrylate Films on Glass [J]. Langmuir, 1996, 12: 4015-4024.
    [71] Inomata K, Sakamaki Y, Takuhei. N, Sasaki S. Octadecyl Side Chains I. Cocrystallization of Side Chain with n-Octadecanoic Acid[J]. Polymer Journal, 1996, 28: 986-991.
    [72] Inomata K, Sakamaki Y, Takuhei. N, Sasaki S. Octadecyl Side Chains II. Crystalline-Amorphous Layered Structure[J]. Polymer Journal, 1996, 28: 992-999.
    [73] Shi H F, Zhao Y, Jiang S C, Rottstegge J, Xin J H, Wang D J, Xu D F. Effect of Main-Chain Rigidity on the Phase Transitional Behavior of Comblike Polymers[J]. Macromolecules, 2007, 40: 3198-3203.
    [74] Floudas F. Structure and Dynamics of Poly(n-decyl methacrylate) below and above the Glass Transition[J]. Macromolecules, 1998, 31: 6951-6957.
    [75] Denizli B K, Lutz J F, Okrasa L, Pakula T, Guner A, Matyjaszeweskll K. Properties of Well-Defined Alternating and Random Copolymers of Methacrylates and Styrene Prepared by Controlled/Living Radical Polymerization[J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2005, 43: 3440-3446.
    [76] Fujimori A, Kobayashi S, Hoshizawa H, Masuya R, Masuko T. Solid-State Structure and Formation of Organized Molecular Films of Methacrylate Copolymers Containing Fluorinated and Hydrogenated Side-Chains[J]. Polymer Engineering and Science, 2007, 47: 354-364
    [77] Fujimori1 A, Masuya1 R, Masuko T, Ito E, Hara M, Kanai K, Ouchi Y, Seki K, Nakahara H. Polym. Adv. Technol.[J]. 2006, 17: 635-663
    [78] Fujimori1 A, Masuya1 R, Masuko T, Ito E, Hara M, Kanai K, Ouchi Y, Seki K, Nakahara H. Macromol. Symp.[J]. 2006, 245-246: 215-227.
    [79] Hempel E, Buddeb H, Horing S, Beiner M. Side chain crystallization in microphase-separatedpoly(styrene-block-octadecylmethacrylate) copolymers[J]. Thermochimica Acta, 2005, 432: 254-261.
    [80] Katano Y, Tomono H, Nakajima T. Surface Property of Polymer Films withFluoroalkyl Side Chains[J]. Macromolecules, 1994, 27: 2342-2344.
    [81] Brandrup J, Lmmergut E H. Polymer Handbook. Third ED. New York: John Wiley & Son, 1989.
    [82] Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65: 259-269.
    [83] Shang S R, Huang S J, Weiss R A. Synthesis and characterization of itaconic anhydride and stearyl methacrylate copolymers[J]. Polymer, 2009, 50: 3119-3127.
    [84] Pitsikalis M, Kioulafa E S, Hadjichristidis N. Block Copolymers of Styrene and Stearyl Methacrylate. Synthesis and Micellization Properties in Selective Solvents[J]. Macromolecules, 2000, 33: 5460-5469.
    [85] Luo Z H, He T Y, Yu H J, Dai L Z. A Novel ABC Triblock Copolymer with Very Low Surface Energy: Poly(dimethylsiloxane)-block-Poly(methyl methacrylate)-block- Poly(2,2,3,3,4,4,4-hepta?uorobutyl methacrylate)[J]. Macromol. React. Eng., 2008, 2: 398-406.
    [86] Hsieha C T, Chen J M, Kuo R R, Lin T S, Wu C F. In?uence of surface roughness on water- and oil-repellent surfaces coated with nanoparticles[J]. Applied Surface Science, 2005, 240: 318-326.
    [87] Lu R, Gan W, Wang H F, Novel method for accurate determination of the orientational angle of interfacial chemical groups [J]. Chin. Sci. Bull., 2003, 48: 2183- 2187.
    [88] Gan W, Wu B H, Zhang Z, Guo Y, Wang H F, Vibrational Spectra and Molecular Orientation with Experimental Configuration Analysis in Surface Sum Frequency Generation (SFG) [J]. J. Phys. Chem. C, 2007, 111: 8716-8725.
    [89] Gan W, Zhang Z, Feng R R, Wang H F, Spectral Interference and Molecular Conformation at Liquid Interface with Sum Frequency Generation Vibrational Spectroscopy (SFG-VS) [J]. J. Phys. Chem. C, 2007, 111: 8726-8738.
    [90] Wang J, Chen C, Buck S M, Chen Z, Molecular Chemical Structure on Poly(methyl methacrylate) (PMMA) Surface Studied by Sum Frequency Generation (SFG) Vibrational Spectroscopy[J]. J. Phys. Chem. B, 2001, 105: 12118 -12125.
    [91] Briggman K A, Stephenson J C, Wallace W E, Richter L J, Absolute Molecular Orientational Distribution of the Polystyrene Surface[J]. J. Phys. Chem. B, 2001, 105: 2785.
    [92] Zhang D, Shen Y R, Somorjai G A, Studies of surface structures and compositions of polyethylene andpolypropylene by IR-visible sum frequency vibrational spectroscopy[J]. Chem. Phys. Lett., 1997, 281: 394.
    [93] Zhang D, Ward R S, Shen Y R, Somorjai G A, Environment-Induced Surface Structural Changes of a Polymer: An in Situ IR + Visible Sum-Frequency Spectroscopic Study [J] .J. Phys. Chem. B, 1997, 101: 9060 -9064.
    [94] Gracias D H, Chen Z, Shen Y R, Somorjai G A, Acc. Chem. Res. 1999, 320: 930.
    [95] Zhang D, Dougal S M, Yeganeh M S, Effects of UV Irradiation and Plasma Treatment on a Polystyrene Surface Studied by IR-Visible Sum Frequency Generation Spectroscopy [J]. Langmuir, 2000, 16: 4528-4532.
    [96] Chen Z, Shen Y R, Somorjai G A, optical second harmonic generationa1 at interfaces [J]. Annu. Rev. Phys. Chem., 2002, 53: 437.
    [97] Xue D W, Wang X P, Ni H G, Zhang W, Xue G. Surface Segregation of Fluorinated Moieties on Random Copolymer Films Controlled by Random-Coil Conformation of Polymer Chains in Solution[J]. Langmuir, 2009, 25: 2248-2257
    [98] Hempel E, Huth H, Beiner M. Interrelation between side chain crystallization and dynamic glass transitions in higher poly(n-alkyl methacrylates)[J]. Thermochimica Acta, 2003, 403: 105-114
    [99] Xu Y Y, Becker H, Yuan J Y, Burkhardt M, Zhang Y, Walther A, Bolisetty S, Ballauff M, Muller A H E. Double-Grafted Cylindrical Brushes:Synthesis and Characterization of Poly(lauryl methacrylate) Brushes[J]. Macromol. Chem. Phys. 2007, 208: 1666-1675

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700