大分子偶联剂的合成及其对天然纤维/聚乳酸复合材料的界面改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物纤维/聚乳酸(PLA)复合材料由于其能够完全降解、来源于可再生资源等优势逐渐引起研究者的关注。但其不足也很明显,植物纤维和聚乳酸亲和性差,造成复合材料的界面性能较差,植物纤维的增强效果得不到充分的发挥。
     本文从合成两种新型的可用于植物纤维/PLA复合材料的大分子偶联剂出发,对天然纤维的表面改性、天然纤维/PLA复合材料的动/静态力学性能、复合材料的稳定性及降解性等进行了较为系统的研究,主要获得了以下几个方面的研究成果:
     (1)设计合成了两种新型大分子偶联剂:γ-甲基丙烯酰氧基丙基三甲氧基硅烷(MPS)接枝聚乳酸(MPS-g-PLA); PLA与甲基丙烯酸缩水甘油酯(GMA)共聚物PLA-co-PGMA。红外光谱与核磁共振结果表明:PLA分子骨架接枝了MPS支链;GMA与PLA先形成大分子单体,而后合成出嵌段共聚物。两种偶联剂优化的合成条件分别为:MPS-g-PLA反应温度为110℃,反应时间5 h,投料质量比为5:1,引发剂用量1wt.%; PLA-co-PGMA反应温度70℃,AIBN用量为2wt.%, PLA-GMA:GMA摩尔比为1:25,反应时间5 h。PLA及共聚物的水解研究表明:MPS-g-PLA和PLA-co-PGMA均可降解;降解速率均慢于聚乳酸,尤其是PLA-co-PGMA。
     (2)采用大分子偶联剂对两种天然纤维(细菌纤维素和剑麻纤维)进行了表面改性。接触角测试表明:MPS-g-PLA改性使细菌纤维素的表面能大幅降低,主要降低其极性力部分;PLA-co-PGMA改性,同样主要降低纤维表面能的极性力部分。大分子偶联剂处理同样可以提高剑麻纤维的疏水性。扫描电子显微镜分析表明:大分子偶联剂处理使剑麻纤维表面变得更为粗糙。通过界面热力学计算得知:两种偶联剂处理均降低了纤维与聚乳酸树脂的界面张力,这有助于提高纤维在树脂中的分散与浸润,改善纤维与基体的相容性。表面处理使纤维与树脂的界面剪切强度提高35%以上。
     (3)剑麻纤维的加入提高了PLA树脂的模量。偶联剂表面改性可进一步提高PLA的强度和模量。当剑麻纤维含量为30 wt.%时,MPS-g-PLA表面处理的复合材料的拉伸强度、冲击强度、弯曲强度和模量比纯PLA分别提高了4.8%、25.3%、3.5%和82.7%;PLA-co-PGMA表面处理,则相应的提高了6.2%、29.4%、7.8%和79.3%。增塑剂PEG提高了PLA断裂伸长率,降低了其强度和模量。加入30%剑麻纤维,复合材料拉伸强度提高了21.81%,但降低了其断裂伸长率和冲击强度。偶联剂处理纤维将增塑PLA的拉伸强度、弯曲强度和模量均进一步提高,而冲击强度进一步降低。这表明应力通过界面很好的从基体传递到纤维。30wt.%剑麻纤维/聚乳酸复合材料的储能模量比纯PLA可提高1倍。MPS-g-PLA表而处理纤维复合材料储能模量比未处理纤维复合材料轻微降低;而PLA-co-PGMA表面处理则与未处理纤维复合材料相当。剑麻纤维的加入降低了PLA的损耗因子,但纤维改性与否对复合材料损耗因子影响较小。材料断面形貌分析表明:大分子偶联剂处理使纤维与树脂结合紧密,相容性提高。
     (4)PLA及其剑麻纤维复合材料在30℃、相对湿度80%的条件下,稳定性研究表明:PLA及其复合材料的吸湿率随时间的延长逐渐增加,而后在30天内基本达到吸湿平衡;剑麻纤维的加入提高了材料的吸湿性。纯PLA在30天内拉伸强度有所提高;而纤维复合材料拉伸性能下降,经合成偶联剂表面改性处理纤维后可以明显减缓这种力学性能的降低,提高复合材料的稳定性。偶联剂处理可以使纤维与基体界面产生良好的界面粘结,这有效改善了复合材料的稳定性。在高温高湿土埋环境下PLA及其剑麻纤维复合材料都具有很好的降解性能。与未经大分子偶联剂处理的纤维复合材料相比,经处理的纤维复合材料降解速率较慢。
     (5)采用纳米纤维增强PLA制备了透明的细菌纤维素/聚乳酸纳米复合材料,通过马来酸酐对细菌纤维素表面改性,使细菌纤维素和PLA之间形成有效的结合,改善了两相的界面相容性,从而提高了复合材料力学性能。
     课题研究的天然纤维/聚乳酸复合材料是一种绿色复合材料。通过改善纤维与树脂界面提高其综合性能,有望扩大其应用领域,这对解决当前环境问题,实现可持续发展有着重要的意义。
Nature fiber/polylctide (PLA) composites are gaining considerable attention due to their fully degradation and deriving entirely from renewable resources. However, there are some limitations. The most important restraint is the poor interfacial compatibility between the hydrophilic fiber and the hydrophobic polylactide matrix, which limits the performance of the final composite.
     In this work, the study was carried out systematically such as the synthesis of macromolecular coupling agents, surface treatment of nature fibers, static and dynamic mechanical properties of nature fiber/PLA composite, stability and biodegradibility of the composites. And the main results in this work are summed as follows:
     (1) Two types of coupling agent,γ-Methacryloxypropyltrimethoxysilane-graft-PLA (MPS-g-PLA) and polylactide-glycidyl methacrylate copolymer (PLA-co-PGMA), were successfully designed and synthesized. Their structure was characterized by Fourier transform infrared spectroscopy (FTIR) and Hydrogen nuclear magnetic resonance ('H-NMR). Furthermore, their synthetic procedure was optimized:in the case of MPS-g-PLA, reacting for 5 h under 110℃with the mass ratio 5:1, amounts of initiator 1wt.%; for PLA-co-PGMA, reacting for 5 h under 70℃with the molar ratio of monomers 5:1, amounts of initiator 2wt.%. Hydrolytic degradation of PLA and its copolymers showed that the degradation rates of the copolymers slightly differ from neat PLA, especially PLA-co-PGMA.
     (2) Macromolecular coupling agents were employed for surface modification of bacterial cellulose (BC) and sisal fiber (SF). Contact angle measurements showed that the surface energy of BC after modification was decreased due to the reduction in its polar component. Concentration of MPS-g-PLA and pH influenced surface properties of BC. Surface modification can also improve the surface hydrophobicity of SF. Scanning electron microscopy (SEM) photographs showed surface modification made SF surface rough. Interfacial thermodynamic properties were studied and the results suggested that the surface modification decreased interfacial tension of BC/PLA and were more efficient in improving the interfacial shear strength.
     (3) The addition of SF enhanced modulus of PLA. After fiber treatment with MPS-g-PLA. the tensile strength of PLA composite with 30% fiber can be increased by 4.8%; with an impact strength by 25.3%; a flexural strength by 3.5%, and a flexural modulus by 82.7%; while fiber treatment with PLA-co-PGMA, the tensile strength of PLA composite can be increased by 6.2%; with a impact strength by 29.4%; a flexural strength by 7.8%, and a flexural modulus by 79.3%. Plasticizer was used to decrease the processing temperature and enhance impact strength of composites; which make efficiency of surface modification obvious. At 30 wt% SF loading, tensile strength improved by 21.81%, while strain at break and impact strength dropped compared to neat plasticized PLA. Surface modification of SF had further increased tensile strength of composites and decreased its impact strength, which suggests effective stress transfer between fiber and matrix. The DMA storage modulus increased with the addition of SF. Compared to unmodified fiber, the interfacial binding strength of composites with PLA-co-PGMA and MPS-g-PLA was higher. SEM micrographs of the fracture surface of Notched Izod impact specimen indicated that the adhesion between fiber and matrix could be improved by the addition of coupling agents.
     (4) Stability of PLA and its composites was estimated under damp condition. The results revealed that conditioning to equilibrium at 80% relative humidity and 30℃took about 30 d and resulted in decrease of tensile strength of composites. However, surface modification of SF had a remarkable effect on the stability of SF/PLA composites and relieved decline of their tensile strength by keeping interphase damage to a minimum level. Biodegradability of PLA and its composites was evaluated by the soil-burial test. Both fiber and matrix phases of the PLA composites were biodegradable; they have a relatively high biodegradability and the presence of SF affected the weight loss. Biodegradability was restrained for treated SF composites, as the interfacial adhesion is improved due to the surface modification of the fiber.
     (5) Transparent nanocomposite consisting of two biocompatible materials, bacterial cellulose (BC) and PLA was prepared. Maleic anhydride was first grafted onto BC nanofibers, which made BC nanofibers well disperse into PLA matrix and the interfacial adhesion between BC and PLA was improved.
     Natural fiber/PLA composite is a green composite. Improvement of physico mechanical properties of the composites will expand in application field. It is of great significance for solving the current environment issues and achieving sustainable development.
引文
[1]李坚.生物质复合材料学.北京:科学出版社.2008.
    [2]许民.生物质-塑料复合工学.北京:科学出版社.2006.
    [3]Mohanty A.K., Misra M., Drzal L.T., et al.Natural Fibers, Biopolymers, and Biocomposites:An Introduction. Natural Fibers, Biopolymers, and Biocomposites. A.K. Mohanty, M. Misra, and L.T. Drzal ed. Boca Raton:CRC Press.2005.
    [4]鲁博,张林文,曾竟成等.天然纤维复合材料.北京:化学工业出版社.2005.
    [5]Mohanty A.K.,Misra M.,Hinrichsen G. Biofibres, biodegradable polymers and biocomposites:An overview. Macromolecular Materials and Engineering.2000, 276-277(1):1-24.
    [6]Ohtani Y.,Mazumder B.B.,Sameshima K. Influence of the chemical composition of kenaf bast and core on the alkaline pulping response. Journal of Wood Science.2001,47(1): 30-35.
    [7]Ouajai S.,Shanks R.A. Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polymer Degradation and Stability.2005,89(2):327-335.
    [8]Rahman M.M.,Khan M.A. Surface treatment of coir (Cocos nucifera) fibers and its influence on the fibers' physico-mechanical properties. Composites Science and Technology.2007,67(11-12):2369-2376.
    [9]Satyanarayana K.G.,Kulkarni A.G.,Rohatgi P.K. Structure and properties of coir fibres. Sadhana.1981,4(4):419-436.
    [10]杨淑蕙.植物纤维化学.北京:中国轻工业出版社.2001.
    [11]Li X. Physical, chemical, and mechanical properties of bamboo and its utilization potential for fiberboard manufacturing.2004, Louisiana State University. Shreveport.
    [12]卞玉荣,余晓斌,全文海.细菌纤维素的性质与结构研究.纤维素科学与技术.2001,9(1):17-20.
    [13]Zini E., Focarete M.L., Noda I., et al. Bio-composite of bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) reinforced with vegetable fibers. Composites Science and Technology.2007,67(10):2085-2094.
    [14]王广峰,王泓.天然纤维增强复合材料.天津纺织科技.2002,40(4):33-34.
    [15]Stanislaw B., Alina K., Marianna T., et al.Bacterial cellulose. Biopolymers. Vol.5, Weinheim:Wiley-VCH, Verlag GmbH.2002.
    [16]Cheng H.-P., Wang P.-M., Chen J.-W., et al. Cultivation of Acetobacter xylinum for bacterial cellulose production in a modified airlift reactor. Biotechnology and applied biochemistry.2002,35(2):125-132.
    [17]White D.,Brown R.Prospects for the commercialization of the biosynthesis of microbial cellulose. Cellulose and Wood-Chemistry and Technology. C. Schuerch ed. New York Wiley.1989,573-589.
    [18]Son H.J., Heo M.S., Kim Y.G., et al. Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Biotechnology and applied biochemistry.2001,33(Pt 1):1-5.
    [19]Bledzki A.K.,Reihmane S.,Gassan J. Properties and modification methods for vegetable fibers for natural fiber composites. Journal of Applied Polymer Science.1996,59(8): 1329-1336.
    [20]Angelini L.G., Lazzeri A., Levita G, et al. Ramie (Boehmeria nivea (L.) Gaud.) and Spanish Broom (Spartium junceum L.) fibres for composite materials:agronomical aspects, morphology and mechanical properties. Industrial Crops and Products.2000, 11(2-3):145-161.
    [21]Baley C. Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Composites Part A:Applied Science and Manufacturing.2002,33(7): 939-948.
    [22]Chand N.,Tiwary R.K.,Rohatgi P.K. Bibliography Resource structure properties of natural cellulosic fibres - an annotated bibliography. Journal of Materials Science. 1988,23(2):381-387.
    [23]Xue Y., Du Y, Elder S., et al. Temperature and loading rate effects on tensile properties of kenaf bast fiber bundles and composites. Composites Part B:Engineering.2009, 40(3):189-196.
    [24]Wambua P.,Ivens J.,Verpoest I. Natural fibres:can they replace glass in fibre reinforced plastics?. Composites Science and Technology.2003,63(9):1259-1264.
    [25]Jain S.,Kumar R.,Jindal U.C. Mechanical behaviour of bamboo and bamboo composite. Journal of Materials Science.1992,27(17):4598-4604.
    [26]Godbole V.S.,Lakkad S.C. Effect of water absorption on the mechanical properties of bamboo. Journal of Materials Science Letters.1986,5(3):303-304.
    [27]Kamel S. Nanotechnology and its applications in lignocellulosic composites, a mini review. eXPRESS Polymer Letters.2007,1(9):546-575.
    [28]Ifuku S., Nogi M., Abe K., et al. Surface Modification of Bacterial Cellulose Nanofibers for Property Enhancement of Optically Transparent Composites:Dependence on Acetyl-Group DS. Biomacromolecules.2007,8(6):1973-1978.
    [29]Hsieh Y.C., Yano H., Nogi M., et al. An estimation of the Young's modulus of bacterial cellulose filaments, cellulose.2008,15(4):507-513.
    [30]Wan Y.Z., Hong L., Jia S.R., et al. Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites. Composites Science and Technology.2006,66(11-12):1825-1832.
    [31]张晓明,刘雄亚.纤维增强热塑性复合材料及其应用.北京:化学工业出版社.2007.
    [32]马海红,邱谨楠.生物降解高分子材料的研究进展.安徽化工.2008,34(4):1-3.
    [33]任杰.可降解与吸收材料.北京:化学工业出版社.2003.
    [34]陈国强主译.聚酯Ⅲ——应用和商品.生物高分子.土肥羲治,斯泰因比歇尔主编.Vol.4,北京:化学工业出版社.2004.
    [35]杨斌.绿色塑料聚乳酸.北京:化学工业出版社.2007.
    [36]Dorgan J.R., Lehermeier H.J., Palade L.-I., et al. Polylactides:properties and prospects of an environmentally benign plastic from renewable resources. Macromolecular Symposia.2001,175(1):55-66.
    [37]Lim L.T.,Auras R.,Rubino M. Processing technologies for poly(lactic acid). Progress in Polymer Science.2008,33(8):820-852.
    [38]Garlotta D. A Literature Review Of Poly(Lactic Acid). Journal of Polymers and the Environment.2002,9(2):63-84.
    [39]Drumright R.E.,Gruber P.R.,Henton D.E. Polylactic Acid Technology. Advanced Materials.2000,12(23):1841-1846.
    [40]Vink E.T.H., Rabago K.R., Glassner D.A., et al. Applications of life cycle assessment to NatureWorks(TM) polylactide (PLA) production. Polymer Degradation and Stability. 2003,80(3):403-419.
    [41]Ajioka M., Enomoto K., Suzuki K., et al. The basic properties of poly(lactic acid) produced by the direct condensation polymerization of lactic acid. Journal of Polymers and the Environment.1995,3(4):225-234.
    [42]Tuominen J.,Kylma J.,Seppala J. Chain extending of lactic acid oligomers.2. Increase of molecular weight with 1,6-hexamethylene diisocyanate and 2,2'-bis(2-oxazoline). Polymer.2002,43(1):3-10.
    [43]Kricheldorf H.R.,Lee S.-R. Polylactones:32. High-molecular-weight polylactides by ring-opening polymerization with dibutylmagnesium or butylmagnesium chloride. Polymer.1995,36(15):2995-3003.
    [44]Zhou Z.H.,Liu X.P.,Liu L.H. Synthesis of Ultra-high Weight Average Molecular Mass of Poly-L-lactide. International Journal of Polymeric Materials.2008,57(5):532-542.
    [45]Martin O.,Averous L. Poly(lactic acid):plasticization and properties of biodegradable multiphase systems. Polymer.2001,42(14):6209-6219.
    [46]Ouchi T.,Ohya Y. Design of lactide copolymers as biomaterials. Journal of Polymer Science Part A:Polymer Chemistry.2004,42(3):453-462.
    [47]Fujiwara T.,Kimura Y. Macromolecular Organization of Poly(L-lactide)-block-Polyoxyethylene into Bio-Inspired Nano-Architectures. Macromolecular Bioscience.2002,2(1):11-23.
    [48]Takayama T.,Todo M. Improvement of impact fracture properties of PLA/PCL polymer blend due to LTI addition. Journal of Materials Science.2006,41(15):4989-4992.
    [49]Wan Y.Z., Wang Y.L., Li Q.Y., et al. Influence of surface treatment of carbon fibers on interfacial adhesion strength and mechanical properties of PLA-based composites. Journal of Applied Polymer Science.2001,80(3):367-376.
    [50]Jung Y, Kim S.-S., Kim Y.H., et al. A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering. Biomaterials.2005,26(32):6314-6322.
    [51]Anderson K.S.,Schreck K.M.,Hillmyer M.A. Toughening Polylactide. Polymer Reviews. 2008,48(1):85-108.
    [52]Joziasse C.A.P., Veenstra H., Topp M.D.C., et al. Rubber toughened linear and star-shaped poly(d,l-lactide-co-glycolide):synthesis, properties and in vitro degradation. Polymer.1998,39(2):467-473.
    [53]Jeon O., Lee S.-H., Kim S.H., et al. Synthesis and Characterization of Poly(1-lactide)-Poly(ε-caprolactone) Multiblock Copolymers. Macromolecules.2003, 36(15):5585-5592.
    [54]Ruan G.,Feng S.-S. Preparation and characterization of poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel. Biomaterials.2003,24(27):5037-5044.
    [55]Oksman K.,Skrifvars M.,Selin J.F. Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology.2003,63(9):1317-1324.
    [56]Mathew A.P.,Oksman K.,Sain M. Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science.2005,97(5):2014-2025.
    [57]Oksman K., Mathew A.P., Bondeson D., et al. Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Composites Science and Technology.2006, 66(15):2776-2784.
    [58]Plackett D., L(?)strup Andersen T., Batsberg Pedersen W., et al. Biodegradable composites based on L-polylactide and jute fibres. Composites Science and Technology.2003, 63(9):1287-1296.
    [59]Plackett D. Maleated Polylactide as an Interfacial Compatibilizer in Biocomposites. Journal of Polymers and the Environment.2004,12(3):131-138.
    [60]Huda M.S., Drzal L.T., Misra M., et al. A Study on Biocomposites from Recycled Newspaper Fiber and Poly(lactic acid). Industrial& Engineering Chemistry Research. 2005,44(15):5593-5601.
    [61]Huda M.S., Mohanty A.K., Drzal L.T., et al. "Green" composites from recycled cellulose and poly(lactic acid):Physico-mechanical and morphological properties evaluation. Journal of Materials Science.2005,40(16):4221-4229.
    [62]Huda M.S., Drzal L.T., Misra M., et al. Wood-fiber-reinforced poly(lactic acid) composites:Evaluation of the physicomechanical and morphological properties. Journal of Applied Polymer Science.2006,102(5):4856-4869.
    [63]Huda M.S., Drzal L.T., Mohanty A.K., et al. Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites:A comparative study. Composites Science and Technology.2006,66(11-12): 1813-1824.
    [64]Huda M.S., Drzal L.T., Mohanty A.K., et al. The effect of silane treated-and untreated-talc on the mechanical and physico-mechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites. Composites Part B:Engineering.2007, 38(3):367-379.
    [65]Lee S.-H.,Wang S. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent Composites Part A:Applied Science and Manufacturing.2006,37(1): 80-91.
    [66]Okubo K.,Fujii T.,Yamashita N. Improvement of Interfacial Adhesion in Bamboo Polymer Composite Enhanced with Micro-Fibrillated Cellulose. JSME International Journal Series A Solid Mechanics and Material Engineering.2005,48(4):199-204.
    [67]郭文静,王正,鲍甫成等.天然植物纤维/可生物降解塑料生物质复合材料研究现状与发展趋势.林业科学.2008,44(1):157-163.
    [68]郭文静,鲍甫成,王正.天然植物纤维/可生物降解塑料复合材料——一种完全环境友好的新型生物质复合材料.全国生物质材料暨环保型人造板新技术发展研讨会论文集.2006.东营.
    [69]董卫卫,赵春贵,李俊等.聚乳酸/天然纤维复合材料及其生产方法.CN101003667A.2007.
    [70]王龙海,徐红,藤翠青等.全降解复合材料的研究:(Ⅰ)苎麻纤维增强PLA-PCL复合材料界面的研究.2005年全国高分子学术论文报告会.2005.北京.
    [71]Chun-hong W., Rui W., Ming L., et al. Research on flax fiber reinforced polylactide environmental friendly composite. Journal of Donghua University.2006,23(5): 49-53.
    [72]韩建,徐国平,袁利华.PLA/黄麻多层复合材料的工艺优化及力学性能.纺织学报.2007,28(11):40-44.
    [73]王春红,王瑞,姜兆辉等.麻纤维增强完全可降解复合材料的制备及性能研究.塑料. 2008,37(2):46-49.
    [74]Thunwall M., Boldizar A., Rigdahl M., et al. Processing and properties of mineral-interfaced cellulose fibre composites. Journal of Applied Polymer Science. 2008,107(2):918-929.
    [75]Bledzki A.K.,Gassan J. Composites reinforced with cellulose based fibres. Progress in Polymer Science.1999,24(2):221-274.
    [76]Ray P.K.,Chakravarty A.C.,Bandyopadhaya S.B. Fine structure and mechanical properties of jute differently dried after retting. Journal of Applied Polymer Science. 1976,20(7):1765-1767.
    [77]Belgacem M.N.,Bataille P.,Sapieha S. Effect of corona modification on the mechanical properties of polypropylene/cellulose composites. Journal of Applied Polymer Science. 1994,53(4):379-385.
    [78]Sakata I., Morita M., Tsuruta N., et al. Activation of wood surface by corona treatment to improve adhesive bonding. Journal of Applied Polymer Science.1993,49(7): 1251-1258.
    [79]Gassan J.,Bledzki A.K. Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Composites Science and Technology.1999,59(9):1303-1309.
    [80]Bisanda E.T.N. The Effect of Alkali Treatment on the Adhesion Characteristics of Sisal Fibres. Applied Composite Materials.2000,7(5):331-339.
    [81]Sreenivasan S.,Iyer P.B.,Iyer K.R.K. Influence of delignification and alkali treatment on the fine structure of coir fibres (Cocos Nucifera). Journal of Materials Science.1996, 31(3):721-726.
    [82]Yuan H.,Nishiyama Y.,Kuga S. Surface Esterification of Cellulose by Vapor-Phase Treatment With Trifluoroacetic Anhydride. cellulose.2005,12(5):543-549.
    [83]Alvarez V.A.,Vazquez A. Influence of fiber chemical modification procedure on the mechanical properties and water absorption of MaterBi-Y/sisal fiber composites. Composites Part A:Applied Science and Manufacturing.2006,37(10):1672-1680.
    [84]Tronc E., Hernadez-Escobar C.A., Ibarra-Gomez R., et al. Blue agave fiber esterification for the reinforcement of thermoplastic composites. Carbohydrate Polymers.2007, 67(2):245-255.
    [85]Mohanty A.K., Tripathy P.C., Misra M., et al. Chemical modification of pineapple leaf fiber:Graft copolymerization of acrylonitrile onto defatted pineapple leaf fibers. Journal of Applied Polymer Science.2000,77(14):3035-3043.
    [86]Lonnberg H., Zhou Q., Brumer H., et al. Grafting of Cellulose Fibers with Poly((?)-caprolactone) and Poly(1-lactic acid) via Ring-Opening Polymerization. Biomacromolecules.2006,7(7):2178-2185.
    [87]Belgacem M.N.,Gandini A. The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Composite Interfaces.2005,12:41-75.
    [88]Hashemi S.A.,Arabi H.,Mirzaeyan N. Surface modification of bagasse fibers by silane coupling agents through microwave oven and its effects on physical, mechanical, and rheological properties of PP bagasse fiber composite. Polymer Composites.2007, 28(6):713-721.
    [89]Cantero G., Arbelaiz A., Llano-Ponte R., et al. Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Composites Science and Technology.2003,63(9):1247-1254.
    [90]Joseph K., Thomas S., Pavithran C., et al. Tensile properties of short sisal fiber-reinforced polyethylene composites. Journal of Applied Polymer Science.1993, 47(10):1731-1739.
    [91]Carlson D., Nie L., Narayan R., et al. Maleation of polylactide (PLA) by reactive extrusion. Journal of Applied Polymer Science.1999,72(4):477-485.
    [92]Li Q.,Matuana L.M. Surface of cellulosic materials modified with functionalized polyethylene coupling agents. Journal of Applied Polymer Science.2003,88(2): 278-286.
    [93]Wu C.-S.,Liao H.-T. A new biodegradable blends prepared from polylactide and hyaluronic acid. Polymer.2005,46(23):10017-10026.
    [94]Wu C.-S. Improving Polylactide/Starch Biocomposites by Grafting Polylactide with Acrylic Acid-Characterization and Biodegradability Assessment. Macromolecular Bioscience.2005,5(4):352-361.
    [95]Pracella M., Chionna D., Anguillesi I., et al. Functionalization, compatibilization and properties of polypropylene composites with Hemp fibres. Composites Science and Technology.2006,66(13):2218-2230.
    [96]Auras R.,Harte B.,Selke S. An Overview of Polylactides as Packaging Materials. Macromolecular Bioscience.2004,4(9):835-864.
    [97]Ho K.-L.G.,Pometto A.L.,Hinz P.N. Effects of Temperature and Relative Humidity on Polylactic Acid Plastic Degradation. Journal of Polymers and the Environment.1999, 7(2):83-92.
    [98]Holm V.K.,Ndoni S.,Risbo J. The Stability of Poly(lactic acid) Packaging Films as Influenced by Humidity and Temperature. Journal of Food Science.2006,71(2): E40-E44.
    [99]戈进杰编著.生物降解高分子材料及其应用.北京:化学工业出版社.2002.
    [100]Copinet A.,Legin-Copinet E.,Erre D. Compostability of Co-Extruded Starch/Poly(Lactic Acid) Polymeric Material Degradation in an Activated Inert Solid Medium. Materials. 2009,2(3):749-764.
    [101]Li S.,McCarthy S. Influence of Crystallinity and Stereochemistry on the Enzymatic Degradation of Poly(lactide)s. Macromolecules.1999,32(13):4454-4456.
    [102]Sinha Ray S., Yamada K., Okamoto M., et al. New Polylactide/Layered Silicate Nanocomposites.3. High-Performance Biodegradable Materials. Chemistry of Materials.2003,15(7):1456-1465.
    [103]Ohkita T.,Lee S.-H. Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites. Journal of Applied Polymer Science.2006,100(4): 3009-3017.
    [104]Ikeda K., Takatani M., Sakamoto K., et al. Development of fully bio-based composite: Wood/cellulose diacetate/poly(lactic acid) composite. Holzforschung.2008,62(2): 154-156.
    [105]Graupner N. Application of lignin as natural adhesion promoter in cotton fibre-reinforced poly(lactic acid) (PLA) composites. Journal of Materials Science. 2008,43(15):5222-5229.
    [106]Pan J., Wang Y., Qin S., et al. Grafting reaction of poly(D,L)lactic acid with maleic anhydride and hexanediamine to introduce more reactive groups in its bulk. Journal of Biomedical Materials Research Part B:Applied Biomaterials.2005,74B(1): 476-480.
    [107]Pesetskii S.S.,Jurkowski B.,Makarenko O.A. Free radical grafting of itaconic acid and glycidyl methacrylate onto PP initiated by organic peroxides. Journal of Applied Polymer Science.2002,86(1):64-72.
    [108]Tabassom H.,Richard van N.,Alireza K. Storage effect of a pre-activated silane on the resin to ceramic bond. Dental materials:official publication of the Academy of Dental Materials.2004,20(7):635-642.
    [109]Thakur K.A.M., Kean R.T., Hall E.S., et al. High-Resolution 13C and 1H Solution NMR Study of Poly(lactide). Macromolecules.1997,30(8):2422-2428.
    [110]Zhu Z., Xiong C., Zhang L., et al. Preparation of biodegradable polylactide-co-poly(ethylene glycol) copolymer by lactide reacted poly(ethylene glycol). European Polymer Journal.1999,35(10):1821-1828.
    [111]Brochier Salon M.-C., Bayle P.-A., Abdelmouleh M., et al. Kinetics of hydrolysis and self condensation reactions of silanes by NMR spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects.2008,312(2-3):83-91.
    [112]Du J.,Chen Y. Atom-Transfer Radical Polymerization of a Reactive Monomer: 3-(Trimethoxysilyl)propyl Methacrylate. Macromolecules.2004,37(17):6322-6328.
    [113]Carlson D., Dubois P., Nie L., et al. Free radical branching of polylactide by reactive extrusion. Polymer Engineering& Science.1998,38(2):311-321.
    [114]Mani R.,Bhattacharya M.,Tang J. Functionalization of polyesters with maleic anhydride by reactive extrusion. Journal of Polymer Science Part A:Polymer Chemistry.1999, 37(11):1693-1702.
    [115]Niu X., Luo Y, Li Y., et al. Design of bioinspired polymeric materials based on poly(D,L-lactic acid) modifications towards improving its cytocompatibility. Journal of Biomedical Materials Research Part A.2008,84A(4):908-916.
    [116]Ganzeveld K.J.,Janssen L.P.B.M. The grafting of maleic anhydride on high density polyethylene in an extruder. Polymer Engineering& Science.1992,32(7):467-474.
    [117]马晓妍,石淑先,夏宇正等.聚乳酸及其共聚物的制备和降解性能.北京化工大学学报:自然科学版.2004,31(1):51-56.
    [118]Han T.L., Kumar R.N., Rozman H.D., et al. GMA grafted sago starch as a reactive component in ultra violet radiation curable coatings. Carbohydrate Polymers.2003, 54(4):509-516.
    [119]Bondar Y, Kim H.J., Yoon S.H., et al. Synthesis of cation-exchange adsorbent for anchoring metal ions by modification of poly(glycidyl methacrylate) chains grafted onto polypropylene fabric. Reactive and Functional Polymers.2004,58(1):43-51.
    [120]Lu D., Yang L., Zhou T., et al. Synthesis, characterization and properties of biodegradable polylactic acid-[beta]-cyclodextrin cross-linked copolymer microgels. European Polymer Journal.2008,44(7):2140-2145.
    [121]Wallach J.A.,Huang S.J. Copolymers of Itaconic Anhydride and Methacrylate-Terminated Poly(lactic acid) Macromonomers. Biomacromolecules: 2000,1(2):174-179.
    [122]Tracy M.A., Ward K.L., Firouzabadian L., et al. Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro. Biomaterials.1999, 20(11):1057-1062.
    [123]张杰,苏思玲,代巧玉等.聚碳化二亚胺对聚乳酸抗水解性能的影响.塑料工业.2008,36(4):39-42.
    [124]Abdelmouleh M., Boufi S., Belgacem M.N., et al. Modification of cellulosic fibres with functionalised silanes:development of surface properties. International Journal of Adhesion and Adhesives.2004,24(1):43-54.
    [125]Abdelmouleh M., Boufi S., Belgacem M.N., et al. Modification of cellulose fibers with functionalized silanes:Effect of the fiber treatment on the mechanical performances of cellulose-thermoset composites. Journal of Applied Polymer Science.2005,98(3): 974-984.
    [126]Lu H., Hu Y., Li M., et al. Structure characteristics and thermal properties of silane-grafted-polyethylene/clay nanocomposite prepared by reactive extrusion. Composites Science and Technology.2006,66(15):3035-3039.
    [127]Kwok D.Y.,Neumann A.W. Contact angle measurement and contact angle interpretation. Advances in Colloid and Interface Science.1999,81(3):167-249.
    [128]上海梭伦信息科技有限公司.动/静态接触角仪测试手册.上海.2007.
    [129]Roerdink M., Zanten T.S.v., Hempenius M.A., et al. Poly(ferrocenylsilane)-block-Polylactide Block Copolymers. Macromolecular Rapid Communications.2007,28(22):2125-2130.
    [130]Gardner D.J., Oporto G.S., Mills R., et al. Adhesion and Surface Issues in Cellulose and Nanocellulose. Journal of Adhesion Science and Technology.2008,22:545-567.
    [131]Singh B.,Gupta M.,Verma A. Influence of fiber surface treatment on the properties of sisal-polyester composites. Polymer Composites.1996,17(6):910-918.
    [132]Kim C.-H.,Cho K.Y.,Park J.-K. Reactive blends of gelatinized starch and polycaprolactone-g-glycidyl methacrylate. Journal of Applied Polymer Science.2001, 81(6):1507-1516.
    [133]O'brien R.N.,Hartman K. ATR infrared spectroscopy study of the epoxy-cellulose interface. Journal of polymer science part C:Polymer Symposia 1971,34:293-301.
    [134]Cetin N.S.,Hill C.A.S. An Investigation of the Reaction of Epoxides with Wood Journal of Wood Chemistry and Technology.1999,19(3):247-264.
    [135]韩向艳,李海东,姜伟等.分子量对PP/PA6体系界面张力的影响.2005年全国高分子学术论文报告会.2005.北京.
    [136]胡福增,郑安呐,张群安.聚合物及其复合材料的表界面.北京:中国轻工业出版社.2001.
    [137]Wu S.Polymer interface and adhesion. New York:Marcel Dekker.1982.
    [138]Neuendorf R., Saiz E., Tomsia A.P., et al. Adhesion between biodegradable polymers and hydroxyapatite:Relevance to synthetic bone-like materials and tissue engineering scaffolds. Acta Biomaterialia.2008,4(5):1288-1296.
    [139]黄玉东,张嘉梅,魏月贞等.树脂基复合材料界面剪切强度的测定.材料科学进展.1992,6(1):84-87.
    [140]Valadez-Gonzalez A., Cervantes-Uc J.M., Olayo R., et al. Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites. Composites Part B:Engineering.1999,30(3):309-320.
    [141]邓传斌,钱振明,段文江.纤维树脂界面剪切强度及纤维强度分布参数的实验测定.实验力学.1997,12(2):204-208.
    [142]Lodha P.,Netravalil A.N. Characterization of interfacial and mechanical properties of "green" composites with soy protein isolate and ramie fiber. Journal, of Materials Science.2002,37(17):3657-3665.
    [143]Huber T.,Mussig J. Fibre matrix adhesion of natural fibres cotton, flax and hemp in polymeric matrices analyzed with the single fibre fragmentation test. Composite Interfaces.2008,15(2-3):335-349.
    [144]Silva F.d.A.,Chawla N.,Filho R.D.d.T. Tensile behavior of high performance natural (sisal) fibers. Composites Science and Technology.2008,68(15-16):3438-3443.
    [145]Towo A.N., Ansell M.P., Pastor M.-L., et al. Weibull analysis of microbond shear strength at sisal fibrepolyester resin interfaces. Composite Interfaces.2005,12: 77-93.
    [146]韩海山,孙占英,沈春银等.剑麻纤维增强聚丙烯复合材料的制备及性能研究.工程塑料应用.2009,37(5):21-25.
    [147]李学梅,王继辉,高国强等.单纤维复合材料断裂实验表征界面研究.武汉理工大学学报.2005,27(4):9-12.
    [148]章毅鹏,廖建,桂红星.剑麻纤维及其复合材料的研究进展.热带农业科学.2007,27(5):53-57.
    [149]Paiva J.M.F.d.,Frollini E. Unmodified and Modified Surface Sisal Fibers as Reinforcement of Phenolic and Lignophenolic Matrices Composites:Thermal Analyses of Fibers and Composites. Macromolecular Materials and Engineering.2006, 291(4):405-417.
    [150]Rong M.Z., Zhang M.Q., Liu Y, et al. The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Composites Science and Technology.2001,61(10):1437-1447.
    [151]牟秋红,韦春,欧锦秀等.不饱和聚酯/剑麻纤维复合材料的制备及其耐磨性能.桂林工学院学报.2005,25(2):198-201.
    [152]Joseph P.V.,Joseph K.,Thomas S. Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites. Composites Science and Technology.1999,59(11):1625-1640.
    [153]Fung K.L.,Li R.K.Y.,Tjong S.C. Interface modification on the properties of sisal fiber-reinforced polypropylene composites. Journal of Applied Polymer Science.2002, 85(1):169-176.
    [154]王箴主编.化工词典.北京:化工出版社.2000
    [155]Shibata M., Ozawa K., Teramoto N., et al. Biocomposites Made from Short Abaca Fiber and Biodegradable Polyesters. Macromolecular Materials and Engineering.2003, 288(1):35-43.
    [156]曹勇,合田公一,吴义强等.洋麻纤维增强全降解复合材料的制备及其弯曲模量.复 合材料学报.2007,24(3):28-34.
    [157]赵梓年,王红.增塑聚乳酸性能的研究.塑料.2009,38(2):88-91.
    [158]Masirek R., Kulinski Z., Chionna D., et al. Composites of poly(L-lactide) with hemp fibers:Morphology and thermal and mechanical properties. Journal of Applied Polymer Science.2007,105(1):255-268.
    [159]Wang S., Ma P., Wang R., et al. Mechanical, thermal and degradation properties of poly(d,l-lactide)/poly(hydroxybutyrate-co-hydroxyvalerate)/poly(ethylene glycol) blend. Polymer Degradation and Stability.2008,93(7):1364-1369.
    [160]殷敬华,莫志深主编.现代高分子物理学.北京:科学出版社.2001.
    [161]过梅丽编著.高聚物与复合材料的动态力学热分析.北京:化学工业出版社.2002.
    [162]张俐娜,薛奇等编著.高分子物理近代研究方法.武汉:武汉大学出版社2003.
    [163]梁基照.无机粒子填充聚合物复合材料的储能模量及其表征.华南理工大学学报(自然科学版).2008,36(11):143-146.
    [164]Shaktawat V., Pothan L.A., Saxena N.S., et al. Temperature Dependence of Thermo-Mechanical Properties of Banana Fiber-Reinforced Polyester Composites. Advanced Composite Materials.2008,17:89-99.
    [165]Sreekumar P.A., Saiah R., Saiter J.M., et al. Effect of chemical treatment on dynamic mechanical properties of sisal fiber-reinforced polyester composites fabricated by resin transfer molding. Composite Interfaces.2008,15:263-279.
    [166]祝保林,王君龙.偶联剂表面处理对复合材料动态力学性能的影响.应用化工2008,37(4):387-390.
    [167]Finegan I.C.,Gibson R.F. Recent research on enhancement of damping in polymer composites. Composite Structures.1999,44(2-3):89-98.
    [168]蔡长庚,朱立新,贾德民.动态力学分析在复合材料界面中的应用.纤维复合材料.2004,21(1):46-49.
    [169]Manikandan Nair K.C.,Thomas S.,Groeninckx G. Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Composites Science and Technology.2001,61(16):2519-2529.
    [170]Kubat J.,Rigdahl M.,Welander M. Characterization of interfacial interactions in high density polyethylene filled with glass spheres using dynamic-mechanical analysis. Journal of Applied Polymer Science.1990,39(7):1527-1539.
    [171]Correa C.A.,Razzino C.A.,Hage E., JR. Role of Maleated Coupling Agents on the Interface Adhesion of Polypropylene-Wood Composites. Journal of Thermoplastic Composite Materials.2007,20(3):323-339.
    [172]Yuzay I.E.,Auras R.,Selke S. Poly(lactic acid) and zeolite composites prepared by melt processing:Morphological and physical-mechanical properties. Journal of Applied Polymer Science.2009,115(4):2262-2270.
    [173]Huda M.S., Drzal L.T., Mohanty A.K., et al. Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Composite Interfaces.2008,15:169-191.
    [174]Huda M.S., Drzal L.T., Mohanty A.K., et al. Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Composites Science and Technology.2008,68(2):424-432.
    [175]Moser R.C., McManus A.J., Riley S.L., et al. Strength retention of 70:30 poly(L-lactide-co-D,L-lactide) following real-time aging. Journal of Biomedical Materials Research Part B:Applied Biomaterials.2005,75B(1):56-63.
    [176]Kale G.,Auras R.,Singh S.P. Degradation of Commercial Biodegradable Packages under Real Composting and Ambient Exposure Conditions. Journal of Polymers and the Environment.2006,14(3):317-334.
    [177]Solarski S.,Ferreira M.,Devaux E. Ageing of polylactide and polylactide nanocomposite filaments. Polymer Degradation and Stability.2008,93(3):707-713.
    [178]Foulc M.P., Bergeret A., Ferry L., et al. Study of hygrothermal ageing of glass fibre reinforced PET composites. Polymer Degradation and Stability.2005,89(3): 461-470.
    [179]Pegoretti A.,Penati A. Effects of hygrothermal aging on the molar mass and thermal properties of recycled poly(ethylene terephthalate) and its short glass fibre composites. Polymer Degradation and Stability.2004,86(2):233-243.
    [180]Funabashi M.,Kunioka M. Biodegradable Composites of Poly(lactic acid) with Cellulose Fibers Polymerized by Aluminum Triflate. Macromolecular Symposia.2005, 224(1):309-322.
    [181]Hu Y., Rogunova M., Topolkaraev V., et al. Aging of poly(lactide)/poly(ethylene glycol) blends. Part 1. Poly(lactide) with low stereoregularity. Polymer.2003,44(19): 5701-5710.
    [182]肖迎红,汪信,陆路德等.玻纤增强热塑性聚酯复合材料湿热老化研究.工程塑料应用.2001,29(9):35-37.
    [183]Mohd Ishak Z.A.,Ariffin A.,Senawi R. Effects of hygrothermal aging and a silane coupling agent on the tensile properties of injection molded short glass fiber reinforced poly(butylene terephthalate) composites. European Polymer Journal.2001, 37(8):1635-1647.
    [184]Joseph K.,Thomas S.,Pavithran C. Effect of ageing on the physical and mechanical properties of sisal-fiber-reinforced polyethylene composites. Composites Science and Technology.1995,53(1):99-110.
    [185]Rowell R.M.,Lange S.E.,Jacobson R.E. Weathering Performance of Plant-Fiber/Thermoplastic Composites. Molecular Crystals and Liquid Crystals Science and Technology.2000,353(1):85-94.
    [186]Ke T.,Sun X. Effects of moisture content and heat treatment on the physical properties of starch and poly(lactic acid) blends. Journal of Applied Polymer Science.2001, 81(12):3069-3082.
    [187]Bian X.S., Ambrosio L., Kenny J.M., et al. Effect of water absorption on the behavior of E-glass fiber/nylon-6 composites. Polymer Composites.1991,12(5):333-337.
    [188]Teramoto N., Urata K., Ozawa K., et al. Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polymer Degradation and Stability.2004,86(3): 401-409.
    [189]王春红,王瑞,沈路姜等.竹原纤维增强聚乳酸完全可降解材料的性能研究.工程塑料应用.2008,36(1):8-11.
    [190]Lunt J. Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability.1998,59(1-3):145-152.
    [191]Ho K.-L.G.,Pometto Iii A.L. Temperature Effects on Soil Mineralization of Polylactic Acid Plastic in Laboratory Respirometers. Journal of Polymers and the Environment. 1999,7(2):101-108.
    [192]Tabuchi M., Kobayashi K., Fujimoto M., et al. Bio-sensing on a chip with compact discs and nanofibers. Lab on a Chip.2005,5(12):1412-1415.
    [193]Nogi M.,Yano H. Transparent Nanocomposites Based on Cellulose Produced by Bacteria Offer Potential Innovation in the Electronics Device Industry. Advanced Materials.2008,20(10):1849-1852.
    [194]Yamanaka S., Watanabe K., Kitamura N., et al. The structure and mechanical properties of sheets prepared from bacterial cellulose. Journal of Materials Science.1989,24(9): 3141-3145.
    [195]Guhados G.,Wan W.,Hutter J.L. Measurement of the Elastic Modulus of Single Bacterial Cellulose Fibers Using Atomic Force Microscopy. Langmuir.2005,21(14): 6642-6646.
    [196]Nakagaito A.N.,Iwamoto S.,Yano H. Bacterial cellulose:the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Applied Physics A:Materials Science& Processing.2005,80(1):93-97.
    [197]Nakayama A., Kakugo A., Gong J.P., et al. High Mechanical Strength Double-Network Hydrogel with Bacterial Cellulose. Advanced Functional Materials.2004,14(11): 1124-1128.
    [198]Millon L.E.,Wan W.K. The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. Journal of Biomedical Materials Research Part B:Applied Biomaterials.2006,79B(2):245-253.
    [199]Tung W.C., Tung D.A., Callander D.D., et al. Reticulated bacterial cellulose reinforcement for elastomers. US5290830 1994.
    [200]Yano H., Sugiyama J., Nakagaito A.N., et al. Optically Transparent Composites Reinforced with Networks of Bacterial Nanofibers. Advanced Materials.2005,17(2): 153-155.
    [201]Gindl W.,Keckes J. Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Composites Science and Technology.2004,64(15): 2407-2413.
    [202]Nogi M., Ifuku S., Abe K., et al. Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites. Applied Physics Letters.2006,88(13):133124.
    [203]黄远,万怡灶,扈立等.天然细菌纤维素增强不饱和聚酯树脂复合材料的制备及性能.复合材料学报.2008,25(6):140-145.
    [204]Mormino R.,Bungay H. Composites of bacterial cellulose and paper made with a rotating disk bioreactor. Applied Microbiology and Biotechnology.2003,62(5): 503-506.
    [205]Stenstad P., Andresen M., Tanem B.S., et al. Chemical surface modifications of microfibrillated cellulose. cellulose.2008,15(1):35-45.
    [206]Lee S.-H.,Ohkita T. Bamboo fiber (BF)-filled poly(butylenes succinate) bio-composite-Effect of BF-e-MA on the properties and crystallization kinetics. Holzforschung.2005,58(5):537-543.
    [207]Takatani M., Ikeda K., Sakamoto K., et al. Cellulose esters as compatibilizers in wood/poly(lactic acid) composite. Journal of Wood Science.2008,54(1):54-61.
    [208]Zhang J.-F.,Sun X. Mechanical Properties of Poly(lactic acid)/Starch Composites Compatibilized by Maleic Anhydride. Biomacromolecules.2004,5(4):1446-1451.
    [209]Fischer E.W.,Sterzel H.J.,Wegner G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Colloid& Polymer Science.1973,251(11):980-990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700