表面活性剂产生菌及石油烃降解菌在石油烃降解中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会和经济的发展,石油对环境的污染日趋严重,治理海洋石油污染已成为环境保护的重要任务之一。生物表面活性剂由于能促进疏水性化合物的溶解,且具有高效、无毒、无二次污染等优点,是极具发展潜力的促进石油烃生物降解的生物修复剂。因此,研究生物表面活性剂的产生条件和性能,探索生物表面活性剂对石油烃类生物降解的作用,从而为生物表面活性剂促进水体石油烃污染生物修复提供理论依据和应用基础。
     本论文采集汕头海域的表层沉积物样品,以原油为唯一碳源和能源进行微生物的富集培养,并从中分离纯化出24株具有一定菌落形态的菌株,经称重法测定,其中的6株菌降解原油效率大于30%。进一步对原油降解效果较好的菌株S04、S07、S09、S017进行生理生化及分子鉴定,初步确定菌株S04和S07属于Acinetobacter sp.,菌株S09属于Xanthomonas sp.,而菌株S017属于Micrococcus sp.。不同的菌株对不同的石油烃化合物有不同的降解效果,对原油降解效果最好的是S04(78.87%),对柴油和石蜡降解效果最好的是S017(分别为36.5%4和38.65%)。此外,对影响菌株S04利用原油的外界环境因子进行分析发现,在0.75%原油起始浓度、pH 8.0、30℃等培养条件下,菌株降解原油效率最高;添加表面活性物质不利于S04降解原油,特别是离子表面活性剂Tween 80和Tween 20抑制S04降解原油的作用显著。
     利用血平板法和表面张力法相结合,从汕头海域表层沉积物中分离到16株生物表面活性剂产生菌。选取生物表面活性剂高效产生菌SB12为进步的实验对象,经鉴定为假单胞菌(Pseudomonas sp.)。对菌株SB12产生物表面活性剂的发酵条件进行优化,以蛋白胨10 g/L、NaCL 1 g/L、酵母提取物5g/L为培养基,在接种量为1%,pH为9.5,25℃,培养6 d,最小表面张力可达到19.77 mN/m。分析发酵液中的生物表面活性剂的特性发现:SB12产生的表面活性剂的CMC为100mg/L,此时表面张力为22.9mN/m;理化性能的研究表明:30—100℃各温度,对表面活性剂几乎没有影响,121℃高温高压处理之后表面活性剂的表面性能仍能保持原始的90%以上;在pH4~12之间基本处于稳定;0~10%的盐浓度表面活性剂的影响不大。表面活性剂提取物都具有较好的乳化活性,乳化力可以达到91%。同时排油实验也显示排油性能良好。分离纯化得到的SB12发酵产物经用Bradford法和蒽酮硫酸法(0D620nm)进行主成分分析,SDS—PAGE,TLC得到的紫色斑点和FT-IR得到的吸收光谱,最终确认SB12分泌的生物表面活性剂为肽脂。
     SB12及发酵液能加速原油的分散,加快原油在水体中的扩散速度,但是进一步的降解实验表面,SB12及其发酵液只对革兰氏阳性菌309降解原油有促进作用,且效果显著,可以分别提高15.2%,16.34%,但不利于促进革兰氏阴性菌S04、S07和S017对原油的降解。进一步的生物表面活性剂对降解菌的影响实验表面,SB12发酵液会明显抑制S04、S07和S017的生长,对S09作用不明显。
With the development of society and economy, oil pollution in environment had becoming more and more serious, remediation marine oil pollution become one of the most important tasks of environmental protection. Because of surfactant could promote the dissolution of hydrophobic compounds, and had a highly efficient, non-toxic quality, no secondary pollution, and other advantages, it had great potential for biodegradation petroleum hydrocarbons. Therefore, we study on biosurfactant production conditions and biosurfactant properties, exploring the effecs of biosurfactant on the biodegradation of petroleum hydrocarbon, for promoting petroleum hydrocarbons bioremediation in water and providing a theoretical and application basis.
     By enriching with crude oil as a sole carbon source, 24 bacteria were isolated from residual soil from the bay of Shantou. With preliminary degradation test, 6 of them had degradation rate over 30%; and 4 of them S04, S07, S09 and S017 were further studied on their physiological and biochemical characteristics and 16S rRNA sequences, strain S04 and S07 were identified as Acinetobacter sp., S09 was identified as Xanthomonas sp., S017 was identified as Micrococcus sp.. Degradation ability of different components of the residual oil, the results showed that different component had different degree of degradation, different bacteria have different degradation for the different component. S04 had highest rate of crude oil degradation, and the degradation rate was 78. 87%, S017 had highest degradation rates for diesel fuel and paraffine, and the degradation rates were 36. 54 and 38. 65. The biodegradation of crude oil were influenced by many exterior environmental factors. The initial concentration of crude oil at 0. 75%、pH 8.0、30℃had highest degradation. Add surfactants inhibit S04 to degraded crude oil, especially Tween 80 and Tween 20.
     The main physical and chemical characteristics of SB12 were studied. The critical micelle concentration (CMC) of this biosurfactant was 50mg/L, while its surface tension was 22. 9mN/m. The biosurfactant produced by SB12 had wide rang of temperature adaptation. Surface tension did not change practically after thermally treated for 30 mins at 30-100℃, even at the higher temperature up to 121℃, and the activity can keep over 90%; the biosurfactant also had a wide adaptable pH range of 4. 0~12. 0 and 0~10% salinity had little effect to its activity. The biosurfactant produced by SB12 had good emulsify efficiency, its emulsifcaiton index was up to 91%. Oil displacement activity also was very well. After all, the biosurfactants were extracted from SB12 and purified. Determination of the mainly carbohydrate content of this biosurfactant was performed at 620 nm using the anthrone reagent method, and protein was assayed by the Bradford method. And with sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), amethyst blotting of TLC and IR, it was identified as lipopeptide.
     SB12 and its fermentation medium could speed up the crude oil spreading in the water phase, but the further degradation experiment indicated that SB12 and SB12 fermentation medium were only good for gram-positive bacteria S09 to degradate crude oil, significant effects can be increased by 15.2%, 16.34%, but SB12 and its fermentation medium could not promote gram-negative bacteria, S04, S07 and S017, to degradate crude oil, further study of biosurfactant on the effects of bacterias with degrading ability, show that SB12 would inhibit the growth of S04, S07 and S017, but had little effect on S09.
引文
[1]李建明.海洋石油污染的危害与净化.生物学教学,2002,27(7).
    [2]曹刚,王华.石油污染及治理.沿海企业与科技,2005(3).
    [3]孟紫强.环境毒理学[M].北京:中国环境出版社,2003,162.
    [4]刘金宙,夏文香,赵亮,等.海洋石油污染及其生物修复.海洋湖沼通报,2006,3:49-54.
    [5]贾晓平,林饮,蔡文贵,等.原油和燃油对南海重要海水增养殖生物的急性毒性试验.水产学报,2000,24(1):32-36.
    [6]王晓伟,李纯厚,沈南南.石油污染对海洋生物的影响.南方水产,2006,2(2):76-80.
    [7]川濑义和编著.石油炼制技术便览翻译组译.石油炼制技术便览.烃加工出版社.1990.
    [8]陈国华.水体油污染治理.北京:化学工业出版社,2002,5-11.
    [9]田蕴,郑天凌,王新红,等.厦门西海域表层水中PAHs污染与PAHs降解菌分布的关系.热带海洋学报,2003,22(6):15-21.
    [10]宋志文,夏文香,曹军.海洋石油污染物的微生物降解与生物修复.生态学杂志,2004,23(3):99-102.
    [11]尹红梅,张甲耀,柳娟,等.葸降解菌与铜绿假单胞菌融合后的特性研究.环境科学与技术,2006,29(4):4-6.
    [12]张甲耀,李静,夏威林,等.生物修复技术研究进展.应用与环境生物学报,1996,2(2):193-199.
    [13]丁明宇,黄健,李水棋.海洋微生物降解石油的研究.环境科学学报,2001,21(1):84-88.
    [14]刘五星,骆永明,滕应,等.石油污染土壤的生物修复研究进展.土壤,2006,38(5):634-639.
    [15]袁红莉,杨金水,王占生,等.降解石油微生物菌种的筛选及降解特性.中国环境科学,2003,23(2):157-161.
    [16]沈萍,范秀容.微生物学实验(第三版).高等教育出版社,1999.
    [17]赵斌,何绍江.微生物学实验.科学出版社,2002.
    [18]中国科学院微生物研究所细菌分类组.一般细菌常用鉴定方法.北京:科学出版社.
    [19]张纪忠.微生物分类学.上海:复旦大学出版社.1990.
    [20]于晓丽.油气田废水中石油类物质测定问题的探讨.油气田环境保护,1994,4(2):34-37.
    [21]李丽,张利平,张元亮.石油烃类化合物降解菌的研究概况.微生物学通报,2001,28(5):89-92.
    [22]陈碧娥,刘祖同.海洋丝状真菌转化石油烃的研究.石油学报(石油加工),2002,18(3):13-17.
    [23]曹微寰,徐德强,张亚雷,等.烷烃降解菌的筛选及其降解能力.中国环境科学,2003,23(1):25-29.
    [24]潘冰峰,徐国梁,施扈屏,等.微生物学报,1999,39(3):264-267.
    [25]丁立孝,何国庆,孔青,等.微生物产生的生物表面活性剂及其应用研究.生物技术.2003,13(5):52-54.
    [26]徐志伟,尤勤,孙丙寅.生物表面活性剂的工业应用.生物技术.1995,5(3):6-8.
    [27]马歌丽,彭新梅,马翠卿,等.生物表面活性剂及其应用.中国生物工程杂志.2003,23(5):42-45.
    [28]张翠竹,梁凤来,张心平,等.一种脂肽类生物表面活性剂的理化性质及其对原油的作用.油田化学,2000,17(2):172-176.
    [29]张翠竹,张心平,梁凤来,等.一株地衣芽孢杆菌产生的生物表面活性剂.南开大学学报,2000,33(4):41-45.
    [30]梅建风,王普.生物表面活性剂.精细与专用化学品,2002,10:11-12.
    [31]周同惠.纸色谱和薄层色谱.北京:科学出版社,1989.
    [32]从浦珠编著.质谱学在天然有机化学中的应用.北京:科学出版社,1987.
    [33]陈静,王学军,胡俊栋,等.表面活性剂对白腐真菌降解多环芳烃的影响.环境科学,2006,27(1):154-159.
    [34]Marcon R,Bestetti G,Frati F,et al.Naphthalene and biphenyl oxidation by two marine Pseudomonas strains isolated from Venice Lagoon sediment.International Biodeterioration & Biodegradation,2007,59(1):25-31.
    [35]Pagnout C,Frache G,Poupin P,et al.Isolation and characterization of a gene cluster involved in PAH degradation in Mycobacterium sp.strain SNP11:Expression in Mycobacterium smegmatis mc~2.Research in Microbiology,2007,158(2):175-186.
    [36]Niina K,Anna G,Marina T,Tuula T.Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil.Journal of Environmental Management,2006,78(4):382-391.
    [37]Samanta KS,Singh VO,Jain KR.Polycyclic aromatic hydrocarbons:environmental pollution and bioremediation.Trends in Biotechnology,2002,20(6):243-248.
    [38]Guha S,Jaffe R,Peter.Biodegradation kinetics of phenanthrene partitioned into the micellarphase of nonionic surfactants.Environmental Science & Technology,1996,30(2):605-611.
    [39]Stefan J,William G,Stringfellow T.Quantifying the Biodegradation of phenanthrene by Pseudomonas Stutzeri P16 in the presence of a nonionic surfactant.Applied & Environmental Micrcbiology,1995,62(7):2387-2392.
    [40]Banat MI,Makkar SR,Cameotra SS.Potential commercial applications of microbial surfactants in biomedical sciences. Applied Microbiology & Biotechnology, 2000,53(5): 495-508.
    [41] Noriyuki I, Michio S, Makoto U, et al. Extracellular polysaccharides of Rhodococcus rhodochrous S-2 stimulate the degradation of components in crude oil by indigenous marine bacteria. Applied & Environmental Microbiology, 2002,68(5): 2337-2343.
    [42] Urum K, Pekdemir T. Evaluation of biosurfactanis for crude oil contaminate-soil washing. Chemosphere, 2004,57(9): 1139-1150.
    [43] Prince C, Roger. Etioremediation of marine oil spills. Trends in Biotechnology, 1997,15(5): 158-160.
    [44] Banat M. Biosurfactants, more in demand than ever. Biofutur, 2000,20 (198): 44-47.
    [45] Thanomsub B, Pumeechockchai W, Limtrakul A, et al. Chemical structures biological activities of rhamnolipids produced by Pseudomonas aeruginosa B189 isolated milk factory waste. Bioresource Technology, 2006, 97(18): 2457-2461.
    [46] Ron Z, Eliora, RE. Biosurfactants and oil bioremediation. Current Opinion in Biotechnology, 2002,13(3): 249-252.
    [47] Makkar RS, Rockne KJ. Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environmental Toxicology & Chemistry, 2003, 22 (10): 2280-2292.
    [48] Prabhu Y, Phale PS. Biodegradation of phenanthrene by Pseudomouas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Applied Microbiology & Biotechnology, 2003, 61(4): 342-351.
    [49] Mulligan N. Catherine. Environmental applications for biosurfactants. Environmental Pollution, 2005, 133(2): 183-198.
    
    [50] Kosaric N. Biosurfactants and Biotechnology, Marcel Dekker, Inc., 1987.
    [51] Desai JD. Microbial surfactants: evaluation, types, production and future applications. Scientific Industrial Resource, 1987,46: 440-449.
    
    [52] Lin SC. Biosurfactants: recent advances. Chen Tech Biotechnol, 1996,109-120.
    [53] Gutierrez JR, Erickson LE. Hydrocarbon uptake in hydrocarbon fermentation. Biotechnol Bioeng, 1977: 1331-1349.
    [54] Zosim Z, Gutnick D, Rosenberg E. Properties of hydrocarbon-in-water emulsion stabilized by Acinetobacter RAG-1 emulsion. Biotechnol Bioeng, 1982, XX: 281-292.
    [55] Kim SH, Lim EJ, Lee S , et al. Purification and characterization biosurfactants from Nocardia sp .L-417, Biotechnol Appl Biochem, 2000,249-253.
    [56] Schmid A, Kollmer A, Witholt B. Effects of biosurfactant and emulsification on two-liquid phase Pseudomonas oleovorans cultures and cell-free emulsions containing n-decane. Enzyme Microb Technol, 1998, 22: 487-493.
    [57] Zhang Y, Miller RM. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbial, 1992,58: 3276-3282.
    [58] Angelova B, Schmauder HP. Lipophilic compounds in biotechnology interactions with cells and technological problems. Biotechnol, 1999, 67:13-32.
    [59] Hommel RK. Regulation of sophorose lipid production by Candida (Torulopsis) apicola. Biodegradation, 1990; 1:107.
    [60] Finnerty WR, singer ME. Organisation of procaryotic cell membranes, Boca Raton: CRC Press, 1985:1.
    [61] Rubertoa L, Vazqueza SC. Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated antarctic soil. International Biodeterioration & Biodegradation, 2003, 52:115-125.
    [62] Bury SJ, Miller CA. Effect of micellar solubilization on biodegradation rates of hydrocarbon. Environ Sci Technol, 1993, 27:104-110.
    [63] Korda A, Santas P, Tenete A, et al. Petroleum hydrocarbon bioremediation: sampling and analytical techniques in situtreatments and commercial microorganisms currently used. Appl Microbiol Biotechnol, 1997,48: 677- 686.
    [64] Kim SH, Lim EJ, Lee SO, et al. Purification and characterization of biosurfactants from Nocardia sp. L-417. Biotechnology Applied Biochemistry, 2000,31: 249-235.
    [65] Van VW, Van M. Lipid production by Aspergillus oryzae from starch substrates, Applied Microbiology Biotechnology. 1982,35: 776-770.
    [66] Bodour AA, Miller-Maier RM. Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. Journal of Microbiology Methods. 1998, 32: 273-280.
    [67] Cooper DC, Macdorald CR. Enhanced production of surfactin from B. subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 1981,42(3): 408-412.
    [68] Morikawa M, Hirata Y, Imanaka T. A study on the structure-function relationship of lipopeptide biosurfactants. Biochimica & Biophysica Acta. 2000,1488: 211-218.
    [69] Davis DA, Lynch HC, Varley J. The production of surfactin in batch culture by Bacillus subtilis 21332 is strongly influenced by the conditions of nitrogen metatolism. Enzyme and Microbial Technol, 1999, 25: 322-329.
    [70] Yu HW, Chu IM. Enhancement of surfactant production in iron-enriched media by Bacillus subtilis ATCC21332. Enzyme Microb Technol, 1998,22: 724-728.
    [71] Rubinowitz CD, Gutnick L and Rosenberg E. Emulsan production by Acinetobacter calcoaceticus in the presence of chloramphenicol. Bacteriol, 1982,152:126-132.
    [72] Ilori MO, Amobi CJ, Odocha AC. Factors affecting biosurfactant production by oil degrading Aeromonas spp. isolated from a tropical environment. Chemosphere, 2005, 3:1-8.
    [73] Levisauskas D, Galvanauskas V, Grigiskis S. Model-based optimization of biosurfactant production in fed-batch culture. Azotobacter vinelandii Biotechnology Letter, 2004,26:1141-1146.
    [74] Sung KC, So HS, Kyeong RP, et al. Purification and characterization of a biosurfactant produced by Pseudomonas sp. G11 by asymmetrical flow field-flow fractionation (AsFlFFF) Anal Bioanal Chem. 2006, 38: 2027-2033.
    [75] Rahman KSM, Rahman TJ. The potential of bacterial isolates for emulsification with a range of hydrocarbons. Acta Biotechnologica, 2003,23 (4): 335-345.
    [76] Peypoux F, Bonmatin JM, Wallach J. Recent trends in the biochemistry of Surfactin. Appl Microbiol Biotechnol. 1999,51:553-563.
    [77] Horowitz S and Currie JK. Novel dispersants of silicon carbide and aluminium nitride. Dispersion Sci Technol. 1990,11: 637-659.
    [78] Navonvenezia S, Zosim Z, Gottlieb A, et al. Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl Environ Microbiol, 1995, 61: 3240-3244.
    [79] Mata-Sandoval JC, Kams J, Torrents A. High-performance liquid chromatography method for characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. Chromatogr A. 1999,864: 211-220.
    [80] Hu Y, Ju LK. Sophorolipid production from different lipid precursors observed with GC-MS. Enzyme Microbial Technol. 2001,29: 593-601.
    [81] Benincasa M, Contiero J, Manresa MA, et al. Rhamnoiipid productionby Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. Food Engineering, 2002,54: 283-288.
    [82] Hayes ME, Nestaas E, Hrebenar KR. Microbial surfactants. Chemtech, 1986,16(4): 239-243.
    [83] Banat IM, Samarah N, Murad M. Biosurfactants production and use in oil tank clear-up. World Journal of Microbiology and Biotechnology, 1991, 7: 80-84.
    [84] Li Y, Yediler A, Ou Z, Conrad I, Kettrup A. Effects of a non-ionic surfactant on the mineralization, metabolism and uptake of phenanthrene in wheat-solution-lava microcosm. Chemosphere, 2001, 45(1): 67-75.
    [85] Kosaric N. Biosurfactants and their application for soil Bioremediation. Food technology and biotechnology, 2001,39 (4): 295-304.
    [86] Van Dyke MI, Couture IP, Brauer M, et al. Pseudomona aeruginosa UG2 rhamnolipid biosurfactants: Structuralcharac terization and their use in removing hydrophobic compound from soil. Can J Microbiol, 1993,39:1071-1078.
    [87] Michail M, Kenneth N, Victor W, et al. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BSA5O. Appl Environ Microbiol, 1995, 61(5): 1706-1713.
    [88] Stacy M, Dean. Phenanthrene Degradation in Soils Co-Inoculated with Phenanthrene-Degrading and Biosurfactant-Producing Bacteria. Environ Qual, 2001,30:1126-1133.
    [89] Allen CCR, Boyd DR, Hempenstall F, et al. Contrasting effects of a nonionic surfactant on the biotransformation of polycyclic aromatic hydrocarbons to cisdihydrodiols by soil bacteria. Appl Environ Microbiol, 1999,65:1335-1339.
    [90] Lee SC, Kim SH, Park IH et al. Isolation and structural analysis of bamylocin A, novel lipopeptidefrom Bacillus amyloliquefaciens LP03 having antagonistic and crude oil-emulsifying activity. Arch Microbiol, 2007,188: 307-312.
    [91] Jarvis FG, Johnson MJ. A glycolipid produced by Pseudomonas aeruginosa. Am. Chem. Soc, 1949, 71: 4124-4126.
    [92] Parra JL, Guinea J, Manresa MA, et al. Chemical characterization and physicochemical behaviour of biosurfactants. Am Oil Chem Soc, 1989,37:141-145
    [93] Ristau E, Wagner F. Formation of novel anionic trehalosetetraesters from Rhodococcus erythropolis under growth limiting conditions. Biotechnol Lett, 1993,5: 95-100.
    [94] Lang S, Wagner F. Structure and properties of biosurfactants. Biosurfactants and biotechnology, Marcel Dekker, Inc, New York. N. Y, 1987: 21-47.
    [95] Rau U, Hammens, Heckmann R, et al. Sophorolipids: a source for novel compounds. Ind Crops Prod, 2001,13: 85-92.
    [96] Peypoux F, Bonmatin J, Wallach M. Recent trends in the biochemistry of Surfactin. Appl Microbiol Biotechnol, 1999, 51:553-563.
    [97] Yamane T. Enzyme technology for the lipid industry: an engineering overview. Am Oil Chem. Soc, 1987, 64:1657-1662
    [98] Sarkar AK, Gours JC, Sharma M M et al. A critical evaluation of MEOR process. In Situ, 1989, 13: 207-238.
    [99] Horowitz S, Currie JK. Novel dispersants of silicon carbide and aluminium nitride. Dispersion Sci Technol, 1990,11: 637-659.
    [100] Arima K, Kakinuma A, Tamura G. Surfactain a crystalline peptide lipid surfactant produced by Bacillus sublilis isolation, characterization and its inhibition of fibrin clot action. Biochem Biophysties Commun., 1968, 31:488-494.
    [101] Yakimov MM, Timmis KN, Wray V, et al. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Environ Microbiol, 1995,61:1706-1713.
    [102] Yu GY, Sinclair JB, Hartman GL, et al. Productionof iturin A by Bacillus amyloliquefaciens suppressing Rhizoctoniasolani. Soil Biol Biochem, 2002,34: 955-963.
    [103] Zajic JE, Guignard H, Gerson DF. Properties and biodegradationof a bioemulsiWer from Corynebacterium hydrocarboclatus. Biotechnol Bioeng, 1977,19:1303-1302.
    [104] Symmank H, Franke P, Saenger W, et al. ModiWcation of biologically activepeptides: production of novel lipohexapeptide after engineering of Bacillus subtilis surfactin synthetase. Protein Eng, 2002, 15: 913-921.
    [105] Kim HS, Lee CH, Suh HH, et al. A lipopeptide biosurfactant produced by Bacillus subtilis C9 selected through the Oil-collapsing assay. Microbiol Biotechnol, 1997,7:180-188.
    [106] Banat I M. Characterization of biosurfactants and their use in pollution removal-state of the art. Acta Biotechnol, 1995,15: 251-267.
    [107] Kretschner A, Bock H, Wagnee F. Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkane. Appl Environ Microbiol, 1982,44: 864-870.
    [108] Noudeh GD, Housaindokht M, Bazzaz BSF. Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC6633. Microbiol, 2005,43: 272-276.
    
    [109] Ron EZ, Rosenberg E. Natural roles of biosurfactant, Environ Microbiol, 2001,3: 229-236.
    [110] Roongsawang N, Thaniyavarn J, Thaniyavarn S, et al. Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Estremophiles, 2002,6: 499-506.
    [111] Rosenberg E, Ron EZ. High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol, 1999,52:154-162.
    [112] Steller S, Vater J. PuriWcation of the fengycin synthetase multienzyme system from Bacillus subtilis b213. Chromatogr B, 2000,737: 267-275.
    [113] Fujikawa K, Fort FL, Samejima K, et al. Genotoxic potency in Drosophila melanogaster of selected aromatic amines and polycyclic aromatic hydrocarbons as assayed in the DNA repair test. Mutation Research. 1993,290:175-182.
    [114] Ren L, Zeiler LF, Dixon, DG, Greenburg, BM. Photoinduced effects of polycyclic aromatic hydrocarbons on Brassicanapus (Canola) during germination and early seedling development. Ecotoxicology and Environmental Safety, 1996, 33: 73-80.
    [115] Benincasa M, Abalos A, Oliveira I, et al. Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soap stock. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2004,85(1): 1-8.
    [116] Cho SK, Shim SH, Park KR, et al. Purification and characterization of a biosurfactant produced by Pseudomonas sp. G11 by asymmetrical flow field-flow fractionation (AsFlFFF). Analytical and Bioanalytical Chemistry, 2006, 386(7-8): 2027-2033.
    [117] Rahman KSM, Rahman TJ. The potential of bacterial isolates for emulsification with a range of hydrocarbons. Acta Biotechnologica, 2003,23 (4): 335-345.
    [118] Manoj K, Vladimir L, Angela DSM, et al. Polycyclic aromatic hydrocarbon degradation by biosurfactant producing Pseudomonas sp. IR1. Zeitschrift fur Naturforschung. C. A journal of biosciences, 2006, 61(3-4): 203-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700