锦屏一级水电站大坝混凝土ASR抑制措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锦屏一级水电站为一等工程,根据成勘院的初步调研,坝址附近料场砂岩骨料是碱活性岩石,可能导致坝体混凝土发生碱骨料反应破坏,存在潜在威胁。本论文研究了锦屏砂岩骨料碱活性及其抑制问题,主要结论如下:
     (1)砂岩骨料为具有潜在危害性反应的碱-硅反应(ASR)活性骨料;在本文试验中,砂岩骨料不存在“最劣比”现象,砂岩与大理岩组合骨料仍然具有较高的碱活性。
     (2)Ⅰ级粉煤灰与Ⅱ级粉煤灰相比,对砂岩ASR的抑制效果没有明显差异;包括CaO含量8%左右的平凉Ⅰ级灰和Ⅱ级灰在内的9种备选粉煤灰,在30%掺量下都可以有效抑制砂岩ASR;考虑到锦屏砂岩碱活性的波动,抑制ASR所需粉煤灰的掺量宜不低于35%。
     (3)粉煤灰的单个化学成分与粉煤灰抑制ASR的效果没有显著相关性。用化学成分因子C_(FA)来表征粉煤灰的化学特性更合理,根据砂浆棒快速法28d试验结果回归得出的C_(FA)表达式为:当C_(FA)≤0.400时,粉煤灰掺量30%左右可以有效抑制锦屏一级砂岩骨料的ASR;当C_(FA)>0.400时,则需要更大的掺量。
     在粉煤灰掺量为30%时,其矿物组成对抑制效果没有明显影响;用非晶态SiO_2和非晶态Al_2O_3分别取代C_(FA)中的SiO_2总量和Al_2O_3总量并没有使相关系数提高。
     粉煤灰的细度对抑制ASR效果有影响,但不及化学成分影响明显;用比表面积与C_(FA)组合而成的物化因子C可以综合地反映粉煤灰物理、化学特性对抑制ASR效果的影响,C的表达式为:
     (4)在80℃、1mol/L NaOH并且Ca(OH)_2饱和的溶液中,粉煤灰的火山灰活性被严重激发,导致快速砂浆棒法测试的粉煤灰抑制效果明显高于60℃快速混凝土棱柱体法测试结果。
     粉煤灰中除了约占20%左右的莫来石不能被溶解以外,其余成分都可以溶解,因此,粉煤灰的化学成分对抑制ASR效果的影响要比矿物组成的影响大。
     粉煤灰在热碱液浸泡下,主要生成P型沸石和C-S-H凝胶。生成P型沸石有利于抑制ASR;生成C-S-H凝胶对强度有较大贡献,但是对抑制ASR没有明显作用。
     (5)采用碱活性骨料作为混凝土原料时,人工砂中引入的碱活性石粉以及引气剂引入的气泡对ASR膨胀有一定“自免疫”作用,可减少40%~80%的ASR膨胀率。从这个角度而言,现有室内试验方法高估了大坝混凝土中的ASR风险。
     (6)锂渣粉可以有效抑制砂岩ASR,但需要分离锂渣粉自身引起的微膨胀。改性沸石复合粉在掺量30%以上时,可以有效抑制锦屏砂岩的ASR,但是抑制效果不及粉煤灰显著。HLC-ASW型高效减水剂对ASR有一定的抑制效果,约为20%,明显优于普通萘系高效减水剂。
In the thesis, some questions are studied about suppressing the alkali-silica reaction (ASR) of the sandstone aggregate to be used in the dam concrete for the Jinping-ⅠHydroelectric Project. The conculsions are summarized as follows:
     (1) Sandstone aggregate and sandstone-marble combination aggregate are alkali-silica reactive and indicative of potentially deleterious expansion, no "passimum" phenomenon was observed.
     (2) There was no difference between ClassⅠand ClassⅡfly ash on suppressing ASR. All the 9 fly ashes from Jinping-ⅠHydroelectric Project could effectively suppress ASR of sandstone at 30% replacement level, including Pingliang ClassⅠand ClassⅡfly ash with CaO content about 8%. Considering the difference between dam concrete and normal concrete and the variation of the reactivity of sandstone, the safe replacement level of fly ash is suggested to be no less than 35%.
     (3) There is no remarkable relationship between any chemical composition of fly ash and the suppressing effect on ASR. As the criteria for selecting proper fly ash source, the chemical index C_(FA) is more reasonable than the CaO content or alkali content. The formula of C_(FA) is:If C_(FA) is below 0.40, the fly ash at 30% replacement level can effectively inhibit the ASR of sandstone used in the Jinping-ⅠHydroelectric Project, and if C_(FA) is above 0.40, more fly ash would be needed.
     At 30% replacement level, there is no remarkable relationship between mineralogical composition of fly ash and the suppressing effect on ASR. Replacing the SiO_2 and Al_2O_3 content in C_(FA) by amorphous SiO_2 and amorphous Al_2O_3 content didn't increase the relativity.
     The fineness of fly ash influences the suppressing effect on ASR, but not as obviously as C_(FA). The physical-chemical index C made up of C_(FA) and specific surface area can reflect the influence of physical and chemical quantities of fly ash on suppressing effect on ASR. The formula of C_(FA) is:
     (4) Fly ash would be terriblely activated in 80℃, 1mol/L NaOH and saturated Ca(OH)_2 solutions so that the suppressing effect on ASR tested by AMBT was much better than the effect tested by ACPT.
     Most compositions of fly ash could dissolved except mullite which makes up about 20% of total fly ash by weight, this phenomenon can explain why the influence of chemical compositions is bigger than that of mineralogical compositions.
     The main productions of fly ash in hot alkaline solution are P zeolite and C-S-H gel. P zeolite is beneficial to suppressing ASR. C-S-H gel can improve the strength of mortar, but no influence on ASR.
     (5) If reactive aggregate is used in dam concrete, the reactive stone powder brought in with fine aggregate and the air bubbles entrained by AEA will reduce ASR expansion greatly. The overall effect of these self-immunity mechanisms of dam concrete is the reduction of ASR expansion by 40% to 80%. So ASR expansion in real dam concrete structures is not as serious as observed in standard tests.
     (6) Ground lithium slag can efficiently suppress ASR, but it will cause early expansion of mortar or concrete, this expansion should be separated when testing the suppressing effect. Composite powder can effectively inhibit the expansion due to ASR at 30% or more replacement level. HLC-ASW type superplasticizer can reduce about 20% of expansion due to ASR, which is much better than normal naphthalene type superplasticizers.
引文
[1] Mehta P. K. Concrete Technology for Sustainable Development [J], Concrete International, 1999, (11): 1-8.
    [2] LoBo C. Challenging ASR Predictive Testing [J]. The Concrete Producer, 1998,(3): 193-195.
    [3] 李金玉.中国大坝混凝土中的AAR[J],水力发电,2005,31(1):34-37.
    [4] 蒋素芬.小浪底工程AAR控制[J],水利水电科技进展,2003,23(5):41-43.
    [5] Thomas M. D. A., Matthews J. D. Performance of Fly ash Concrete in U.K. Structures [J]. ACI Materials Journal. 1993, 90(6): 586-593.
    [6] Wigum B.J., Pedersen L.T., Grelk B. State-of-the Art Report: Key Parameters Influencing the Alkali Aggregate Reaction[R].Sintef Building and Infrastrure,Oct.2006.
    [7] 史迅.三峡主体工程混凝土预防碱集料反应的综合技术措施[J].水电站设计,2003,19(1):56-58.
    [8] 周麒文,李光伟.磷渣抑制集料碱硅酸反应的试验研究[J].水利水电科技进展,2008,(2):39-46.
    [9] Martin C, Patrice R., Francis L. Reduction of ASR Expansion Using Powders Ground from Various Sources of Reactive Aggregates [J]. Cement & Concrete Composites (2009), doi: 10.1016/j.cemconcomp.2009.04.13.
    [10] 黎能进,兰祥辉.煤矸石抑制水泥石碱硅酸反应研究[J].水泥工程,2008(1):24-27.
    [11] Ramachandran V. S. Alkali-Aggregate Expansion Inhibiting Admixtures [J]. Cement and Concrete Composites, 1998, 20: 149-161.
    [12] Lumley J. S. ASR Suppression by Lithium Compounds [J]. Cement and Concrete Research, 1997, 27(2): 235-244.
    [13] Bian Q., Nishicayashi S., Kuroda T. Various Chemicals in Suppressing Expansion Due to Alkali-Silica Reaction.[C]//Proceedings of 10th International Conference on Alkali-Aggregate Reaction in Concrete. Melbourne, Australia, 1996:868-875.
    [14] 吴定燕,方坤河,曾力,等.粉煤灰抑制AAR研究[J].云南水力发电,2001,17(3):34-37.
    [15] Carrasquillo R L, Snow P G. Effect of Fly Ash on Alkali- Aggregate Reaction in Concrete [J]. ACI Materials Journal, 1987, 84(4): 299-305.
    [16] 唐国宝,丁琍,张恬等.低钙粉煤灰与高钙粉煤灰对碱集料反应抑制作用的试验比较[J].粉煤灰,2002,(3):3-6.
    [17] 《水利水电施工手册》编委会.水利水电工程施工手册-混凝土工程[M].北京:中国电力出版社,2002:64.
    [18] 杨华全,李文伟.水工混凝土研究与应用[M].北京:中国水利水电出版社,2005:38.
    [19] Malvar L J, Lenke L R. Efficiency of Fly Ash in Mitigating Alkali-Silica Reaction Based on Chemical Composition [J]. ACI Materials Journal, 2006, 103(5):319-326.
    [20] Shehata M. H., Thomas M. D. A. The Effect of Fly Ash Composition on The Expansion of Concrete Due to Alkali Silica Reaction [J]. Cement and Concrete Research, 2000, 30(7): 1063-1072.
    [21] Shehata M. H. The Effects of Fly Ash and Silica Fume on Alkali Silica Reaction in Concrete [D]. Civil Engineering University of Toronto. 2001: 180-184.
    [22] 胡明玉.运用模糊神经网络研究碱集料反应和混凝土性能[D].南京:南京工业大学,2003:80-84.
    [23] Nagataki, S., Ohga, H., Inoue, T. Evaluation of Fly Ash for Controlling Alkali-Aggregate Reaction [C]. Proceedings of the 2nd CANMET/ACI International Conference on Durability of Concrete, American Concrete Institute,1991:955-972.
    [24] Kawabata,Y., Yamada,K., Matsushita,H. Evaluation of Character of Fly Ash Related to Suppressing Effect on Alkali-Silica Reaction [C].//Doboku Gakkai Ronbunshuu E, 2007,63(3): 379-395.(In Japanese).
    [25] Berube M. A., Carles A., Duchesne J., et al. Influence of Particle Size Distribution on the Effectiveness of Type-F Fly Ash in Suppressing Expansion Due to Alkali-Silica Reactivity [C]//Fifth CANMET/ACI International Conference, 1995:177-192.
    [26] Obla K. H., Hill R. L., Thomas M. D. A., et al. Properties of Concrete Containing Ultra Fine Fly Ash [J]. ACI Materials Journal, 2003,100(5): 426-433.
    [27] Thomas M. D. A. Review of The Effect of Fly Ash and Slag on Alkali-Aggregate Reaction in Concrete [R]. London: Construction Research Communications Ltd,1994:5-6.
    [28] Thomas M. D. A., Fournier B., Folliard K. J., et al. Performance Limits for Evaluating Supplementary Cementing Materials Using Accelerated Mortar Bar Test [J]. ACI Materials Journal, 2007, 5: 115-122.
    [29] Alasali M. M., Malhotra V. M. Role of Concrete Incorporating High Volumes of Fly Ash in Controlling Expansion Due to Alkali Aggregate Reactions [J]. ACI Materials Journal, 1991, 88(2): 159-163.
    [30] Hobbs D.W. Alkali-Silica Reaction in Concrete [M]. Thomas Telford, London. 1988:115-123.
    [31] Shayan A. Prediction of alkali reactivity potential of some Australian aggregates and correlation with service performance [J]. ACI Materials Journal, 1992, 89(1):13-23.
    [32] 高仁辉,秦鸿根,魏程寒.粉煤灰对硬化浆体表面氯离子浓度的影响[J].建筑材料学报,2008,(4):420-424.
    [33] 陈雷,肖佳,赵金辉.粉煤灰高强混凝土氯离子扩散性能的试验研究[J].粉煤灰,2008,(3):6-8.
    [34] 曹文涛,余红发,胡蝶,等.粉煤灰和矿渣对表观氯离子扩散系数的影响[J].武汉理工大学学报,2008,(1):48-51.
    [35] Uchikawa H., Uchida S. Hanehara S.. Relationship between Structure and Penetrability of Na Ion in Hardened Blended Cement Paste Mortar and Concrete [C]. // Proceedings of the 8th International Conference on Alkali-Aggregate Reaction, Kyoto, 1989: 121-128.
    [36] Diamond S. ASR - Another look at mechanisms [C]. Proceedings of the 8~(th) International Conference on Alkali-Aggregate Reaction, Kyoto, 1989: 83-94.
    [37] Tang, M. and Han, S. Effect of Ca(OH)_2 on alkali-silica reaction [C]. //Proceedings of the 7~(th) International Conference on the Chemistry of Cement, Vol. Ⅱ,1980:94.
    [38] Tang M., Ye Y. F., Yuan M. Q., Zheng S. H. The Preventive Effect of Mineral Admixtures on Alkali-Silica Reaction and Its Mechanism [J]. Cement and ConcreteResearch, 1983,13:171-176.
    [39] Richard H. Alkali Silica Reactivity: a Overview of Research. [R/OL].http://onlinepubs. trb.org/Onlinepubs/shrp/SHRP-C-342.pdf :41
    [40] Ramyar K. Topal A. Effects of Aggregate Size and Angularity on Alkali-Silica Reaction [J].Cement and Concrete Research 2005, 35:2165-2169.
    [41] Tamotsu K. Shoichi I., Akira Y. Effects of Particle Size, Grading and Content of Reactive Aggregate on ASR Expansion of Mortars Subjected to Autoclave Method [C]. The 12~(th) International Conference on AAR in Concrete. 2004: 736-743.
    [42] Cement and Concrete Association of New Zealand, TR03 Alkali Silica Reaction Minimizing the Risk of Damage to Concrete Guidance Notes and Recommended Practice (2nd Edition)[M], 2003.
    [43] 王爱勤,张承志.水工混凝土的AAR问题[J].水利学报,2003,34(2):117-121.
    [44] 陶珍东,郑少华.粉体工程与设备[M].北京:化学工业出版社,2003:12-13.
    [45] 钱觉时.粉煤灰特性与粉煤灰混凝土[M].北京:科学出版社,2002:15-17.
    [46] Touma W.E., Fowler D.F. and Carrasquillo R.L. Alkali-Silica Reaction in Portland Cement Concrete: Testing Methods and Mitigation Alternatives. Report ICAR 301-1F, International Center for Aggregates Research, Austin, Texas, 2001:520.
    [47] RILEM TC-106. Alkali-Aggregate Reaction-Accelerated Tests [J]. Materials and Structrues, 1996,29(190): 323-334.
    [48] Fournier B., Chevrier. R., DeGrosbois M., et al. The Accelerated Concrete Prism Test(60℃): Variability of The Test Method and Proposed Expansion Limits [C]. //The 12th ICAAR, 2004, Beijing China, pp314-323.
    [49] Rangaraju P. R., Sompura K. R. A Study on Influence of Alkali Content of Cement on Expansions Observed in the Standard and Modified ASTM C 1260 Procedures[C]//Transportation Research Board 84th Annual Meeting, Washington, D.C., 2005.
    [50] Mckeen R.G., Lenke L.R., Pallachulla K.K. Mitigation of Alkali Silica Reactivity in New Mexico [R]. New Mexico: Materials Research Center, 1998.
    [51] 王永逵.材料试验和质量分析的数学方法[M].北京:中国铁道出版社,1990:166-168.
    [52] Mastalerz M., Hower J.C., Drobniak A., et al. From in-Situ Coal to Fly Ash: A Stud)' of Coal Mines and Power Plants from Indiana [J]. International Journal of Coal Geology, 2004, 3-4(59): 171-192.
    [53] Mardon S.M., Hower J.C. Impact of Properties on Coal Combustion By-product Quality: Examples from a Kentucky Power Plant [J]. International Journal of Coal Geology, 2004, 3-4(59): 153-169.
    [54] 钱觉时.粉煤灰特性与粉煤灰混凝土[M].北京:科学出版社,2002:70-78.
    [55] 钱觉时,王智,张玉奇.粉煤灰的矿物组成(下)[J].粉煤灰综合利用,2001,(4):24-28.
    [56] Berry E. E., Hemmings R. T., Cornelius B. J. Mechanisms of Hydration Reactions in High Volume Fly Ash Pastes and Mortars [J]. Cement and Concrete Composites, 1990,12(4): 253-261.
    [57] Vassilev S., Menendez R., Alvarez D., et al. Phase-Mineral and Chemical Composition of Coal Fly Ashes as a Basis for Their Multi-Component Utilization: 1. Characterization of Feed Coals and Fly Ashes. Fuel, 2003, 14(82): 1793-1811.
    [58] Ward C.R., French D. Determination of Glass Content and Estimation of Glass Composition in Fly Ash using Quantitative X-ray Diffractometry [J]. Fuel, 2006(85):2268-77.
    [59] 王福元,吴正严.粉煤灰利用手册[M].北京:中国电力出版社.1997:74.
    [60] 谭宏斌,熊海涛,甄宝勤.粉煤灰水热法提硅合成沸石工艺研究[J].非金属矿,2008,31(1):13-18.
    [63] 王福元,吴正严.粉煤灰利用手册[M].北京:中国电力出版社.1997:74.
    [64] 王爱勤,张承志.水工混凝土的AAR问题[J].水利学报,2003(2):117-121.
    [65] DL/T 5144-2001,水工混凝土施工规范[S].北京:中国电力出版社.2002,5.
    [61] Hidekazu T., Yasuhiko S., Ryozi H. Formation of Na -A and -X Zeolites form Waste Solutions in Conversion of Coal Fly Ash to Zealots [J]. Materials Research Bulletin, 2002(37): 1878-82.
    [62] Keka O., Narayan C. P., Amar N. S. Zeolite from Fly Ash: Synthesis and Characterization [J]. Bull. Mater. Sci., 2004, 27(6): 555-564.
    [66] DL/T5112-2000,碾压混凝土施工规范[S].北京:中国电力出版社.2001,5.
    [67] Moisson M, Cyr M, Ringot E, et al, Efficiency of Reactive Aggregate Powder in Controlling the Expansion of Concrete Affected by Alkali-silica Reaction (ASR)[C], In: Proceedings of the 12th International Conference on Alkali-Aggregate Reaction in Concrete, Beijing: Academic Publishers, 2004:617-624.
    [68] Bard Pedersen, Ernst Mortell, Viggo Jensen, Effects of Alkali-reactive Crushed Fillers on Expansions Due to ASR [A], In: Proceedings of the 12th International Conference on Alkali-Aggregate Reaction in Concrete, Beijing: Academic Publishers, 2004:764-772.
    [69] Ramachandran V. S. Alkali Aggregate Expansion Inhibiting Admixtures [J],Cement and Concrete Composites, 1998, (20): 149-161.
    [70] American Concrete Institute, ACI 221. 1R State-of-the-Art Report on Alkali-Aggregate Reactivity [R], Farmington Hills, MI USA, 1998.
    [71] Jensen A. D, Chatterji S., Christensen P, et al. Studies of Alkali Silica Reaction:Part Ⅱ Effect of Air Entrainment on Expansion [J], Cement and Concrete Research,1984,14(3): 311-314.
    [72] 朱蓓蓉,杨全兵,吴学礼,等.SJ-2新型引气剂及其引气混凝土性能[J].混凝土,2001,(4):21-24.
    [73] Ramyar K., Topal A. Effects of Aggregate Size and Angularity on Alkali-Silica Reaction [J]. Cement and concrete research 35(2005):2165-2169.
    [74] Tamotsu K., Shoichi I., Akira Y. Effects of Partical Size, Grading and Content of Reactive Aggregate on ASR Expansion of Mortars Subjected to Autoclave Method [A], 12th International Conference on ASR in Concrete. Beijing: Academic Publishers, 2004: 736-743.
    [75] 张承志,王爱勤,王海生.关于集料碱活性评定的一些问题[J].混凝土与水泥制品,2004,(1):6-10.
    [76] Swamy R. N. The Alkali Silica Reaction in Concrete [M]. New York: Van Nostrand Reinhold. 1992: 74-75.
    [77] 杨春晖.锂盐渣混凝土性能研究与应用[J].四川建材,2004,(6):19-21.
    [78] 陈应球.锂盐渣混凝土在水工建筑中的应用[J].贵州水力发电,2000,(3):37-41.
    [79]胡平.高性能锂渣粉混凝土[J].建筑科技,1999,(5):12-13.
    [80]张兰芳,陈剑雄,李世伟,等.锂渣粉混凝土的性能研究[J].施工技术,2005,(8):59-68.
    [81]何锋.用锂盐渣作水泥掺合材的探讨[J].四川水泥,2004,(6):16-18.
    [82]宗永红,甘立军,汪永治.掺合料对混凝土ASR抑制效果的研究[J].新疆大学学报,2006,19(增刊):76-79.
    [83]曾祖亮.锂渣粉的来源和锂渣粉混凝土的增强抗渗机理探讨[J].四川有色金属,2000,(4):49-52.
    [84]周麒文,李光伟.磷渣抑制集料碱硅酸反应的试验研究[J].水利水电科技进展,2008,(2):39-46.
    [85]牛全林,冯乃谦,谢威.几种超细矿粉抑制混凝土AAR的试验研究[J],水泥工程,2004(5).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700