香菇三螺旋葡聚糖氢键键合作用及其功能化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真菌多糖广’泛存在于真菌细胞壁或细胞培养液,具有来源广、可再生、安全性好等特点。它们中的部分已显示出抗肿瘤、抗病毒、抗氧化等生物活性,是理想的天然保健品、药物和食品添加剂,在医药、生物材料、食口及日用品领域有广阔应用前景。不同来源的真菌多糖具有不同的化学结构、分子尺寸及链构象,它们对其生物功能有明显影响。从真菌中有效地提取和纯化出高纯度多糖,并研究其化学结构和链构象是实现多糖应用价值的重要步骤,利用多糖优异的化学、生物特点,更好地利用其应用价值,是我们所面临的挑战与机遇。本工作旨在对真菌多糖的化学结构、链构象及功能化进行深入研究。采用多种近代表征方法和高分子溶液理论对真菌多糖化学结构进行解析和确定,同时用不同修饰和组装方法从纳米、微米尺寸对真菌多糖进行功能化研究。
     本论文的主要创新包括以下几点:(1)采用绿色高效的方法提取出香菇葡聚糖,并提出了一种快速简便表征多糖链构象的方法确定其化学结构和三螺旋链构象;(2)在水体系中以香菇三螺旋葡聚糖为基底制备出水分散性的银纳米粒子,并以银纳米粒子为标记物表征三螺旋链在碱溶液中的聚集行为;(3)首次观察到香菇多糖自组装成纳米膜,并提出一种快速简单制备香菇葡聚糖微胶囊的新方法;(4)首次制备出两亲性香菇葡聚糖糖,成功构筑纳米囊泡和纳米球,并提出链刚性对自组装结构的影响;(5)弄清虎乳灵芝多糖的化学结构和链构象,并成功自组装形成“松叶状”图案聚集体。
     本论文主要研究内容和结论简述如下。通过一种用水体系替代有机溶剂体系的绿色提取方法从香菇子实体中提取出香菇葡聚糖。IR、NMR、GC-MS分析结果表明,该香菇多糖具有较高的纯度,其化学结构为β-1,3-D-葡聚糖,并含p-1,6-D-葡萄糖残基组成的支链,约每5个p-1,3-D-葡萄糖残基带有2个p-1,6-D-葡萄糖残基。用尺寸排除色谱-多角度激光光散射仪-示差折光仪-毛细管粘度仪(SEC-MALLS-RI-Visco)四联用装置成功表征了该香菇葡聚糖在0.9%NaCl溶液中的稀溶液行为。由实验数据通过理论计算得出其链构象参数,并且得到z1/2与Mw关系式以及Mark-Houwink方程。结果表明该香菇葡聚糖为三螺旋链构象,具有较大的链刚性,而且它单独的三螺旋链和聚集体同时存在于稀溶液中,但聚集体含量较少(12.6%)。透射电镜(TEM)和原子力显微镜(AFM)结果进一步直接证明该香菇葡聚糖的刚性链形态。该香菇多糖可以与疏水客体分子(酞菁)通过疏水作用力形成包合物,证明香菇多糖三螺旋链存在疏水空腔结构。本工作建立了一种简便、可靠的方法表征香菇葡聚糖的化学结构和三螺旋链构象,替代传统上繁杂、耗时的方法,由此为其结构的确定提供新的可靠途径。
     以香菇三螺旋葡聚糖链为稳定剂在其水溶液中成功制备出平均粒径约为12nm的水分散性银纳米粒子。TEM和动态光散射(DLS)结果表明:银纳米粒子通过与多糖链上的羟基间的强静电作用结合到多糖链上,并沿链分布,从而它们可稳定地分散在水中。香菇葡聚糖含大量羟基,不仅可以用于构建银纳米粒子的基质,还能作为稳定剂使纳米粒子稳定地分散在水中。该多糖-银纳米粒子也能稳定的存在于碱性溶液中,而且形成的聚集体不影响银纳米粒子的尺寸和形貌。聚集体的形成是由于多糖三股螺旋链变性为无规线团链导致。同时,利用银纳米粒子为标记物成功地检测出多糖聚集体的形成及其聚集速率。这里提出了种简便、绿色的方法合成水分散性银纳米粒子,它在生物领域有应用前景。
     通过香菇多糖还原端上的醛基与十二胺上的胺基反应,成功制备出链末端接有长链烷烃的香菇多糖LNT-C12。该多糖为亲水-疏水嵌段物,它在水中易聚集。由此利用LNT-C12在水中自组装形成微胶囊,该胶囊壁由多糖链平行排列形成单层纳米多糖薄膜及多层膜。改变多糖水溶液和油相(CH2C12)体积比(R),可以调控微胶囊的类型(从水包油O/W变为水包油包水W/OW)和尺寸。该胶囊囊壁较薄(R=2时为90nm),在CH2Cl2挥发过程中微胶囊发生塌陷,但用环氧氯丙烷(ECH)交联多糖可明显阻止微胶囊塌陷。刻多糖微胶囊可以载模型药物聚已内酯(PCL),它们形成LNT-Cl2为囊壁、PCL为核的微球,且微球尺寸可以通过改变R值来调控。这种快速简单制备多糖微胶囊的安全方法,对生物医用微胶囊的应用与开发具有重要意义。
     具有三螺旋链和无规线团链不同链构象的两种香菇葡聚糖通过与长链卤代烃反应合成两亲性香菇葡聚糖,它们分别表现出比较刚性和较柔顺性链构象。DLS、SLS、TEM结果证明这两种两亲性多糖可以自组装形成纳米结构囊泡(刚性链)和纳米实心球(柔顺链)。它们的差异性来源于其链刚性的不同:较大的链刚性能支撑球壁,形成中空囊泡结构;而柔顺链则无规聚集形成实心球。由此表明,两亲性多糖自组装过程中链刚性的影响很大。通过控制链刚性,可以调控自组装纳米结构的形貌(实心或者空心纳米球)和尺寸(150~280nm)。另外,这两种纳米球都可以作为药物载体,它们能有效负载药物和提高缓释性。由此,它在生物医用领域有潜在应用。
     由虎乳灵芝中提取出的一种多支化葡聚糖PR-CA。通过FT-IR、NMR、GC-MS证明PR-CA为多支链多糖,其支化度为0.4。通过DLS、SLS、TEM和AFM证明它在DMSO中形成稍微疏松的球状链构象,而在水中由于分子内氢键导致链塌缩形成尺寸较小的球形链,并且由于分子间氢键驱动形成聚集体。低分子量PR-CA农现出明显的自组装行为。实验结果揭示多支化β-葡聚糖具有水溶性和易聚集的特点,当分子量较低时容易有序自组装形成纤维并进一步生长形成“松中状”图案聚集体。
     上述基础研究成果清楚地确定了香菇多糖和虎乳灵芝多糖的化学结构和链构象。同时,按照香菇葡聚糖的特点进行分子设计,得到不同尺寸和形貌的香菇多糖纳米结构功能材料,它们有潜在应用前景。本工作对真菌多糖的化学结构、链构象与其功能材料性能间的“构效关系”研究提供了有价值的数据,具有重要的学术意义。同时,也为促进香菇葡聚糖的工业化和扩大其应用提供了重要依据,具有应用前景。
Fungal polysaccharides widely exist in the cell walls or cell culture media of fungi. Many kinds of fungal polysaccharides show anti-tumor, anti-virus or anti-oxidation bioactivities. They are ideal candidates as natural health products, drugs and food additives and have wide application prospect in the fields of medicine, food, daily necessities, and biological materials. Polysaccharides extracted from different resources vary in chemical structures, molecular size, and chain conformations, which show obvious influence on their bioactivities. Therefore, it's a challenge and opportunity for us to develop effective extraction methods of polysaccharides and to resolve their chemical structures and chain conformations so that their practical values would be realized. Some progress has already been achieved in polysaccharides functionalization, but more work regarding the chemical and biological features of polysaccharides need to be done. In this thesis, we mainly focus on the chemical structures, conformations and functionalization of fungal polysaccharides. Our purpose is to resolve the chemical structures and conformations with the aid of different analytical methods and polymer solution theory. At the same time, we investigated the functionalization of polysaccharides by different means from nano to micro scale.
     The major innovations of this thesis include the followings:(1) We efficiently extracted lentinan from Lenlinus edodes with a green method, and established a kind of facile method for clarifing its chemical structures and triple helical conformation in water;(2) We successfully prepared Ag nanoparticles dispersible in water from the aqueous solution of triple helical lentinan, and studied the aggregation behavior of triple helical chain in base solution with Ag nanoparticles as labeling;(3) We observed the self-assembly of lentinan into a nanofilm for the first time and thus discovered a simple rapid method to prepare lentinan micro vesicles;(4) For the first time we fabricated nano vesicle and nanosphere from amphipathic lentinan and revealed the effect of chain stiffness on structures of self-assembly products;(5) We clarified the chemical structure and conformation of polyporus rhinoceros polysaccharides and found the formation of pine needle-like aggregation.
     The main contents and conclusions in this thesis are divided into the following parts. A kind of water-soluble polysaccharides was isolated from Lentinus edodes via a green method developed by the lab. From IR, NMR and GC-MS results, the chemical structure of the polysaccharide with high purity was analyzed to be a kind of β-1,3-D-glucans with two β-1,6-D-residues in interval of every five main-chain residues. The polysaccharide conformation was analyzed by using SEC-MALLS-RI-Visco combination method. The z1/2~Mw, equation and Mark-Houwink function were obtained by data fitting. The result revealed that the polysaccharide majorly exists as triple helical conformation in aqueous solution with high chain stiffness and few aggregations (12.6%) with coil conformation are also found in the solution. TEM and AFM observations further proved the results directly. Hydrophobic phthalocyanine could be incorporated into the one-dimensional hollow constructed by the polysaccharide triple helical chains to be water-soluble. The phenomena proved the existence of hydrophobic hollow in lentinan. This work provided a new kind of simple and reliable method, instead of trantional complex and time-consuming method, for characterizing the chemical structure and triple helical conformation of lentinan, which are import for deciding the structure of lentinan.
     Water-dispersible silver nanoparticles with mean radius of6nm were created in the triple helical polysaccharide aqueous solution. The results of TEM and DLS revealed that the silver nanoparticles were attached to the polysaccharide chains by the strong electrostatic interactions between the polysaccharides and the silver nanoparticles, leading to the good dispersion of the nanoparticles in the solution. Lentinan with abundant active hydroxyl groups not only supplied a matrix for the constructing of the silver nanoparticles, but also acted as a stabilizer for good dispersion of the nanoparticles in water. The silver nanoparticles could also exist stably in lentinan solution containing NaOH, and the aggregation of denatured polysaccharides did not affect the shape and size of the Ag nanoparticles. Moreover, the aggregation was related to the conformation transition of the polysaccharide from the triple helix to random coil in the solution. A new method to detect the aggregates and aggregation rate was established based on the intensity of the maximum absorption peaks of the polysaccharides labeled by Ag nanoparticles in the UV spectrum. This work provided important information for the creation of the silver nanoparticles via a simple and "green" pathway, and it will have wide applications in the biological field.
     Long-chain alkane was introduced to the reducing end of lentinan chains through the reaction between the aldehyde groups and the amine groups of laurylamine (C12H25NH2). The obtained sample (LNT-C12) was proved to form aggregation easily in water. TEM results showed the existing of single layer and multiple layer polysaccharides nano-sheets which were formed by the self-assembly of LNT-C12chains. Taking advantage of the LNT-C12self-assembly process, a simple and quick method was developed to obtain polysaccharides microcapsules. By changing the volume ratio (R) of aqueous phase (LNT-C12) versus organic phase (CH2G2), the type (O/W or W/O/W) and size of the microcapsules can be tuned. As the layer formed by LNT-C12was rather thin (about90nm at R=2) in the microcapsules, collapse happened during the evaporation of CH2Cl2. The stabilization of the microcapsules could be improved obviously after cross-linking by epoxy chloropropan (ECH). The drug-loading ability of the microcapsules was also studied by using polycaprolactone (PCL) as the target drug. The result revealed that PCL could be loaded into the microcapsules, and microspheres with PCL as core and LNT-C12as shell were formed. The size of the microspheres can also be tuned by changing the R value. This work provided a kind of facile method for constructing polysaccharide microcapsules, which can promote the application of letinan in the fields of drug delivery.
     Amiphiphilic polysaccharides (lentinan) were obtained with two different chain conformations (triple helical chains and random coil chains). The DLS, SLS and TEM results revealed that the amiphiphilic polysaccharides can self assembly into vehicles (triple helical lentinan) and spheres (random coil lentinan). The difference between the two assembly morphologies (vesicle and sphere) was original from the difference of chain stiffness. The high chain stiffness can prevent further collapse of the nanosphere structure, inducing the existence of vesicles. It proved the importance of chain stiffness on the self-assembly of amiphiphilic polysaccharides. By controlling the chain stiffness, we can tune the morphology and size of the obtained nanostructures. Moreover, the resulted polysaccharides vesicles and spheres can be used as drug carriers.
     A kind of water-soluble polysaccharide (PR-CA) from Polyporus rhinoceros was analyzed by FT-IR, NMR and GC-MS. The results indicated that PR-CA was a kind of β-(1,3)-D-glucans with β-1,6-D-residues branches. The degree of branch is calculated to be0.4. The conformation of PR-CA was proved to be random coil in DMSO and to be compact sphere conformation with smaller size in water. What's more, PR-CA with low Mw could form pine needle-like nanostructures consisting of nano-needle structures. This work revealed the chemical structure and conformation, which is import for the further studying on the bioaetivity of PR-CA.
     The above results identified the chemical structures and conformations of lentinan and PR-CA. Meanwhile, we successfully prepared functional nano-materials based on lentinan with different sizes and morphologies, after which we studied the preliminary application prospect of these materials. This work provides profound data and academic supporting for studies involving polysaccharides'chemical structure, conformation, properties and their relationship. At the same time, we contributed to the industrialization of lentinan for expanded application.
引文
[1]P. Marszalek, A. Oberhauser, Y. Pang and J. Fernandez, Polysaccharide elasticity governed by chair'Cboat transitions of the glucopyranose ring, Nature.1998,396,661-664.
    [2]R. Srivastava and D. Kulshreshtha, Bioactive polysaccharides from plants, Phytochemistry.1989, 28,2877-2883.
    [3]X. Liu and J. Dordick, Sugar-containing polyamines prepared using galactosc oxidase coupled with chemical reduction, J. Am. Chem. Soc.1999,121,466-467.
    [4]G. Chihara, Y. Maeda, J. Hamuro, T. Sasaki and F. Fukuoka, Inhibition of Mouse Sarcoma 180 by Polysaccharides from Lentinus edodes (Berk.) Sing, Nature.1969,222,687-688.
    [5]S. Wasser and A. Weis, Medicinal properties of substances occurring in higher Basidiomycetes mushrooms:current perspectives (Review), Int. J. Med. Mushrooms.1999,1,31-62.
    [6]P. Miles and S. Chang, Mushroom biology:concise basics and current developments, World Scientific Pub Co Inc,1997.
    [7]D. Benjamin, Mushrooms:poisons and panaceas, W.H. Freeman and Co, New York,1995.
    [8]V. E. C. Ooi and F. Liu, A review of pharmacological activities of mushroom polysaccharides, Int. J Med. Mushrooms 1999,1,195-206.
    [9]L. Yuexin, Y. Zhuqiu, H. Yanyan and X. Hualing, Fractionation and Characterization of Water-Soluble Polysaccharides from Culinary-Medicinal Mushroom, Agaricus blazei Murrill (Agaricomycetideae) Fruit Body, Int.J. Med. Mushrooms.2002,4,7.
    [10]S. Reshetnikov, S. Wasser and K. Tan, Higher basidiomycota as a source of Antitumour and immunostimulating polysaccharides. A review, Inter J Med Mushrooms 2001,3,361-394.
    [11]J. Cui and Y. Chisti, Polysaccharopeptides of Coriolus versicolor:physiological activity, uses, and production, Biotechnol. Adv.2003,21,109-122.
    [12]V. Ooi and F. Liu, Immunomodulation and anti-cancer activity of polysaccharide-protein complexes, Curr. Med. Chem.2000,7,715-729.
    [13]G. Chihara, Immunopharmacology of lentinan, a polysaccharide isolated from Lentinus edodes:Its application as a host defense potentiator, Int. J. Ori. Med.1992,17,57-77.
    [14]H. Aoyagi, Y. lino, J. Kurebayashi, M. Maemura, T. Ishida, Y. Morishita and R. Horiuchi, Direct cytotoxic effects of biological response modifiers and combined effects with adriamycin in human breast cancer cell MCF-7,J. Jap. Soc. Cane. Therapy 1994,29,849-854.
    [15]Q. Yang, S. Jong, X. Li, J. Zhou, R. Chen, L. Xu and B. Xu, Antitumor and immunomodulating activities of the polysaccharide-peptide (PSP) of Coriolus versicolor,J. Immunol. Immunopharmacol. 1992,12,29-34.
    [16]T. Mizuno, Development of antitumor polysaccharides from mushroom fungi, Foods. Food. Ingred. J. Jpn.1996,167,69-85.
    [17]D. C. Montefiori, W.E. Robinson, A. Modliszewski, J. M. Rowland, S. S. Schuffman and W. M. Mitchell, Differential inhibition of HIV-1 cell binding and HIV-1-induced syncytium formation by low molecular weight sulphated polysaccharides,J. Antimierob. Chemother.1990,25,313-318.
    [18]P. C. K. Cheung and M. Y. Lee, Fractionation and Characterization of Mushroom Dietary Fiber (Nonstarch Polysaccharides) as Potential Nutraceuticals from Sclerotia of Pleurotus tuber-regium (Fries) Singer,J. Agric. Food. Chem.2000,48,3148-3151.
    [19]M. K. Lu, J. J. Cheng, C. Y. Lin and C. C. Chang, Purification, structural elucidation, and anti-inflammatory effect of a water-soluble 1,6-branched 1,3-alpha-D-galactan from cultured mycelia of Poria cocos, Food. Chem.2010,118,349-356.
    [20]G. Schinella, H. Tournier, J. Prieto, P. M. De Buschiazzo and J. Rios, Antioxidant activity of anti-inflammatory plant extracts, Life Sci.2002,70,1023-1033.
    [21]D. Y. Wang, Z. H. Guo, X. Ma, Y. L. Hu, X. Y. Huang, Y. P. Fan, S. J. Yang and L. W. Guo, Effects of sulfated lentinan on cellular infectivity of avian infectious bronchitis virus, Carbohydr. Polym.2010, 79,461-465.
    [22]C. Lai, K. Wong and P. Cheung, Antiproliferative Effects of Sclerotial Polysaccharides from Polyporus rhinocerus Cooke (Aphyllophoromycetideae) on Different Kinds of Leukemic Cells, Int.J. Med. Mushrooms.2008,10,255-264.
    [23]G. Brown, P. Taylor, D. Reid, J. Willment, D. Williams, L. Martinez-Pomares, S. Wong and S. Gordon, Dectin-1 is a major β-glucans receptor on macrophages, J. Exp.Med.2002,196,407-412.
    [24]J. Schorey and C. Lawrence, The pattern recognition receptor Dectin-1:from fungi to mycobacteria, Curr. Drug. Targets 2008,9,123-129.
    [25]G. Brown and S. Gordon, Immune recognition:a new receptor for β-glucans, Nature.2001,413, 36-37.
    [26]Y. Kashiwagi, T. Norisuye and H. Fujita, Triple helix of Schizophyllum commune polysaccharide in dilute solution.4. Light scattering and viscosity in dilute aqueous sodium hydroxide, Macromolecules.1981,14,1220-1225.
    [27]C. Zhuang, T. Mizuno, A. Shimada, H. Ito, C. Suzuki, Y. Mayuzumi, H. Okamoto, Y. Ma and J. Li, Antitumor protein-containing polysaccharides from a Chinese mushroom Fengweigu or Houbitake, Pleurotus sajor-caju(Fr.) sings, Biosci. Biotech. Bioch.1993,57,901-906.
    [28]J. A. Bohn and J. N. BeMiller, (1→3)-β-D-Glucans as biological response modifiers:a review of structure-functional activity relationships, Carbohydr. Polym.1995,28,3-14.
    [29]T. Kiho, I. Yoshida, K. Nagai, S. Ukai and C. Hara, (1→3)-[alpha]--glucan from an alkaline extract of Agrocybe cylindracea, and antitumor activity of its O-(carboxymethyl)ated derivatives, Carbohydr. Res.1989,189,273-279.
    [30]Z. Konopski, L. T. Rasmussen, R. Seljelid and T. Eskeland, Phagocytosis of β-1,3-D-Glucan-Derivatized Microbeads by Mouse Peritoneal Macrophages Involves Three Different Receptors, Scand. J. Immunol.1991,33,297-306.
    [31]M. R. Elstad, C. J. Parker, F. Cowley, L. A. Wilcox, T. M. McIntyre, S. M. Prescott and G. A. Zimmerman, CD11b/CD18 integrin and a beta-glucan receptor act in concert to induce the synthesis of platelet-activating factor by monocytes, J. Immunol.1994,152,220-230.
    [32]Z. Konopski, B. Smedsr(?)d, R. Seljelid and T. Eskeland, A novel immunomodulator soluble aminated β-1,3-D-glucan:binding characteristics to mouse peritoneal macrophages, BBA. Mol. Cell. Res.1994,1221,61-65.
    [33]H. Tapper and R. Sundler, Glucan receptor and zymosan-induced lysosomal enzyme secretion in macrophages, Biochem. J.1995,306,829.
    [34]G. Ross, J. Cain and P. Lachmann, Membrane complement receptor type three (CR3) has lectin-like properties analogous to bovine conglutinin as functions as a receptor for zymosan and rabbit erythrocytes as well as a receptor for iC3b, J. Immunol 1985,134,3307-3315.
    [35]X. Duan, M. Ackerly, E. Vivier and P. Anderson, Evidence for involvement of β-glucan-binding cell surface lectins in human natural killer cell function, Cell. Immunol.1994,157,393-402.
    [36]M. Numata, Creation of unique supramolecular nanoarchitectures utilizing natural polysaccharide as a one-dimensional host, J. Incl. Phenom. Macro. Chem.2010,68,25-47.
    [37]K. Miyoshi, K. Uezu, K. Sakurai and S. Shinkai, Proposal of a new hydrogen-bonding form to maintain curdlan triple helix, Chem. Biodiver.2004,1,916-924.
    [38]E. Atkins and K. Parker, Cyclic Triad of Hydrogen Bonds in a Helical Polymer, Nature.1968,220, 784-785.
    [39]L. Zhang, X. L. Li, X. J. Xu and F. B. Zeng, Correlation between antitumor activity, molecular weight, and conformation of lentinan, Carbohydr. Res.2005,340,1515-1521.
    [40]U. Surenjav, L. Zhang, X. Xu, X. Zhang and F. Zeng, Effects of molecular structure on antitumor activities of (1--> 3)-[beta]-d-glucans from different Lentinus Edodes, Carbohydr. Polym.2006,63, 97-104.
    [41]Q. Huang, L. Zhang, P. C. K. Cheung and X. Tan, Evaluation of sulfated a-glucans from Poria cocos mycelia as potential antitumor agent, Carbohydr. Polym.2006,64,337-344.
    [42]Q. Huang, Y. Jin, L. Zhang, P. Cheung and J. Kennedy, Structure, molecular size and antitumor activities of polysaccharides from Poria cocos mycelia produced in fermenter, Carbohydr. Polym.2007, 70,324-333.
    [43]X. Chen, X. Xu, L. Zhang and F. Zeng, Chain conformation and anti-tumor activities of phosphorylated (1-->3)-[beta]-d-glucan from Poria cocos, Carbohydr. Polym.2009,78,581-587.
    [44]J. Wang, L. Zhang, Y. Yu and P. Cheung, Enhancement of Antitumor Activities in Sulfated and Carboxymethylated Polysaccharides of Ganoderma lucidum,J. Agric. Food Chem.2009,57, 10565-10572.
    [45]G. Brown and S. Gordon, Immune recognition of fungal (3-glucans, Cell. Microbiol.2005,7, 471-479.
    [46]Y. Tao, L. Zhang, L. Han, F. Zeng and K. Ding, Studies on antitumor activity of a water-soluble branched polysaccharide and its sulfated derivatives, Acta. Polym. Sin.2009,9,852-859.
    [47]Y. Tao, L. Zhang and P. Cheung, Physicochemical properties and antitumor activities of water-soluble native and sulfated hyperbranched mushroom polysaccharides, Carbohydr. Res.2006, 341,2261-2269.
    [48]S. Wong, K. Wong, L. Chiu and P. Cheung, Non-starch polysaccharides from different developmental stages of Pleurotus tuber-regium inhibited the growth of human acute promyelocytic leukemia HL-60 cells by cell-cycle arrest and/or apoptotic induction, Carbohydr. Polym.2007,68, 206-217.
    [49]K. Sakurai, M. Mizu and S. Shinkai, Polysaccharide- Polynucleotide Complexes.2. Complementary Polynucleotide Mimic Behavior of the Natural Polysaccharide Schizophyllan in the Macromolecular Complex with Single-Stranded RNA and DNA, Biomacromolecules 2001,2,641-650.
    150] Y. Takeda, N. Shimada, K. Kaneko, S. Shinkai and K. Sakurai, Ternary Complex Consisting of DNA, Polycation, and a Natural Polysaccharide of Schizophyllan to Induce Cellular Uptake by Antigen Presenting Cells, Biomacromolecules.2007,8,1178-1186.
    [51]A.-H. Bae, S.-W. Lee, M. Ikeda, M. Sano, S. Shinkai and K. Sakurai, Rod-like architecture and helicity of the poly(C)/schizophyllan complex observed by AFM and SEM, Carbohydr. Res.2004,339, 251-258.
    [52]Y. Tao and L. Zhang, Determination of molecular size and shape of hyperbranched polysaccharide in solution, Biopolymers.2006,83,414-423.
    [53]Y. Z. Tao, L. Zhang, F. Yan and X. J. Wu, Chain conformation of water-insoluble hyperbranched polysaccharide from fungus, Biomacromolecules.2007,8,2321-2328.
    [54]T. Kato, T. Okamoto, T. Tokuya and A. Takahashi, Solution properties and chain flexibility of pullulan in aqueous solution, Biopolymers.1982,21,1623-1633.
    [55]X. Chen, X. Xu, L. Zhang and J. Kennedy, Flexible chain conformation of (1--3)-[beta]-d-glucan from Poria cocos sclerotium in NaOH/urea aqueous solution, Carbohydr. Polym. 2009,75,586-591.
    [56]Q. Huang and L. Zhang, Solution properties of (1-3)-a-D-glucan and its sulfated derivative from Poria cocos mycelia via fermentation tank, Biopolymers.2005,79,28-38.
    [57]W. W. Everett and J. F. Foster, The Conformation of Amylose in Solution 1,2,J. Am. Chem. Soc. 1959,81,3464-3469.
    [58]M. Zhang, L. Zhang and P. Cheung, Molecular mass and chain conformation of carboxymethylated derivatives of a-glucan from sclerotia of Pleurotus tuber-regium, Biopolymers. 2003,68,150-159.
    [59]M. Dentini, V. Crescenzi, M. Fidanza and T. Coviello, The aggregation and conformational states in aqueous solution of a succinoglycan polysaccharide, Macromolecules.1989,22,954-959.
    [60]S. Kido, T. Nakanishi, T. Norisuye, I. Kaneda and T. Yanaki, Ordered Conformation of Succinoglycan in Aqueous Sodium Chloride, Biomacromolecules.2001,2,952-957.
    [61]G. Paradossi and D. Brant, Light scattering study of a series of xanthan fractions in aqueous solution, Macromolecules.1982,15,874-879.
    [62]I. Kaneda, A. Kobayashi, K. Miyazaw and T. Yanaki, Double helix of Agrobacterium tumefaciens succinoglycan in dilute solution* 1, Polymer.2002,43,1301-1305.
    [63]T. Itou, A. Teramoto, T. Matsuo and H. Suga, Ordered structure in aqueous polysaccharide.5. Cooperative order-disorder transition in aqueous schizophyllan, Macromolecules 1986,19,1234-1240.
    [64]T. Yanaki and T. Norisuye, Triple helix and random coil of scleroglucan in dilute solution, Polym. J.1983,15,389-396.
    [65]T. Coviello, H. Maeda, Y. Yuguchi, H. Urakawa, K. Kajiwara, M. Dentini and V. Crescenzi, Conformational Characteristics of Oxidized Scleroglucan, Macromolecules.1998,31,1602-1607.
    [66]H. Sait, Y. Yoshioka, M. Yokoi and J. Yamada, Distinct gelation mechanism between linear and branched (liu 3)-(?)A-D-glucans as revealed by high-resolution solid-state 13C NMR, Biopolymers. 1990,29,1689-1698.
    [67]M. Gawronski, G. Aguirre, H. Conrad, T. Springer and K. P. Stahmann, Molecular Structure and Precipitates of a Rodlike Polysaccharide in Aqueous Solution by SAXS Experiments, Macromolecules. 1996,29,1516-1520.
    [68]Y. Deslandes, R. H. Marchessault and A. Sarko, Triple-Helical Structure of (1→3)-β-D-Glucan, Macromolecules.1980,13,1466-1471.
    [69]L. Zhang, C. Wang, S. Cui, Z. Wang and X. Zhang, Single-Molecule Force Spectroscopy on Curdlan:Unwinding Helical Structures and Random Coils, Nano. Lett.2003,3,1119-1124.
    [70]T. Norisuye, T. Yanaki and H. Fujita, Triple helix of a Schizophyllum commune polysaccharide in aqueous solution, J. Polym. Sci. Polym. Phys. Edi.1980,18,547-558.
    [71]T. Yanaki, T. Norisuye and H. Fujita, Triple helix of Schizophyllum commune polysaccharide in dilute solution.3. Hydrodynamic properties in water, Macromolecules.1980,13,1462-1466.
    [72]L. Zhang, X. Zhang, Q. Zhou, P. Zhang, M. Zhang and X. Li, Triple Helix of β-D-Glucan from Lentinus Edodes in 0.5 M NaCl Aqueous Solution Characterized by Light Scattering, Polym. J.2001, 33,317-321.
    [73]L. Zhang, X. Li, Q. Zhou, X. Zhang and R. Chen, Transition from Triple Helix to Coil of Lentinan in Solution Measured by SEC, Viscometry, and 13C NMR, Polym. J.2002,34,443-449.
    [74]X. Wang, X. Xu and L. Zhang, Thermally induced conformation transition of triple-helical lentinan in NaCl aqueous solution, J. Phys. Chem. B 2008,112,10343-10351.
    [75]X. Zhang, L. Zhang and X. Xu, Morphologies and conformation transition of lentinan in aqueous NaOH solution, Biopolymers.2004,75,187-195.
    [76]X. Xu, X. Zhang, L. Zhang and C. Wu, Collapse and association of denatured lentinan in water/dimethlysulfoxide solutions, Biomacromolecules.2004,5,1893-1898.
    [77]T. Bluhm, Y. Deslandes, R. Marchessault, S. Perez and M. Rinaudo, Solid-state and solution conformation of scleroglucan, Carbohydr. Res.1982,100,117-130.
    [78]T. Sato, T. Norisuye and H. Fujita, Double-stranded helix of xanthan:dimensional and hydrodynamic properties in 0.1 M aqueous sodium chloride, Macromolecules.1984,17,2696-2700.
    [79]K. Okuyama, S. Arnott, R. Moorhouse, D. Walkinshaw M, T. Atkins E. D and C. H. Wolf-Ullish in Fiber Diffraction Studies of Bacterial Polysaccharides, Vol.141 AMERICAN CHEMICAL SOCIETY, 1980, pp.411-427.
    [80]Y. Zhang, S. Li and L. Zhang, Aggregation Behavior of Triple Helical Polysaccharide with Low Molecular Weight in Diluted Aqueous Solution,J. Phys. Chem. B.2010,114,4945-4954.
    [81]Q. Ding, L. Zhang and C. Wu, Formation and structure of pachyman aggregates in dimethyl sulfoxide containing water,J. Polym. Sci. Part. B. Polym. Phys.1999,37,3201-3207.
    [82]M. Gawronski, J. T. Park, A. S. Magee and H. Conrad, Microfibrillar structure of PGG-Glucan in aqueous solution as triple-helix aggregates by small angle x-ray scattering, Biopolymers.1999,50, 569-578.
    [83]M. Numata, M. Asai, K. Kaneko, A. Bae, T. Hasegawa, K. Sakurai and S. Shinkai, Inclusion of cut and as-grown single-walled carbon nanotubes in the helical superstructure of schizophyllan and curdlan (β-1,3-glucans),J. Am. Chem. Soc.2005,127,5875-5884.
    [84]M. Numata and S. Shinkai in Self-Assembled Polysaccharide Nanotubes Generated from β-1,3-Glucan Polysaccharides, Vol.220 (Ed. T. Shimizu), Springer Berlin Heidelberg,2008, pp. 65-121.
    [85]M. Sato and M. Sano, van der Waals layer-by-layer construction of a carbon nanotube 2D network, Langmui.r 2005,21,11490-11494.
    [86]M. K. Okajima, D. Kaneko, T. Mitsumata, T. Kaneko and J. Watanabe, Cyanobacteria That Produce Megamolecules with Efficient Self-Orientations, Macromolecules.2009,42,3057-3062.
    [871 M. Okajima-Kaneko, Proceedings of SPIE 2007, pp.658711-658718.
    [88]T. Itou and A. Teramoto, Triphase equilibrium in aqueous solutions of the rodlike polysaccharide schizophyllan, Macromolecules.1984,17,1419-1420.
    [89]Y. Fang, M. Takemasa, K. Katsuta and K. Nishinari, Rheology of schizophyllan solutions in isotropic and anisotropic phase regions,J. Rheol.2004,48,1147-1166.
    [90]I. Lee and K. Akiyoshi, Single molecular mechanics of a cholesterol-bearing pullulan nanogel at the hydrophobic interfaces, Biomaterials.2004,25,2911-2918.
    [91]D. Lu, X. Wen, J. Liang, Z. Gu, X. Zhang and Y. Fan, A pH-sensitive nano drug delivery system derived from pullulan/doxorubicin conjugate,J. Biomed. Mater. Res. Part B:Appl. Biomaterials.2009, 89B,177-183.
    [92]K. Kuroda, K. Fujimoto, J. Sunamoto and K. Akiyoshi, Hierarchical Self-Assembly of Hydrophobically Modified Pullulan in Water:Gelation by Networks of Nanoparticles, Langmuir.2002, 18,3780-3786.
    [93]B. Bae and K. Na, Self-quenching polysaccharide-based nanogels of pullulan/folate-photosensitizer conjugates for photodynamic therapy, Biomaterials.2010,31, 6325-6335.
    [94]K. Akiyoshi, E.-C. Kang, S. Kurumada, J. Sunamoto, T. Principi and F. M. Winnik, Controlled Association of Amphiphilic Polymers in Water:Thermosensitive Nanoparticles Formed by Self-Assembly of Hydrophobically Modified Pullulans and Poly(N-isopropylacrylamides), Macromolecules.2000,33,3244-3249.
    [95]M. Rinaudo, Non-Covalent Interactions in Polysaccharide Systems, Macromol. Biosci.2006,6, 590-610.
    [96]张俐娜,天然高分子科学与材料,科学出版社,2007.
    [97]T. Okobira, K. Miyoshi, K. Uezu, K. Sakurai and S. Shinkai, Molecular Dynamics Studies of Side Chain Effect on the β-1,3-d-Glucan Triple Helix in Aqueous Solution, Biomacromolecules.2008,9, 783-788.
    [98]张俐娜,薛奇,莫志深,金熹高,高分子物理近代研究方法,武汉大学出版社,武汉,2003年7月.
    [99]R. Murphy, Static and dynamic light scattering of biological macromolecules:what can we learn?, Curr. Opin. Biotechnol.1997,8,25-30.
    [100]Z. Ma, J. Wang and L. Zhang, Structure and chain conformation of (?)A-glucan isolated from Auricularia auricula-judae, Biopolymers.2008,89,614-622.
    [101]L. Zhang, W. Liu, T. Norisuye and H. Fujita, Double-stranded helix of xanthan:Rigidity in 0.01 M aqueous sodium chloride containing 0.01 N hydrochloric acid, Biopolymers.1987,26,333-341.
    [102]H. Murakami, T. Norisuye and H. Fujita, Dimensional and Hydrodynamic Properties of Poly (hexyl isocyanate) in Hexane, Macromolecule.s 1980,13,345-352.
    [103]C. loan, T. Aberle and W. Burchard, Structure Properties of Dextran.2. Dilute Solution, Macromolecules.2000,33,5730-5739.
    [104]B. Falch, A. Elgsaeter and B. Stokke, Exploring the (1-3)- α-D-glucan conformational phase diagrams to optimize the linear to macrocycle conversion of the triple-helical polysaccharide scleroglucan, Biopolymers.1999,50,496-512.
    [105]M. Sletmoen, B. Christensen and B. Stokke, Probing macromolecular architectures of nanosized cyclic structures of (1--> 3)-[beta]-d-glucans by AFM and SEC-MALLS, Carbohydr. Res.2005,340, 971-979.
    [106]M. Sletmoen, E. Geissler and B. Stokke, Determination of molecular parameters of linear and circular scleroglucan coexisting in ternary mixtures using light scattering, Biomacromolecules.2006,7, 858-865.
    [107]P. J. Flory in Vol. Cornel University Press, Ithaca, NY,1953.
    [108]Y. Matsuda, Y. Biyajima and T. Sato, Thermal Denaturation, Renaturation, and Aggregation of a Double-Helical Polysaccharide Xanthan in Aqueous Solution, Polym. J.2009,41,526-532.
    [109]T. Nakanishi and T. Norisuye, Thermally Induced Conformation Change of Succinoglycan in Aqueous Sodium Chloride, Biomacromolecules.2003,4,736-742.
    [110]M. Huggins, The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration, J. Am. Chem. Soc.1942,64,2716-2718.
    [111]E. Kraemer and W. Lansig, The Molecular Weights of Cellulose and Cellulose Derivates, J. Phys. Chem 1935,39,153-168.
    [112]G. V. Schulz and F. Blaschke, Addendum to the work:The stimulation of polymerization reactions by free radicals, J. Prakt. Chem.1941,158,130-135.
    [113]程镕时,粘度数据的外推和从一个浓度的溶液粘度计算特性粘数高分子通讯1960,4,159-163.
    [114]R. Fuoss and U. Strauss, Polyelectrolytes. Ⅱ. Poly-4-vinylpyridonium chloride and poly-4-vinyl-Nn-butylpyridonium bromide,J.Polym. Sci.1948,3,246-263.
    [115]M. Beer, P. Wood and J. Weisz, A simple and rapid method for evaluation of Mark-Houwink-Sakurada constants of linear random coil polysaccharides using molecular weight and intrinsic viscosity determined by high performance size exclusion chromatography:application to guar galactomannan, Carbohydr. Polym.1999,39,377-380.
    [116]J. Thompson, H. Hansma, P. Hansma and K. Plaxco, The backbone conformational entropy of protein folding:experimental measures from atomic force microscopy,J. Mol. Biol.2002,322, 645-652.
    [117]R. Sha, F. Liu, D. Millar and N. Seeman, Atomic force microscopy of parallel DNA branched junction arrays, Chem. Biol.2000,7,743-751.
    [118]P. Marszalek, H. Li and J. Fernandez, Fingerprinting polysaccharides with single-molecule atomic force microscopy, Nat. Biotechnol.2001,19,258-262.
    [119]T. McIntire, R. Penner and D. Brant, Observations of a circular, triple-helical polysaccharide using noncontact atomic force microscopy, Macromolecules.1995,28,6375-6377.
    [120]T. Mclntire and D. Brant, Imaging of individual biopolymers and supramolecular assemblies using noncontact atomic force microscopy, Biopolymers.1997,42,133-146.
    [121]T. McIntire and D. Brant, Observations of the (1-3)-α-D-glucan linear triple helix to macrocycle interconversion using noncontact atomic force microscopy,J. Am. Cham. Soc.1998,120,6909-6919.
    [122]H. Hansma, D. Laney, M. Bezanilla, R. Sinsheimer and P. Hansma, Applications for atomic force microscopy of DNA, Biophys.J.1995,68,1672-1677.
    [123]K. Sakurai, K. Uezu, M. Numata, T. Hasegawa, C. Li, K. Kaneko and S. Shinkai, beta-1,3-glucan polysaccharides as novel one-dimensional hosts for DNA/RNA, conjugated polymers and nanoparticles, Chem. Commun.2005,35,4383-4398.
    [124]A. Gunning, A. Kirby, M. Ridout, G. Brownsey and V. Morris, Investigation of gellan networks and gels by atomic force microscopy, Macromolecules.1996,29,6791-6796.
    [1251 A. Decho, Imaging an alginate polymer gel matrix using atomic force microscopy, Carbohydr. Res.1999,315,330-333.
    [126]A. Round, A. MacDougall, S. Ring and V. Morris, Unexpected branching in pectin observed by atomic force microscopy, Carbohydr. Res.1997,303,251-253.
    [127]I. Capron, S. Alexandre and G. Muller, An atomic force microscopy study of the molecular organisation of xanthan, Polymer.1998,39,5725-5730.
    [128]G. Francius, D. Alsteens, V. Dupres, S. Lebeer, S. De Keersmaecker, J. Vanderleyden, H. J. Gruber and Y. F. Dufrene, Stretching polysaccharides on live cells using single molecule force spectroscopy, Nat. Protocols.2009,4,939-946.
    [129]P. Hinterdorfer and Y. Dufr¨°ne, Detection and localization of single molecular recognition events using atomic force microscopy, Nat. Meth.2006,3,347-355.
    [130]G. Francius, S. Lebeer, D. Alsteens, L. Wildling, H. Gruber, P. Hols, S. Keersmaecker, J. Vanderleyden and Y. Dufrene, Detection, localization, and conformational analysis of single polysaccharide molecules on live bacteria, ACS nano.2008,2,1921-1929.
    [131]H. Li, M. Rief, F. Oesterhelt and H. E. Gaub, Single-Molecule Force Spectroscopy on Xanthan by AFM, Adv. Mater.1998,10,316-319.
    [132]H. Li, M. Rief, F. Oesterhelt, H.E. Gaub, X. Zhang and J. Shen, Single-molecule force spectroscopy on polysaccharides by AFM nanomechanical fingerprint of α-(1,4)-linked polysaccharides, Chem. Phys. Lett.1999,305,197-201.
    [133]H.-J. Butt and M. Jaschke, Calculation of thermal noise in atomic force microscopy, Nanotechnology 1999,6,1.
    [134]T. Hugel and M. Seitz, The study of molecular interactions by AFM force spectroscopy, Macromol. Rapid. Commun.2001,22,989-1016.
    [135]X. Wang, Y. Zhang, L. Zhang and Y. Ding, Multiple Conformation Transitions of Triple Helical Lentinan in DMSO/Water by Microcalorimetry, J. Phys. Chem. B.2009,113,9915-9923.
    [136]E. I. Tiktopulo, V. E. Bychkova, J. Ricka and O. B. Ptitsyn, Cooperativity of the Coil-Globule Transition in a Homopolymer:Microcalorimetric Study of Poly(N-isopropylacrylamide), Macromolecules.1994,27,2879-2882.
    [137]E. I. Tiktopulo, V. N. Uversky, V. B. Lushchik, S. I. Klenin, V. E. Bychkova and O. B. Ptitsyn, "Domain" Coil-Globule Transition in Homopolymers, Macromolecules.1995,28,7519-7524.
    [138]M. Numata, K. Sugikawa, K. Kaneko and S. Shinkai, Creation of Hierarchical Carbon Nanotube Assemblies through Alternative Packing of Complementary Semi-Artificial beta-1,3-Glucan/Carbon Nanotube Composites, Chem-Eur. J.2008,14,2398-2404.
    [139]S. Szela, P. Avtges, R. Valluzzi, S. Winkler, D. Wilson, D. Kirschner and D. Kaplan, Reduction-Oxidation Control of β-Sheet Assembly in Genetically Engineered Silk, Biomacromolecules.2000,1, 534-542.
    [140]K. Sakurai and S. Shinkai, Molecular recognition of adenine, cytosine, and uracil in a single-stranded RNA by a natural polysaccharide:Schizophyllan, J. Am. Chem. Soc.2000,122, 4520-4521.
    [141]O. Glatter and O. Kratky, Small angle X-ray scattering, Academic Press London,1982.
    [142]Z. Y. Xia, H. J. Sue and T. P. Rieker, Morphological Evolution of Poly(ethylene terephthalate) during Equal Channel Angular Extrusion Process, Macromolecules.2000,33,8746-8755.
    [143]K.-P. Stahmann, N. Monschau, H. Sahm, A. Koschel, M. Gawronski, F. Kopp, H. Conrad and T. Springer, Structural properties of native and sonicated cinerean, a beta-(1-->3) (1-->6)-D-glucan produced by Botrytis cinerea., Carbohydr. Res.1995,266,115.
    [144]A. Travan, C. Pelillo, I. Donati, E. Marsich, M. Benincasa, T. Scarpa, S. Semeraro, G. Turco, R. Gennaro and S. Paoletti, Non-cytotoxic Silver Nanoparticle-Polysaccharide Nanocomposites with Antimicrobial Activity, Biomacromolecules.2009,10,1429-1435.
    [145]P. Raveendran, J. Fu and S. L. Wallen, Completely "Green" Synthesis and Stabilization of Metal Nanoparticles, J. Am. Chem. Soc.2003,125,13940-13941.
    [146]M. M. Kemp, A. Kumar, S. Mousa, E. Dyskin, M. Yalcin, P. Ajayan, R. J. Linhardt and S. A. Mousa, Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties, Nanotechnology.2009,20,455104.
    [147]V. L. Budarin, J. H. Clark, R. Luque, D. J. Macquarrie and R. J. White, Palladium nanoparticles on polysaccharide-derived mesoporous materials and their catalytic performance in C-C coupling reactions, Green. Chem.2008,10,382-387.
    [148]W. Wu, M. Aiello, T. Zhou, A. Berliner, P. Banerjee and S. Zhou, In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, and drug delivery, Biomaterials.2010,31,3023-3031.
    [149]M. Numata and S. Shinkai,'Supramolecular wrapping chemistry'by helix-forming polysaccharides:a powerful strategy for generating diverse polymeric nano-architectures, Chem. Commun.2011,47,1961-1975.
    [150]K. Gessler, I. Uson, T. Takaha, N. Krauss, S. M. Smith, S. Okada, G. M. Sheldrick and W. Saenger, V-Amylose at atomic resolution:X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose), P. Natl. Acad. Sci.1999,96,4246-4251.
    [151]M. J. Frampton, T. D. Claridge, G. Latini, S. Brovelli, F. Cacialli and H. L. Anderson, Amylose-wrapped luminescent conjugated polymers, Chem. Commun.2008,2797-2799.
    [152]A. Star, D. W. Steuerman, J. R. Heath and J. F. Stoddart, Starched Carbon Nanotubes, Angew. Chem. Int. Ed.2002,41,2508-2512.
    [153]O.-K. Kim, J. Je, J. W. Baldwin, S. Kooi, P. H. Pehrsson and L. J. Buckley, Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose, J. Am. Chem. Soc. 2003,125,4426-4427.
    [154]X. Zhang, L. Meng and Q. Lu, Cell Behaviors on Polysaccharide-Wrapped Single-Wall Carbon Nanotubes:A Quantitative Study of the Surface Properties of Biomimetic Nanofibrous Scaffolds, ACS. Nano.2009,3,3200-3206.
    [155]J. Wang, Z. Dong, J. Huang, J. Li, K. Liu, J. Jin and J. Ma, Synthesis of Ag nanoparticles decorated multiwalled carbon nanotubes using dialdehyde starch as complexant and reductant for antibacterial purposes, RSC. Advances.2013,3,918-922.
    [156]K. S. Iyer, M. Saunders, T. Becker, C. W. Evans and C. L. Raston, Nanorings of Self-Assembled Fullerene C70 as Templating Nanoreactors,J. Am. Chem. Soc.2009,131,16338-16339.
    [157]M. Ikeda, T. Hasegawa, M. Numata, K. Sugikawa, K. Sakurai, M. Fujiki and S. Shinkai, Instantaneous Inclusion of a Polynucleotide and Hydrophobic Guest Molecules into a Helical Core of Cationic β-1,3-Glucan Polysaccharide,J.Am. Chem. Soc.2007,129,3979-3988.
    [158]S. Malik, N. Fujita, M. Numata, K. Ogura and S. Shinkai, Creation of supramolecular assemblies from a dipolar dye molecule by the template effect of 1,3-glucan polysaccharide,J. Mater. Chem.2010, 20,9022-9024.
    [159]M. Numata, K. Kaneko, H. Tamiaki and S. Shinkai, "Supramolecular" Amphiphiles Created by Wrapping Poly(styrene) with the Helix-Forming β-1,3-Glucan Polysaccharide, Chem. Eur. J.2009,15, 12338-12345.
    [160]K. Sakurai, K. Uezu, M. Numata, T. Hasegawa, C. Li, K. Kaneko and S. Shinkai, β-1,3-Glucan polysaccharides as novel one-dimensional hosts for DNA/RNA, conjugated polymers and nanoparticles, Chem. Commun.2005,4383-4398.
    [161]T. Shiraki, A. Dawn, T. N. L. Le, Y. Tsuchiya, S.-i. Tamaru and S. Shinkai, Heat and light dual switching of a single-walled carbon nanotube/thermo-responsive helical polysaccharide complex:a new responsive system applicable to photodynamic therapy, Chem. Commun.2011,47,7065-7067.
    [162]K. Sugikawa, M. Numata, K. Kaneko, K. Sada and S. Shinkai, Alternate Layer-by-Layer Adsorption of Single- and Double-Walled Carbon Nanotubes Wrapped by Functionalized β-1,3-Glucan Polysaccharides, Langmuir.2008,24,13270-13275.
    [163]K. Sugikawa, T. Shiraki, Y. Tsuchiya, S. Haraguchi, K. Sada and S. Shinkai, Facile fabrication of CD-active 1-D polypyrrole by the templating effect of a helix-forming anionic polysaccharide, Supramol. Chem.2011,23,239-243.
    [164]Y. Tsuchiya, T. Komori, M. Hirano, T. Shiraki, A. Kakugo, T. Ide, J. P. Gong, S. Yamada, T. Yanagida and S. Shinkai, A Polysaccharide-Based Container Transportation System Powered by Molecular Motors, Angew. Chem.2010,122,736-739.
    [165]L. N. Hassani, F. Hendra and K. Bouchemal, Auto-associative amphiphilic polysaccharides as drug delivery systems, Drug. Discov. Today.2012,17,608-614.
    [166]Z. Liu, Y. Jiao, Y. Wang, C. Zhou and Z. Zhang, Polysaccharides-based nanoparticles as drug delivery systems, Adv. Drug. Del. Rev.2008,60,1650-1662.
    [167]K. Y. Choi, H. Chung, K. H. Min, H. Y. Yoon, K. Kim, J.H. Park, I. C. Kwon and S. Y. Jeong, Self-assembled hyaluronic acid nanoparticles for active tumor targeting, Biomaterials.2010,31, 106-114.
    [168]K.-H. Liu, S.-Y. Chen, D.-M. Liu and T.-Y. Liu, Self-assembled hollow nanocapsule from amphiphatic carboxymethyl-hexanoyl chitosan as drug carrier, Macromolecules.2008,41,6511-6516.
    [169]E. Akiyama, N. Morimoto, P. Kujawa, Y. Ozawa, F. M. Winnik and K. Akiyoshi, Self-assembled nanogels of cholesteryl-modified polysaccharides:Effect of the polysaccharide structure on their association characteristics in the dilute and semidilute regimes, Biomacromolecules.2007,8, 2366-2373.
    [170]B.-c. Bae and K. Na, Self-quenching polysaccharide-based nanogels of pullulan/folate-photosensitizer conjugates for photodynamic therapy, Biomaterials.2010,31, 6325-6335.
    [171]W.-H. Chiang, Y.-J. Lan, Y.-C. Huang, Y.-W. Chen, Y.-F. Huang, S.-C. Lin, C.-S. Chern and H.-C. Chiu, Multi-scaled polymersomes from self-assembly of octadecanol-modified dextrans, Polymer.2012, 53,2233-2244.
    [172]L. Li, F.-p. Gao, H.-b. Tang, Y.-g. Bai, R.-f. Li, X.-m. Li, L.-r. Liu, Y.-s. Wang and Q.-q. Zhang, Self-assembled nanoparticles of cholesterol-conjugated carboxymethyl curdlan as a novel carrier of epirubicin, Nanotechnology.2010,21,265601.
    [173]N. Morimoto, S. Hirano, H. Takahashi, S. Loethen, D. H. Thompson and K. Akiyoshi, Self-assembled pH-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle, Biomacromolecules.2012,14,56-63.
    [174]P.-H. Elchinger, P.-A. Faugeras, B. Boens, F. Brouillette, D. Montplaisir, R. Zerrouki and R. Lucas, Polysaccharides:The "Click" Chemistry Impact, Polymers.2011,3,1607-1651.
    [175]J. Jirawutthiwongchai, A. Krause, G. Draeger and S. Chirachanchai, Chitosan-Oxanorbornadiene: A Convenient Chitosan Derivative for Click Chemistry without Metal Catalyst Problem, ACS. Macro. Lett 2013,2,177-180.
    [176]L. Zhang, J. Lin and S. Lin, Aggregate Morphologies of Amphiphilic Graft Copolymers in Dilute Solution Studied by Self-Consistent Field Theory, J. Phys. Chem. B 2007,111,9209-9217.
    [177]N. Morimoto, R. Obeid, S. Yamane, F. M. Winnik and K. Akiyoshi, Composite nanomaterials by self-assembly and controlled crystallization of poly (2-isopropyl-2-oxazoline)-grafted polysaccharides, Soft. Mater.2009,5,1597-1600.
    [178]H. T. T. Duong, F. Hughes, S. Sagnella, M. Kavallaris, A. Macmillan, R. Whan, J. Hook, T. P. Davis and C. Boyer, Functionalizing Biodegradable Dextran Scaffolds Using Living Radical Polymerization:New Versatile Nanoparticles for the Delivery of Therapeutic Molecules, Mol. Pharm. 2012,9,3046-3061.
    [179]M. Bertoldo, G. Zampano, F. L. Terra, V. Villari and V. Castelvetro, Amphiphilic Amylose-g-poly(meth)acrylate Copolymers through "Click" onto Grafting Method, Biomacromolecules.2010,12,388-398.
    [180]N. Morimoto, X.-P. Qiu, F. o. M. Winnik and K. Akiyoshi, Dual Stimuli-Responsive Nanogels by Self-Assembly of Polysaccharides Lightly Grafted with Thiol-Terminated Poly(N-isopropylacrylamide) Chains, Macromolecules.2008,41,5985-5987.
    [181]C. Schatz and S. Lecommandoux, Polysaccharide-Containing Block Copolymers:Synthesis, Properties and Applications of an Emerging Family of Glycoconjugates, Macromol. Rapid Commun. 2010,31,1664-1684.
    [182]C. Schatz, S. Louguet, J.-F. Le Meins and S. Lecommandoux, Polysaccharide-block-polypeptide Copolymer Vesicles:Towards Synthetic Viral Capsids, Angew. Chem. Int. Ed.2009,48,2572-2575.
    [183]K. K. Upadhyay, J. F. L. Meins, A. Misra, P. Voisin, V. Bouchaud, E. Ibarboure, C. Schatz and S. Lecommandoux, Biomimetic Doxorubicin Loaded Polymersomes from Hyaluronan-block-Poly(y-benzyl glutamate) Copolymers, Biomacromolecules.2009,10,2802-2808.
    [184]K. K. Upadhyay, A. N. Bhatt, A. K. Mishra, B. S. Dwarakanath, S. Jain, C. Schatz, J.-F. Le Meins, A. Farooque, G. Chandraiah and A. K. Jain, The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly (y-benzyl 1-glutamate)-b-hyaluronan polymersomes, Biomaterials.2010,31, 2882-2892.
    [185]K. K. Upadhyay, A. K. Mishra, K. Chuttani, A. Kaul, C. Schatz, J.-F. Le Meins, A. Misra and S. Lecommandoux, The in vivo behavior and antitumor activity of doxorubicin-loaded poly (y-benzyl 1-glutamate)- block-hyaluronan polymersomes in Ehrlich ascites tumor-bearing BalB/c mice, Nanomedicine:Nanotechnology, Biol.Med.2012,8,71-80.
    [186]C. Houga, J.-F. Le Meins, R. Borsali, D. Taton and Y. Gnanou, Synthesis of ATRP-induced dextran-b-polystyrene diblock copolymers and preliminary investigation of their self-assembly in water, Chem. Commun.2007,3063-3065.
    [187]C. m. Houga, J. Giermanska, S. b. Lecommandoux, R. Borsali, D. Taton, Y. Gnanou and J.-F. o. Le Meins, Micelles and Polymersomes Obtained by Self-Assembly of Dextran and Polystyrene Based Block Copolymers, Biomacromolecules.2008,10,32-40.
    [188]R. Novoa-Carballal and A. H. Miiller, Synthesis of polysaccharide-b-PEG block copolymers by oxime click, Chem. Commun.2012,48,3781-3783.
    [189) R. Novoa-Carballal, A. Pfaff and A. H. Muller, Interpolyelectrolyte complexes with a polysaccharide corona from dextran-block-PDMAEMA diblock copolymers, Polym. Chem.2013,4, 2278-2285.
    [190]K. Akiyoshi, M. Kohara, K. Ito, S. Kitamura and J. Sunamoto, Enzymatic synthesis and characterization of amphiphilic block copolymers of poly(ethylene oxide) and amylose, Macromol. Rapid. Commun.1999,20,112-115.
    [191]K. Akiyoshi, N. Maruichi, M. Kohara and S. Kitamura, Amphiphilic block copolymer with a molecular recognition site:induction of a novel binding characteristic of amylose by self-assembly of poly (ethylene oxide)-block-amylose in chloroform, Biomacromolecules.2002,3,280-283.
    [192]K. Loos and A.H. E. Miiller, New Routes to the Synthesis of Amylose-block-polystyrene Rod Coil Block Copolymers, Biomacromolecules.2002,3,368-373.
    [193]K. Loos, A. Boker, H. Zettl, M. Zhang, G. Krausch and A.H. E. Muller, Micellar Aggregates of Amylose-block-polystyrene Rod-Coil Block Copolymers in Water and THF, Macromolecules.2005, 38,873-879.
    [1]T. Sasaki and N. Takasuka, Further study of the structure of lentinan, an anti-tumor polysaccharide from Lentinus edodes, Carbohydr. Res.1976,47,99-104.
    [2]H. Saito, T. Ohki, N. Takasuka and T. Sasaki, A 13C NMR-Spectral study of a gel-forming, branched (1→ 3)-β-d-glucan,(lentinan) from Lentinus edodes and its acid-degraded fractions. Structure, and dependence of conformation on the molecular weight, Carbohydr. Res.1977,58,293-305.
    [3]G. Chihara, Y. Maeda, J. Hamuro, T. Sasaki and F. Fukuoka, Inhibition of Mouse Sarcoma 180 by Polysaccharides from Lentinus edodes (Berk.) Sing, Nature.1969,222,687-688.
    [4]G. Chihara, J. Hamuro, Y. Maeda, Y. Arai and F. Fukuoka, Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (Berk.) Sing.(an edible mushroom), Cancer. Research,1970,30,2776-2781.
    [5]Y. Zhang, S. Li, X. Wang, L. Zhang and P. C. K. Cheung, Advances in lentinan:Isolation, structure, chain conformation and bioactivities, Food. Hydrocolloid,2011,25,196-206.
    [6]O. Yoshida, H. Nakashima, T. Yoshida, Y. Kaneko, I. Yamamoto, K. Matsuzaki, T. Uryu and N. Yamamoto, Sulfation of the immunomodulating polysaccharide lentinan:a novel strategy for antivirals to human immunodeficiency virus (HIV), Biochem. Pharmacol.1988,37,2887-2891.
    [7]X. Xu, M. Yasuda, S. Nakamura-Tsuruta, M. Mizuno and H. Ashida, p-Glucan from Lentinus edodes Inhibits Nitric Oxide and Tumor Necrosis Factor-a Production and Phosphorylation of Mitogen-activated Protein Kinases in Lipopolysaccharide-stimulated Murine RAW 264.7 Macrophages, J. Biol. Chem.2012,287,871-878.
    [8]X. Xu, C. Pan, L. Zhang and H. Ashida, Immunomodulatory β-Glucan from Lentinus edodes Activates Mitogen-activated Protein Kinases and Nuclear Factor-κB in Murine RAW 264.7 Macrophages, J. Biol. Chem.2011,286,31194-31198.
    [9]L. Zhang, X. Li, Q. Zhou, X. Zhang and R. Chen, Transition from Triple Helix to Coil of Lentinan in Solution Measured by SEC, Viscometry, and 13C NMR, Polym. J.2002,34,443-449.
    [10]X. Xu, X. Zhang, L. Zhang and C. Wu, Collapse and association of denatured lentinan in water/dimethlysulfoxide solutions, Biomacromolecules.2004,5,1893-1898.
    [11]X. Wang, Y. Zhang, L. Zhang and Y. Ding, Multiple Conformation Transitions of Triple Helical Lentinan in DMSO/Water by Microcalorimetry,J. Phys. Chem. B.2009,113,9915-9923.
    [12]X. Zhang, L. Zhang and X. Xu, Morphologies and conformation transition of lentinan in aqueous NaOH solution, Biopolymers.2004,75,187-195.
    [13]X. Wang, X. Xu and L. Zhang, Thermally induced conformation transition of triple-helical lentinan in NaCl aqueous solution,J. Phys. Chem. B.2008,112,10343-10351.
    [14]L. Zhang, X. L. Li, X. J. Xu and F. B. Zeng, Correlation between antitumor activity, molecular weight, and conformation of lentinan, Carhohydr. Res.2005,340,1515-1521.
    [15]A. Yap and M. Ng, An improved method for the isolation of Lentinan from the edible and Medicinal Shiitake mushroom, Lentinus Edodes (Burk) Sing (Agaricomycetideae), Int. J. Medicinal Mushroom.2001,3,6-19.
    [16]P. W. Needs and R. R. Selvendran, Avoiding oxidative degradation during sodium hydroxide/methyl iodide-mediated carbohydrate methylation in dimethyl sulfoxide, Carbohydr. Res. 1993,245,1-10.
    [17]T. Kiho, M. Sakushima, S. Wang, K. Nagai and S. Ukai, Polysaccharides in fungi. ⅩⅩⅥ. Two branched (1----3)-beta-D-glucans from hot water extract of Yu 6r, Chem. Pharm.Bull.1991,39,798.
    [18]V. P. Panov and R. G. Zhbankov, NMR conformational analysis of saccharides and polysaccharides, J.Appl. Spectrosc.1973,18,809-822.
    [19].张俐娜,薛奇,莫志深,金熹高,高分子物理近代研究方法,武汉大学出版社,武汉,2003年7月.
    [20]M. Bohdanecky, New method for estimating the parameters of the wormlike chain model from the intrinsic viscosity of stiff-chain polymers, Macromolecules.1983,16,1483-1492.
    [21]H. Yamakawa and M. Fujii, Intrinsic viscosity of wormlike chains. Determination of the shift factor, Macromolecules.1974,7,128-135.
    [22]H. Yamakawa and T. Yoshizaki, Transport coefficients of helical wormlike chains.3. Intrinsic viscosity, Macromolecules.1980,13,633-643.
    [231 L. Zhang, W. Liu, T. Norisuye and H. Fujita, Double-stranded helix of xanthan:Rigidity in 0.01 M aqueous sodium chloride containing 0.01 N hydrochloric acid, Biopolymers.1987,26,333-341.
    [24]L. Zhang, X. Zhang, Q. Zhou, P. Zhang, M. Zhang and X. Li, Triple Helix of β-D-Glucan from Lentinus Hdodes in 0.5 M NaCl Aqueous Solution Characterized by Light Scattering, Polym.J.2001, 33,317-321.
    [25]Y. Nakanishi, T. Norisuye, A. Teramoto and S. Kitamura, Conformation of amylose in dimethyl sulfoxide, Macromolecules.1993,26,4220-4225.
    [26]S. Podzimek, Light scattering, size exclusion chromatography and asymmetric flow field flow fractionation:powerful tools for the characterization of polymers, proteins and nanoparticles, Wiley, 2011.
    [27]L. Zhang, X. Li, Q. Zhou, X. Zhang and R. Chen, Transition from Triple Helix to Coil of Lentinan in Solution Measured by SEC, Viscometry, and 13C NMR, Polym.J.2002,34,443-449.
    [28]Y. Zhang, X. Xu, J. Xu and L. Zhang, Dynamic viscoelastic behavior of triple helical Lentinan in water:Effects of concentration and molecular weight, Polymer.2007,48,6681-6690.
    [29]M. I. Giannotti, M. Rinaudo and G. J. Vancso, Force spectroscopy of hyaluronan by atomic force microscopy:From hydrogen-bonded networks toward single-chain behavior, Biomacromolecules.2007, 8,2648-2652.
    [30]K. Gessler, I. Uson, T. Takaha, N. Krauss, S. M. Smith, S. Okada, G. M. Sheldrick and W. Saenger, V-Amylose at atomic resolution:X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose), P. Nail. Acad. Sci 1999,96,4246-4251.
    [31]K. Sakurai, K. Uezu, M. Numata, T. Hasegawa, C. Li, K. Kaneko and S. Shinkai, β-1,3-Glucan polysaccharides as novel one-dimensional hosts for DNA/RNA, conjugated polymers and nanoparticles, Cham. Commun.2005,4383-4398.
    [32]M. J. Frampton, T. D. Claridge, G. Latini, S. Brovelli, F. Cacialli and H. L. Anderson, Amylose-wrapped luminescent conjugated polymers, Chem. Commun.2008,2797-2799.
    [33]K. Sugikawa, M. Numata, K. Kaneko, K. Sada and S. Shinkai, Alternate Layer-by-Layer Adsorption of Single- and Double-Walled Carbon Nanotubes Wrapped by Functionalized β-1,3-Glucan Polysaccharides, Langmuir.2008,24,13270-13275.
    [34]A. Star, D. W. Steuerman, J. R. Heath and J. F. Stoddart, Starched Carbon Nanotubes, Angew. Chem. Int. Ed.2002,41,2508-2512.
    [35]K. Sugikawa, T. Shiraki, Y. Tsuchiya, S. Haraguchi, K. Sada and S. Shinkai, Facile fabrication of CD-active 1-D polypyrrole by the templating effect of a helix-forming anionic polysaccharide, Supramol. Chem.2011,23,239-243.
    [36]M. Brasch, A. s. de la Escosura, Y. Ma, C. Uetrecht, A. J. Heck, T. s. Torres and J. J. Cornelissen, Encapsulation of phthalocyanine supramolecular stacks into virus-like particles, J. Am. Chem. Soc. 2011,133,6878-6881.
    [37]W. Lv, X. Wu, Y. Bian, J. Jiang and X. Zhang, Helical Fibrous Nanostructures Self-Assembled from Metal-Free Phthalocyanine with Peripheral Chiral Menthol Units, Chemphyschem.2009,10, 2725-2732.
    [38]O. E. Sielcken, M. M. Van Tilborg, M. F. Roks, R. Hendriks, W. Drenth and R. J. Nolte, Synthesis and aggregation behavior of hosts containing phthalocyanine and crown ether subunits, J. Am. Chem. Soc.1987,109,4261-4265.
    [39]M. Morisue, S. Ueda, M. Kurasawa, M. Naito and Y. Kuroda, Highly Fluorescent Slipped-Cofacial Phthalocyanine Dimer as a Shallow Inclusion Complex with α-Cyclodextrin,J. Phys. Chem. A 2012, 116,5139-5144.
    [1]X. Xia, N. Monteiro-Riviere and J. Riviere, An index for characterization of nanomaterials in biological systems, Nat. Nanotechnol.2010,5,671-675.
    [2]C.-C. You, A. Chompoosor and V. M. Rotello, The biomacromolecule-nanoparticle interface, Nano. Today.2007,2,34-43.
    [3]Matthew B. Dickerson, K. H.Sandhage and R. R. Naik, Protein- and Peptide-Directed Syntheses of Inorganic Materials, Chem. Rev.2008,108,4935-4978.
    [4]J. A. Dahl, B. L. S. Maddux and J. E. Hutchison, Toward Greener Nanosynthesis, Chem. Rev.2007, 107,2228-2269.
    [5]C. M. Niemeyer, Nanoparticles, Proteins, and Nucleic Acids:Biotechnology Meets Materials Science, Angew. Chem. Int. Ed.2001,40,4128-4158.
    [6]J. Kong, A. R. Ferhan, X. Chen, L. Zhang and N. Balasubramanian, Polysaccharide Templated Silver Nanowire for Ultrasensitive Electrical Detection of Nucleic Acids, Anal. Chem.2008,80, 7213-7217.
    [7]D. Eby, N. Schaeublin, K. Farrington, S. Hussain and G. Johnson, Lysozyme catalyzes the formation of antimicrobial silver nanoparticles, ACS nano.2009,3,984-994.
    [8]J. Cai, S. Kimura, M. Wada and S. Kuga, Nanoporous Cellulose as Metal Nanoparticles Support, Biomacromolecules.2008,10,87-94.
    [9]S. Ifuku, M. Tsuji, M. Morimoto, H. Saimoto and H. Yano, Synthesis of Silver Nanoparticles Templated by TEMPO-Mediated Oxidized Bacterial Cellulose Nanofibers, Biomacromolecules.2009, 10,2714-2717.
    [10]M. a. J. Hortiguela,I. Aranaz, M. a. C. Gutierrez, M. L. Ferrer and F. del Monte, Chitosan Gelation Induced by the in Situ Formation of Gold Nanoparticles and Its Processing into Macroporous Scaffolds, Biomacromolecules.2010,12,179-186.
    [11]M. J. Laudenslager, J. D. Schiffman and C. L. Schauer, Carboxymethyl Chitosan as a Matrix Material for Platinum, Gold, and Silver Nanoparticles, Biomacromolecules.2008,9,2682-2685.
    [12]I. Donati, A. Travan, C. Pelillo, T. Scarpa, A. Coslovi, A. Bonifacio, V. Sergo and S. Paoletti, Polyol Synthesis of Silver Nanoparticles:Mechanism of Reduction by Alditol Bearing Polysaccharides, Biomacromolecules.2009,10,210-213.
    [13]A. Travan, C. Pelillo, I. Donati, E. Marsich, M. Benincasa, T. Scarpa, S. Semeraro, G. Turco, R. Gennaro and S. Paoletti, Non-cytotoxic Silver Nanoparticle-Polysaccharide Nanocomposites with Antimicrobial Activity, Biomacromolecules.2009,10,1429-1435.
    [14]X. Chen, X. Xu, L. Zhang and J. Kennedy, Flexible chain conformation of (1--> 3)-[beta]-d-glucan from Poria cocos sclerotium in NaOH/urea aqueous solution, Carbohydr. Polym. 2009,75,586-591.
    [15]M. Zhang, Heating-induced conformational change of a novel α-(1-3)-D-glucan from Pleurotus geestanus, Biopolymers.2010,93,121-131.
    [16]Y. Z. Tao, L. Zhang, F. Yan and X. J. Wu, Chain conformation of water-insoluble hyperbranched polysaccharide from fungus, Biomacromolecules.2007,8,2321-2328.
    [17]X. Wang, X. Xu and L. Zhang, Thermally induced conformation transition of triple-helical lentinan in NaCI aqueous solution,.J. Phys. Chem. B 2008,112,10343-10351.
    [18]P. W. Solomon and L. W. Alexander, Therapeutic Effects of Substances Occurring in Higher Basidiomycetes Mushrooms:A Modern Perspective Crit. Rev. Immunol.1999,19,65-96.
    [19]S. H. Young, J. P. Ye, D. G. Frazer and X. L. Shi, Molecular mechanism of tumor necrosis factor-alpha production in 1-->3-beta-glucan (zymosan)-activated macrophages, J. Biol. Chem.2001, 276,20781-20787.
    [20]E. Vandamme and S. DE BAETS in Polysaccharides Ⅱ:Polysaccharides of Eukaryotes, Vol. Wiley-VCH:Weinheim,2002.
    [21]Jagodzinski P.P, Wiaderkiewicz R, Kurzawski G, Kloczewiak M, Nakashima H, Hyjek E, Yamamoto N, Uryu T, Kaneko Y, Posner MR and K. D, Mechanism of the inhibitory effect of curdlan sulfate on HIV-1 infection in vitro, Anglais.1994,202,735-745.
    [22]H. Saito, T. Ohki, N. Takasuka and T. Sasaki, A 13C-N.M.R.-Spectral study of a gel-forming, branched (1→3)-β-D-glucan, (lentinan) from lentinus edodes, and its acid-degraded fractions. Structure, and dependence of conformation on the molecular weight, Carbohydr. Res.1977,58, 293-305.
    [23]H. Saito, T. Ohki and T. Sasaki, A 13C-nuclear magnetic resonance study of polysaccharide gels. Molecular architecture in the gels consisting of fungal, branched (1→3)-β-D-glucans (lentinan and schizophyllan) as manifested by conformational changes induced by sodium hydroxide, Carbohydr. Res.1979,74,227-240.
    [24]T. Sasaki and N. Takasuka, Further study of the structure of lentinan, an anti-tumor polysaccharide from Lentinus edodes, Carbohydr. Res.1976,47,99-104.
    [25]X. Zhang, L. Zhang and X. Xu, Morphologies and conformation transition of lentinan in aqueous NaOH solution, Biopolymers.2004,75,187-195.
    [26]X. Wang, Y. Zhang, L. Zhang and Y. Ding, Multiple Conformation Transitions of Triple Helical Lentinan in DMSO/Water by Microcalorimetry,J. Phys. Chem. B.2009,113,9915-9923.
    [27]Y. Zhang, S. Li and L. Zhang, Aggregation Behavior of Triple Helical Polysaccharide with Low Molecular Weight in Diluted Aqueous Solution, J. Phys. Chem. B.2010,114,4945-4954.
    [28]X. Xu, X. Zhang, L. Zhang and C. Wu, Collapse and Association of Denatured Lentinan in Water/Dimethlysulfoxide Solutions, Biomacromolecules.2004,5,1893-1898.
    [29]K. Nam, Y. Lee, E. Krauland, S. Kottmann and A. Belcher, Peptide-Mediated Reduction of Silver Ions on Engineered Biological Scaffolds, ACS nemo.2008,2,1480-1486.
    [30]D. Eby, H. Luckarift and G. Johnson, Hybrid Antimicrobial Enzyme and Silver Nanoparticle Coatings for Medical Instruments, ACS. Appl. Mater. Inter.2009,1,1553-1560.
    [31]J. Jain, S. Arora, J. Rajwade, P. Omray, S. Khandelwal and K. Paknikar, Silver nanoparticles in therapeutics:development of an antimicrobial gel formulation for topical use, Mol. Pharm 2009,6, 1388-1401.
    [32]M. Liong, B. France, K. Bradley and J. Zink, Antimicrobial Activity of Silver Nanocrystals Encapsulated in Mesoporous Silica Nanoparticles, Adv. Mater.2009,21,1684-1689.
    [33]J. Rogers, C. Parkinson, Y. Choi, J. Speshock and S. Hussain, A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation, Nano. Res. Letters.2008,3,129-133.
    [34]S. Shrivastava, T. Bera, S. Singh, G. Singh, P. Ramachandrarao and D. Dash, Characterization of antiplatelet properties of silver nanoparticles, ACS nano.2009,3,1357-1364.
    [35]K. Lee, P. Nallathamby, L. Browning, C. Osgood and X. Xu, In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos, ACS nano. 2007,1,133-143.
    [36]A. M. Schrand and et al., Can silver nanoparticles be useful as potential biological labels?, Nanotechnology.2008,19,104-117.
    [37]X. Xu, J. Wang, F. Yang, K. Jiao and X. Yang, Label-Free Colorimetric Detection of Small Molecules Utilizing DNA Oligonucleotides and Silver Nanoparticles, Small.2009,5,2669-2672.
    [38]H. Wei, C. Chen, B. Han and E. Wang, Enzyme colorimetric assay using unmodified silver nanoparticles, Anal. Chem.2008,80,7051-7055.
    [39]J. Lee, A. Lytton-Jean, S. Hurst and C. Mirkin, Silver Nanoparticle-Oligonucleotide Conjugates Based on DNA with Triple Cyclic Disulfide Moieties, Nano. Lett 2007,7,2112-2115.
    [40]D. Wang, B. Tejerina, I. Lagzi, B. Kowalczyk and B. Grzybowski, Bridging Interactions and Selective Nanoparticle Aggregation Mediated by Monovalent Cations, ACS nano.2011,5,530-536.
    [41]H. Z. Cummins in Photon correlation and light beating spectroscopy; [proceedings] Edited by H. Z. Cummins and E. R. Pike, Vol. Eds.:H. Z. e. Cummins and E. R. e. Pike), Plenum Press, New York, 1974.
    [42]T. Huang and X. Xu, Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy,J. Mater. Chem.2010, 20,9867-9876.
    [43]V. Venkatpurwar and V. Pokharkar, Green synthesis of silver nanoparticles using marine polysaccharide:Study of in-vitro antibacterial activity, Mater. Lett.2011,65,999-1002.
    [44]S. He, J. Yao, S. Xie, H. Gao and S. Pang, Superlattices of silver nanoparticles passivated by mercaptan, J. Phys. D:Appl. Phys.2001,34,3425.
    [45]A. Taleb, C. Petit and M. P. Pileni, Synthesis of Highly Monodisperse Silver Nanoparticles from AOT Reverse Micelles:A Way to 2D and 3D Self-Organization, Chem. Mater.1997,9,950-959.
    [46]A. A. Zinchenko, D. Baigl, N. Chen, O. Pyshkina, K. Endo, V. G. Sergeyev and K.. Yoshikawa, Conformational Behavior of Giant DNA through Binding with Ag+ and Metallization, Biomacromolecules.2008,9,1981-1987.
    [47]I. Teraoka in Polymer Solution, Vol. John Wiley & Sons, Inc, New York,2002.
    [48]B. H. Falch and B. T. Stokke, Structural stability of (1-->3)-[beta]-glucan macrocycles, Carbohydr. Polym.2001,44,113-121.
    [49]S. Panigrahi, S. Praharaj, S. Basu, S. Ghosh, S. Jana, S. Pande, T. Vo-Dinh, H. Jiang and T. Pal, Self-assembly of silver nanoparticles:Synthesis, stabilization, optical properties, and application in surface-enhanced Raman scattering,J. Phys. Chem. B 2006,110,13436-13444.
    [50]H. Yan, S. Lim, L. Zhang, S. Gao, D. Mott, Y.Le, R. Loukrakpam, D. An and C. Zhong, Rigid, conjugated and shaped arylethynes as mediators for the assembly of gold nanoparticles,J. Mater. Chem. 2010,21,1890-1901.
    [1]C. S. Peyratout and L. Dahne, Tailor-Made Polyelectrolyte Microcapsules:From Multilayers to Smart Containers, Angew. Chem. Int. Ed.2004,43,3762-3783.
    [2]S. De Koker, L. J. De Cock, P. Rivera-Gil, W. J. Parak, R. Auzely Velty, C. Vervaet, J. P. Remon, J. Grooten and B. G. De Geest, Polymeric multilayer capsules delivering biotherapeutics, Adv. Drug. Deliv. Rev.2011,63,748-761.
    [3]H. Zhu and M. J. McShane, Loading of Hydrophobic Materials into Polymer Particles: Implications for Fluorescent Nanosensors and Drug Delivery, J. Am. Chem. Soc.2005,127, 13448-13449.
    [4]K. Ariga, Y. M. Lvov, K. Kawakami, Q. Ji and J. P. Hill, Layer-by-layer self-assembled shells for drug delivery, Adv. Drug. Deliv. Rev.2011,63,762-771.
    [5]W. Qi, L. Duan and J. Li, Fabrication of glucose-sensitive protein microcapsules and their applications, Soft. Mater.2011,7,1571-1576.
    [6]B. G. Stubbe, K. Gevaert, S. Derveaux, K. Braeckmans, B. G. De Geest, M. Goethals, J. Vandekerckhove, J. Demeester and S. C. De Smedt, Evaluation of Encoded Layer-By-Layer Coated Microparticles As Protease Sensors, Adv. Funct. Mater.2008,18,1624-1631.
    [7]O. N. Oliveira, P. H. Aoki, F. J. Pavinatto and C. J. Constantino, Controlled Architectures in LbL Films for Sensing and Biosensing, Multilayer Thin Films:Sequential Assembly of Nanocomposite Materials, Second Edition 951-983.
    [8]W. S. Choi, J. H. Park, H. Y. Koo, J. Y. Kim, B. Cho and D. Y. Kim, "Grafting-From" Polymerization inside a Polyelectrolyte Hollow-Capsule Microreactor, Angew. Chem. Int. Ed.2005, 44,1096-1101.
    [9]B. Wang, Q. Zhao, F. Wang and C. Gao, Biologically driven assembly of polyelectrolyte microcapsule patterns to fabricate microreactor arrays, Angew. Chem. Int. Ed.2006,118,1590-1593.
    [10]M. Hawlader, M. Uddin and M. M. Khin, Microencapsulated PCM thermal-energy storage system, Appl. Energy.2003,74,195-202.
    [11]C. Alkan, A. Sari, A. Karaipekli and O. Uzun, Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells 2009,93,143-147.
    [12]W. Wang, X. Liu, Y. Xie, H. a. Zhang, W. Yu, Y. Xiong, W. Xie and X. Ma, Microencapsulation using natural polysaccharides for drug delivery and cell implantation,J. Mater. Chem.2006,16, 3252-3267.
    [13]S. Hiller, S. Leporatti, A. Schnackel, E. Typlt and E. Donath, Protamine Assembled in Multilayers on Colloidal Particles Can Be Exchanged and Released, Biomacromolecules.2004,5,1580-1587.
    [14]O. Grinberg, U. Shimanovich and A. Gedanken, Encapsulating bioactive materials in sonochemically produced micro-and nano-spheres,J. Mater. Chem. B.2013,1,595-605.
    [15]D. Cui, A. Szarpak, I. Pignot-Paintrand, A. Varrot, T. Boudou, C. Detrembleur, C. Jerome, C. Picart and R. Auzely-Velty, Contact-Killing Polyelectrolyte Microcapsules Based on Chitosan Derivatives,Adc. Funct. Mater.2010,20,3303-3312.
    [16]L. Gao, J. Fei, J. Zhao, W. Cui, Y. Cui and J. Li, pH- and Redox-Responsive Polysaccharide-Based Microcapsules with Autofluorescence for Biomedical Applications, Chem. Eur.J.2012,18, 3185-3192.
    [17]Y. Jia, Y. Cui, J. Fei, M. Du, L. Dai, J. Li and Y. Yang, Construction and Evaluation of Hemoglobin -Based Capsules as Blood Substitutes, Adv. Funct. Mater.2012,22,1446-1453.
    [18]C. Du, J. Zhao, J. Fei, L. Gao, W. Cui, Y. Yang and J. Li, Alginate-Based Microcapsules with a Molecule Recognition Linker and Photosensitizer for the Combined Cancer Treatment, Chem. Asian J. 2013.
    [19]F. Munarin, P. Petrini, S. Fare and M. Tanzi, Structural properties of polysaccharide-based microcapsules for soft tissue regeneration,J. Mater. Sci. Mater. Med.2010,21,365-375.
    [20]N. Skirtenko, T. Tzanov, A. Gedanken and S. Rahimipour, One-Step Preparation of Multifunctional Chitosan Microspheres by a Simple Sonochemical Method, Chem. Eur. J.2010,16, 562-567.
    [21]K.-S. Kim and S.-J. Park, Influence of 1-D silica nanotubes as drug adsorbent on release behaviors of tulobuterol-loaded porous microcapsules, Colloid. Surface. B.2012,92,240-245.
    [22]D. Saihi, I. Vroman, S. Giraud and S. Bourbigot, Microencapsulation of ammonium phosphate with a polyurethane shell part Ⅰ:Coacervation technique, React. Funct. Polym.2005,64,127-138.
    [23]A. P. Esser-Kahn, S. A. Odom, N. R. Sottos, S. R. White and J. S. Moore, Triggered release from polymer capsules, Macromolecules.2011,44,5539-5553.
    [24]H. N. Yow and A. F. Routh, Formation of liquid core-polymer shell microcapsules, Soft. Mater. 2006,2,940-949.
    [25]X.-Y. Shi and T.-W. Tan, Preparation of chitosan/ethylccllulose complex microcapsule and its application in controlled release of Vitamin D2, Biomaterials.2002,23,4469-4473.
    [26]A. P. Johnston, C. Cortez, A. S. Angelatos and F. Caruso, Layer-by-layer engineered capsules and their applications, Curr. Opin. Colloid. In.2006,11,203-209.
    [27]H. Lee, Y. Jeong and T. G. Park, Shell cross-linked hyaluronic acid/polylysine layer-by-layer polyelcctrolyte microcapsules prepared by removal of reducible hyaluronic acid microgel cores, Biomacromolecules.2007,8,3705-3711.
    [28]B. G. De Geest, S. De Koker, K. Immesoete, J. Demeester, S. C. De Smedt and W. E. Hennink, Self-Exploding Beads Releasing Microcarriers, Adv. Mater.2008,20,3687-3691.
    [29]B. G. De Geest, R.E. Vandenbroucke, A. M. Guenther, G. B. Sukhorukov, W. E. Hennink, N. N. Sanders, J. Demeester and S. C. De Smedt, Intracellularly degradable polyelectrolyte microcapsules, Adv. Mater.2006,18,1005-1009.
    [30]J. Bai, S. Beyer, W. C. Mak and D. Trau, Fabrication of inflated LbL microcapsules with a 'bead-in-a-capsule'morphology, Soft. Mater.2009,5,4152-4160.
    [31]L. Loretta, P. Rivera-Gil, A. Z. Abbasi, M. Ochs, C. Ganas, I. Zins, C. Sonnichsen and W. J. Parak, LbL multilayer capsules:recent progress and future outlook for their use in life sciences, Nanoscale. 2010,2,458-467.
    [32]Y. Ma, W.-F. Dong, M. A. Hempenius, H. Mohwald and G. J. Vancso, Redox-controlled molecular permeability of composite-wall microcapsules, Nat. Mater.2006,5,724-729.
    [33]M. A. C. Stuart, W. T. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk and M. Urban, Emerging applications of stimuli-responsive polymer materials, Nat. Mater 2010,9,101-113.
    [34]O. Shchepelina, I. Drachuk, M. K. Gupta, J. Lin and V. V. Tsukruk, Silk-on-Silk Layer-by Layer Microcapsules, Adv. Mater.2011,23,4655-4660.
    [35]C. Jiang and V. V. Tsukruk, Freestanding Nanostructures via Layer-by-Layer Assembly, Adv. Mater.2006,18,829-840.
    [36]G.-F. Luo, X.-D. Xu, J. Zhang, J. Yang, Y.-H. Gong, Q. Lei, H.-Z. Jia, C. Li, R.-X. Zhuo and X.-Z. Zhang, Encapsulation of an Adamantane-Doxorubicin Prodrug in pH-Responsive Polysaccharide Capsules for Controlled Release, ACS. Appl. Mater. Inter.2012,4,5317-5324.
    [37]Y. Yang, Z. Wei, C. Wang and Z. long, Versatile Fabrication of Nanocomposite Microcapsules with Controlled Shell Thickness and Low Permeability, ACS. Appl. Mater. Inter.2013,5,2495-2502.
    [38]O. Yoshida, H. Nakashima, T. Yoshida, Y. Kaneko, I. Yamamoto, K. Matsuzaki, T. Uryu and N. Yamamoto, Sulfation of the immunomodulating polysaccharide lentinan:a novel strategy for antivirals to human immunodeficiency virus (HIV), Biochem. Pharmacol.1988,37,2887-2891.
    [39]X. Xu, M. Yasuda, S. Nakamura-Tsuruta, M. Mizuno and H. Ashida,β-Glucan from Lentinus edodes Inhibits Nitric Oxide and Tumor Necrosis Factor-a Production and Phosphorylation of Mitogen-activated Protein Kinases in Lipopolysaccharide-stimulated Murine RAW 264.7 Macrophages, J. Biol. Chem.2012,287,871-878.
    [40]X. Xu, C. Pan, L. Zhang and H. Ashida, Immunomodulatory β-Glucan from Lentinus edodes Activates Mitogen-activated Protein Kinases and Nuclear Factor-κB in Murine RAW 264.7 Macrophages, J. Biol. Chem.2011,286,31194-31198.
    [41]W. Bosker, K. Agoston, M. Cohen Stuart, W. Norde, J. Timmermans and T. Slaghek, Synthesis and interfacial behavior of polystyrene-polysaccharide diblock copolymers, Macromolecules.2003,36, 1982-1987.
    [42]S. Bhandari, M. Deepa, A. G. Joshi, A. P. Saxena and A. K. Srivastava, Revelation of graphene-Au for direct write deposition and characterization, Nanoscale. Res. Lett.2011,6,1-7.
    [1]L. N. Hassani, F. Hendra and K. Bouchemal, Auto-associative amphiphilic polysaccharides as drug delivery systems, Drug. Discov. Today.2012,17,608-614.
    [2]W. B. Liechty, D. R. Kryscio, B. V. Slaughter and N. A. Peppas, Polymers for Drug Delivery Systems, Annu. Rev. Chem. Biomol.2010,1,149-173.
    [3]A. Rosler, G. W. M. Vandermeulen and H.-A. Klok, Advanced drug delivery devices via self-assembly of amphiphilic block copolymers, Adv. Drug. Deliv. Rev.2012,64,270-279.
    [4]H. Wei, R.-X. Zhuo and X.-Z. Zhang, Design and development of polymeric micelles with cleavable links for intracellular drug delivery, Prog. Polym. Sci.2013,38,503-535.
    [5]X. Mulet, C. E. Conn, C. Fong, D. F. Kennedy, M. J. Moghaddam and C. J. Drummond, High-Throughput Development of Amphiphile Self-Assembly Materials:Fast-Tracking Synthesis, Characterization, Formulation, Application, and Understanding, Acc. Chem. Res.2013. DOI: 10.1021/ar300285u.
    [6]Y. Zhou, W. Huang, J. Liu, X. Zhu and D. Yan, Self-Assembly of Hyperbranched Polymers and Its Biomedical Applications, Adv. Mater.2010,22,4567-4590.
    [7]H. Jin, W. Huang, X. Zhu, Y. Zhou and D. Yan, Biocompatible or biodegradable hyperbranched polymers:from self-assembly to cytomimetic applications, Chem. Soc. Rev.2012,41,5986-5997.
    [8]N. P. Shusharina, I. A. Nyrkova and A. R. Khokhlov, Diblock Copolymers with a Charged Block in a Selective Solvent:Micellar Structure, Macromolecules.1996,29,3167-3174.
    [9]C. Wu and J. Gao, A Simple Scaling for the Core-Shell Nanostructure Formed by Self-Assembly of Block Copolymers in a Selective Solvent, Macromolecules.2000,33,645-646.
    [10]D. E. Discher and A. Eisenberg, Polymer Vesicles, Science.2002,297,967-973.
    [11]L. S. Nair and C. T. Laurencin, Biodegradable polymers as biomaterials, Prog. Polym. Sci.2007, 32,762-798.
    [12]M. Okada, Chemical syntheses of biodegradable polymers, Prog. Polym. Sci.2002,27,87-133.
    [13]S. Mizrahy and D. Peer, Polysaccharides as building blocks for nanotherapeutics, Chem. Soc. Rev. 2012,41,2623-2640.
    [14]Z. Liu, Y. Jiao, Y. Wang, C. Zhou and Z. Zhang, Polysaccharides-based nanoparticles as drug delivery systems, Adv. Drug. Deliv. Rev.2008,60,1650-1662.
    [15]M. Bertoldo, G. Zampano, F. L. Terra, V. Villari and V. Castelvetro, Amphiphilic Amylose-g-poly(meth)acrylate Copolymers through "Click" onto Grafting Method, Biomacromolecules.2010,12,388-398.
    [16]N. Morimoto, R. Obeid, S. Yamane, F. M. Winnik and K. Akiyoshi, Composite nanomaterials by self-assembly and controlled crystallization of poly (2-isopropyl-2-oxazoline)-grafled polysaccharides, Soft. Mater.2009,5,1597-1600.
    [17]N. Morimoto, X.-P. Qiu, F. o. M. Winnik and K. Akiyoshi, Dual Stimuli-Responsive Nanogels by Self-Assembly of Polysaccharides Lightly Grafted with Thiol-Terminated Poly(N-isopropylacrylamide) Chains, Macromolecules.2008,41,5985-5987.
    [18]C. Schatz, S. Louguet, J.-F. Le Meins and S. Lecommandoux, Polysaccharide-block-polypeptide Copolymer Vesicles:Towards Synthetic Viral Capsids, Angew. Chem. Int. Ed.2009,48,2572-2575.
    [191 K. K. Upadhyay, A. N. Bhatt, A. K. Mishra, B. S. Dwarakanath, S. Jain, C. Schatz, J.-F. Le Mcins, A. Farooque, G. Chandraiah and A. K. Jain, The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly (γ-benzyl 1-glutamate)-b-hyaluronan polymersomes, Biomaterials.2010,31, 2882-2892.
    [20]C. m. Houga, J. Giermanska, S. b. Lecommandoux, R. Borsali, D. Taton, Y. Gnanou and J.-F. o. Le Meins, Micelles and Polymersomes Obtained by Self-Assembly of Dextran and Polystyrene Based Block Copolymers, Biomacromolecules.2008,10,32-40.
    [21]Y. Tan, K. Xu, Y. Li, S. Sun and P. Wang, A robust route to fabricate starch esters vesicles, Chem. Commun.2010,46,4523-4525.
    [22]K.-H. Liu, S.-Y. Chen, D.-M. Liu and T.-Y. Liu, Self-assembled hollow nanocapsule from amphiphatic carboxymethyl-hexanoyl chitosan as drug carrier, Macromolecules.2008,41,6511-6516.
    [23]H.-Y. Hwang, I.-S. Kim, I. C. Kwon and Y.-H. Kim, Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles,J.Controlled. Release.2008, 128,23-31.
    [24]K. Akiyoshi and J. Sunamoto, Supramolecular assembly of hydrophobized polysaccharides, Supramol. Sci.1996,3,157-163.
    [25]H. Saito, T. Ohki, N. Takasuka and T. Sasaki, A "C-N.M.R.-Spectral study of a gel-forming, branched (1-3)-β-D-glucan, (lentinan) from lentinus edodes, and its acid-degraded fractions. Structure, and dependence of conformation on the molecular weight, Carbohydr. Res.1977,58, 293-305.
    [26]H. Saito,T. Ohki and T. Sasaki, A 13C-nuclear magnetic resonance study of polysaccharide gels. Molecular architecture in the gels consisting of fungal, branched (1→3)-β-D-glucans (lentinan and schizophyllan) as manifested by conformational changes induced by sodium hydroxide, Carbohydr. Res.1979,74,227-240.
    [27]T. Sasaki and N. Takasuka, Further study of the structure of lentinan, an anti-tumor polysaccharide from Lentinus edodes, Carbohydr. Res.1976,47,99-104.
    [28]X. Zhang, L. Zhang and X. Xu, Morphologies and conformation transition of lentinan in aqueous NaOH solution, Biopolymers.2004,75,187-195.
    [29]X. Xu, X. Zhang, L. Zhang and C. Wu, Collapse and association of denatured lentinan in water/dimethlysulfoxide solutions, Biomacromolecules.2004,5,1893-1898.
    [30]X. Wang, X. Xu and L. Zhang, Thermally induced conformation transition of triple-helical lentinan in NaCl aqueous solution,J. Phys. Chem. B.2008,112,10343-10351.
    [31]X. H. Wang, Y. Y. Zhang, L. N. Zhang and Y. W. Ding, Multiple Conformation Transitions of Triple Helical Lentinan in DMSO/Water by Microcalorimetry,J. Phys. Chem. B.2009,113,9915-9923.
    [32]L. Zhang, X. Zhang, Q. Zhou, P. Zhang, M. Zhang and X. Li, Triple Helix of β-D-Glucan from Lentinus Edodes in 0.5 M NaCl Aqueous Solution Characterized by Light Scattering, Polym. J.2001, 33,317-321.
    [33]X. J. Xu, P. Chen, L. N. Zhang and H. Ashida, Chain structures of glucans from Lentinus edodes and their effects on NO production from RAW 264.7 macrophages, Carbohydr. Polym.2012,87, 1855-1862.
    [34]X. H. Wang and L. N. Zhang, Physicochemical properties and antitumor activities for sulfated derivatives of lentinan, Carbohydr. Res.2009,344,2209-2216.
    [35]G. Chihara, Y. Maeda, J. Hamuro, T. Sasaki and F. Fukuoka, Inhibition of Mouse Sarcoma 180 by Polysaccharides from Lentinus edodes (Berk.) Sing, Nature.1969,222,687-688.
    [36]G. Brown and S. Gordon, Immune recognition:a new receptor for β-glucans, Nature.2001,413, 36-37.
    [37]M. Aouadi, G. J. Tesz, S. M. Nicoloro, M. Wang, E. Soto, G. R. Ostroff and M. P. Czech, Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation, Nature.2009,458, 1180-1184.
    [38]Y. Song, L. Zhang, W. Gan and J. Zhou, Self-assembled micelles based on hydrophobically modified quaternized cellulose for drug delivery, Colloid. Surfaces. B.2011,83,313-320.
    [39]A. Besheer, G. Hause, J. Kressler and K. Mader, Hydrophobically modified hydroxyethyl starch: synthesis, characterization, and aqueous self-assembly into nano-sized polymeric micelles and vesicles, Biomacromolecules.2007,8,359-367.
    [40]S. Li, Y. Zhang, X. Xu and L. Zhang, Triple Helical Polysaccharide-Induced Good Dispersion of Silver Nanoparticles in Water, Biomacromolecules.2011,12,2864-2871.
    [41]Y. Zhang, S. Li and L. Zhang, Aggregation Behavior of Triple Helical Polysaccharide with Low Molecular Weight in Diluted Aqueous Solution, J. Phys. Chem. B.2010,114,4945-4954.
    [42]1. Teraoka, Polymer Solution, John Wiley & Sons, Inc, New York,2002.
    [1]G. Chihara, Y. Maeda, J. Hamuro, T. Sasaki and F. Fukuoka, Inhibition of Mouse Sarcoma 180 by Polysaccharides from Lentinus edodes (Berk.) Sing, Nature.1969,222,687-688.
    [2]Y. Zhang, S. Li, X. Wang, L. Zhang and P. C. K. Cheung, Advances in lentinan:Isolation, structure, chain conformation and bioactivities, Food. Hydrocolloid.2011,25,196-206.
    [3]Y. Peng, L. Zhang, F. Zeng and Y. Xu, Structure and antitumor activity of extracellular polysaccharides from mycelium, Carbohydr. Polym.2003,54,297-303.
    [4]M. Zhang, S. Cui, P. Cheung and Q. Wang, Antitumor polysaccharides from mushrooms:a review on their isolation process, structural characteristics and antitumor activity, Trends. Food. Sci. Tech. 2007,18,4-19.
    [5]B. Falch, T. Espevik, L. Ryan and B. Stokke, The cytokine stimulating activity of (1--> 3)-[beta]--glucans is dependent on the triple helix conformation, Carbohydr. Res.2000,329,587-596.
    [6]A. M. Deters, C. Lengsfeld and A. Hensel, Oligo- and polysaccharides exhibit a structure-dependent bioactivity on human keralinocytes in vitro,J. Ethnopharmacol.2005,102,391-399.
    [7]N. Miura, N. Ohno, Y. Adachi, J. Aketagawa,H. Tamura, S. Tanaka and T. Yadomae, Comparison of the blood clearance of triple-and single-helical schizophyllan in mice, Biol. Pharm. Bull.1995,18, 185-189.
    [8]L. Zhang, X. L. Li, X. J. Xu and F. B. Zeng, Correlation between antitumor activity, molecular weight, and conformation of lentinan, Carbohydr. Res.2005,340,1515-1521.
    [9]M. Zhang, L. Zhang and P. Cheung, Molecular mass and chain conformation of carboxymethylated derivatives of |A-glucan from sclerotia of Pleurotus tuber-regium, Biopolymers.2003,68,150-159.
    [10]Q. Huang, Y. Jin, L. Zhang, P. Cheung and J. Kennedy, Structure, molecular size and antitumor activities of polysaccharides from Poria cocos mycelia produced in fermenter, Carbohydr. Polym.2007, 70,324-333.
    [11]J. Wang, L. Zhang, Y. Yu and P. Cheung, Enhancement of Antitumor Activities in Sulfated and Carboxymethylated Polysaccharides of Ganoderma lucidum,J. Agric. Food. Chem.2009,57, 10565-10572.
    [12]C. Lai, K. Wong and P. Cheung, Antiproliferative Effects of Sclerotial Polysaccharides from Polyporus rhinocerus Cooke (Aphyllophoromycetideae) on Different Kinds of Leukemic Cells, Int.J. Med. Mushrooms.2008,10,255-264.
    [13]C. K. Lai, K.-H. Wong and P. C. K. Cheung, Antiproliferative Effects of Sclerotial Polysaccharides from Polyporus rhinocerus Cooke (Aphyllophoromycetideae) on Different Kinds of Leukemic Cells, Int. J. Med. Mushrooms.2008,10,255-264.
    [14]P. W. Needs and R. R. Selvendran, Avoiding oxidative degradation during sodium hydroxide/methyl iodide-mediated carbohydrate methylation in dimethyl sulfoxide, Carbohydr. Res. 1993,245,1-10.
    [15]张俐娜,薛奇,莫志深,金熹高,高分子物理近代研究方法,武汉大学出版社,武汉,2003年7月.
    [16]T. Sasaki and N. Takasuka, Further study of the structure of lentinan, an anti-tumor polysaccharide from Lentinus edodes, Carbohydr. Res.1976,47,99-104.
    [17]H. Saito, T. Ohki, N. Takasuka and T. Sasaki, A 13C NMR-Spectral study of a gel-forming, branched (1→3)-β-d-glucan,(lentinan) from lentinus edodes, and its acid-degraded fractions. Structure, and dependence of conformation on the molecular weight, Carbohydr. Res.1977,58, 293-305.
    [18]M. Lundborg and G. r. Widmalm, Structural analysis of glycans by NMR chemical shift prediction, Anal. Chem.2011,83,1514-1517.
    [19]P.-E. Jansson, R. Stenutz and G. Widmalm, Sequence determination of oligosaccharides and regular polysaccharides using NMR spectroscopy and a novel web-based version of the computer program CASPER, Carbohydr. Res.2006,341,1003-1010.
    [20]M. Lundborg, C. Fontana and G. r. Widmalm, Automatic structure determination of regular polysaccharides based solely on NMR spectroscopy, Biomacromolecules.2011,12,3851-3855.
    [21]I. Teraoka in Polymer Solution, John Wiley & Sons, Inc, New York,2002.
    [22]Y. Tao and L. Zhang, Determination of molecular size and shape of hyperbranched polysaccharide in solution, Biopolymers.2006,83,414-423.
    [23]X. Wang, X. Xu and L. Zhang, Thermally induced conformation transition of triple-helical lentinan in NaCl aqueous solution, J. Phys. Chem. B.2008,112,10343-10351.
    [24]X. Chen, X. Xu, L. Zhang and J. Kennedy, Flexible chain conformation of (1--> 3)-[beta]-d-glucan from Poria cocos sclerotium in NaOH/urea aqueous solution, Carbohydr. Polym. 2009,75,586-591.
    [25]Y. Z. Tao, L. Zhang, F. Yan and X. J. Wu, Chain conformation of water-insoluble hyperbranched polysaccharide from fungus, Biomacromolecules.2007,8,2321-2328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700