基于脂肪细胞FFA外溢评价人参皂苷Rb1抗糖尿病作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“脂肪细胞游离脂肪酸外溢学说”是2型糖尿病的重要发病机制之一,是开发糖尿病治疗药物的重要理论依据。本课题在前期的研究基础上,借助体外脂肪细胞培养和体内肥胖模型小鼠实验,以游离脂肪酸(free fatty acid, FFA)外溢为切入点,研究抗糖尿病药物人参的有效成分人参皂苷Rbl的作用机制。本课题研究内容包括人参皂苷Rbl对脂肪细胞基础状态以及胰岛素抵抗状态下FFA外溢水平的影响,观察人参皂苷Rbl对脂肪分解的影响以及机制,阐明人参治疗糖尿病的作用机制。有助于加深对人参抗糖尿病作用机制的系统认识和理解,为进一步研究抗糖尿病中药提供新的研究方向。
     目的:观察人参皂苷Rb1对体外培养的3T3-L1脂肪细胞和高脂喂养肥胖小鼠的影响,探明人参Rb1对脂肪细胞游离脂肪酸溢出的影响,探明其作用机制。
     方法:(1)观察人参皂苷Rbl对基础状态及胰岛素抵抗状态下3T3-L1脂肪细胞脂肪分解的影响;(2)用免疫印迹法观察人参皂苷Rb1对胰岛素抵抗状态下3T3-L1脂肪细胞中Perilipin表达影响;(3)激光共聚焦显微镜下观察人参皂苷Rb1对基础状态下3T3-L1脂肪细胞中Perilipin蛋白转位的影响;(4)观察人参皂苷Rb1对高脂饮食诱导的C57BL/6肥胖小鼠体重、附睾脂肪、肝脏重量及血清NEFA, TC, TG, HDL-C, LDL-C, TNF-a, IL-6水平的影响;人参皂苷Rb1对肥胖小鼠胰岛素敏感性的影响;人参皂苷Rbl对肥胖小鼠肝脏的病理形态学影响;人参皂苷Rbl对肥胖小鼠附睾脂肪中HSL的表达及HSL(Ser563)磷酸化表达水平的影响。
     结果:(1)人参皂苷Rbl没有显著地抑制基础状态下3T3-L1脂肪细胞脂解,亦没有明显对抗TNF-a诱导3T3-L1脂肪细胞脂解的增加;(2) TNF-a诱导分化成熟的3T3-L1脂肪细胞24小时引起Perilipin表达显著下降,同时用人参皂苷Rbl干预24小时后对于Perilipin的表达无显著影响,但是对于TNF-a所导致Perilipin表达下调有一定对抗作用;(3)人参皂苷Rbl促进基础状态下3T3-L1脂肪细胞内Perilipin由胞浆向脂滴表面的转位;(4)人参皂苷Rb1显著降低肥胖小鼠的附睾脂肪含量与体重比值;人参皂苷Rbl没有显著降低血清NEFA,对TC, TG, HDL-C, LDL-C无显著影响;人参皂苷Rbl可以明显提高改善肥胖小鼠胰岛素敏感性,改善胰岛素抵抗;模型组小鼠血清TNF-α、IL-6含量高于正常组,人参皂苷Rbl治疗后,TNF-α、IL-6水平均明显下降,与模型组比较有显著性差异:人参皂苷Rbl可以显著改善肥胖小鼠肝脏脂肪变性,减少肝细胞内脂肪的异位沉积;人参皂苷Rbl抑制肥胖小鼠附睾脂肪中HSL(Ser563)磷酸化表达,对HSL表达无明显影响。
     结论:(1)人参皂苷Rbl可能在一定水平上抑制3T3-L1脂肪细胞基础水平的脂肪分解;(2)人参皂苷Rbl可能能够对抗TNF-α所导致3T3-L1脂肪细胞的脂解增加;(3)人参皂苷Rb1可能通过促进脂肪细胞内Perilipin由胞浆向脂滴表面的转位而抑制基础状态下脂解;可能通过对抗TNF-α所导致Perilipin表达下调而抑制胰岛素抵抗状态的脂解;(4)人参皂苷Rb1可能在一定程度上降低游离脂肪酸水平,降低肥胖小鼠体内脂肪含量,改善脂质代谢,改善肥胖小鼠胰岛素抵抗,抑制TNF-α、IL-6等炎症因子水平;人参皂苷Rbl减少肝细胞内脂肪的异位沉积;人参皂苷Rb1可能通过抑制肥胖小鼠附睾脂肪中HSL(Ser563)磷酸化而抑制脂解。
"Free fatty acid overflow hypothesis in adipocyte"—an important pathogenesis of type 2 diabetes, is used as an important target of drug treatment of diabetes mellitus development. Basing on previous research, taking free fatty acid overflow as the contact point, adipocyte cell culture in Vivo and obese model mice experiments in vitro were used to study the mechanism of ginsenoside Rb1, which is the active ingredient of anti-diabetic drugs ginseng. Using laser scanning confocal microscope, Western blot and other molecular biology methods, the subject studied ginsenoside Rb1 which influence FFAs spillover from fat cells at basis or the insulin resistance state, clarifies antidiabetic mechanism of Rbl.
     Objective:Studying the mechanism of ginsenoside Rbl to free fatty acid overflow from fat cells by observing the effect of ginsenoside Rb1 on 3T3-L1 adipocyte in vitro and in obese mice induced by Fat diet in vivo.
     Methods:(1)Observing Ginsenoside Rbl that influences Free fatty acid overflow of 3T3-L1 adipocyte in basis and insulin resistance state. (2) Studying the expression of Perilipin in insulin resistance state 3T3-L1 adipocyte by Western blot. (3)Researching the effect of ginsenoside Rb1 on Perilipin protein translocation in normal state in adipocyte using laser scanning confocal microscope. (4)Researching the effect of ginsenoside Rb1 on the epididymal fat content/body weight,NEFA, TC, TG, HDL-C, LDL-C,TNF-a, IL-6 in obese mice.
     Results:(1) The study show that Ginsenoside Rb1 neither have significant inhibition on basal 3T3-L1 adipocyte lipolysis, nor remarkable increment of lipolysis caused by TNF-a in 3T3-L1 adipocyte in insulin resistance state; (2) TNF-a induced insulin resistance state in 3T3-L1 adipocyte, brought about Perilipin expression decreased significantly. After the intervention of Ginsenoside Rbl for 24 hours, it reversed down-regulated expression of Perilipin caused by TNF-a in 3T3-L1 adipocyte; (3) Rb1 significantly increased the Perilipin protein translocation from cytoplasm to lipid droplets surface in normal state in 3T3-L1 adipocyte. (4) Ginsenoside Rb1 significantly reduced the epididymal fat content/body weight in obese mice; ginsenoside Rbl had no significant effect on NEFA, TC, TG, HDL-C, LDL-C levels; ginsenoside Rb1 can improve insulin resistance in obese mice and decrease TNF-a, IL-6 level of obese mice; ginsenoside Rbl upregulated the phosphorylation level of HSL,had no significant effect on the expression of HSL in epididymal fat in obese mice.
     Conclusion:(1) Ginsenoside Rbl may inhibit adipocyte lipolysis in normal state in 3T3-L1 adipocyte to a certain extent; (2) Ginsenoside Rbl may inhibit the lipolysis level increasement caused by TNF-a in 3T3-L1 adipocyte; (3) Ginsenoside Rbl may inhibit lipolysis under basal condition by promoting fat cells translocation of Perilipin from cytoplasm to Lipid droplet surface; may be passed against TNF-a expression caused by the reduction in Perilipin inhibited lipolysis insulin resistance; (4) Ginsenoside Rbl may reduce NEFA levels, fat in obese mice, improving lipid metabolism, improved insulin resistance in obese mice, inhibiting TNF-a, IL-6 and other inflammatory cytokines.ginsenoside Rb1 inhibited lipolysis by upregulating the phosphorylation level of HSL
引文
[1]Rosen E.D., Spiegelman B.M. Adipocytes as regulators of energy balance and glucose homeostasis.[J]. Nature. 2006;444(7121),847-853.
    [2]Bays H., Mandarino L., DeFronzo R.A. Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus:peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach.[J]. Journal of Clinical Endocrinology & Metabolism.2004;89(2),463-478.
    [3]Jaworski K., Sarkadi-Nagy E., Duncan R.E., et al. Regulation of Triglyceride Metabolism. Ⅳ. Hormonal regulation of lipolysis in adipose tissue.[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology.2007;293(1), G1-G4.
    [4]Duncan R.E., Ahmadian M., Jaworski K., et al. Regulation of lipolysis in adipocytes.[J]. Annual review of nutrition.2007;27,79-101.
    [5]Langin D. Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome.[J]. Pharmacological research.2006;53(6),482-491.
    [6]蒋国彦.实用糖尿病学.[M].1992,12-14.
    [7]周美琴.中药治疗糖尿病概述.[J].实用中医药杂志.2005;21(2),118-119.
    [8]Kong W., Wei J., Abidi P., et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins.[J]. Nature medicine.2004;10(12),1344-1351.
    [9]Lee Y.S., Kim W.S., Kim K.H., et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states.[J]. Diabetes.2006;55(8),2256-2264.
    [10]Baur J.A., Pearson K.J., Price N.L., et al. Resveratrol improves health and survival of mice on a high-calorie diet.[J]. Nature.2006;444(7117),337-342.
    [11]Vuksan V., Sung M.K., Sievenpiper J.L., et al. Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes:Results of a randomized, double-blind, placebo-controlled study of efficacy and safety.[J]. Nutrition, Metabolism and Cardiovascular Diseases.2008; 18(1),46-56.
    [12]Vuksan V., Sievenpiper J.L., Wong J., et al. American ginseng (Panax quinquefolius L.) attenuates postprandial glycemia in a time-dependent but not dose-dependent manner in healthy individuals.[J]. The American journal of clinical nutrition.2001;73(4),753-758.
    [13]Lim S., Yoon J. W., Choi S. H., et al. Effect of ginsam, a vinegar extract from Panax ginseng, on body weight and glucose homeostasis in an obese insulin-resistant rat model.[J]. Metabolism.2009;58(1),8-15.
    [14]Attele A.S., Zhou Y.P., Xie J.T., et al. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component.[J]. Diabetes.2002;51(6),1851-1858.
    [15]Xie JT, Zhou Y.P., Dey L., et al. Ginseng berry reduces blood glucose and body weight in db/db mice.[J]. Phytomedicine.2002;9(3),254-258.
    [16]Cho W., Chung W.S., Lee S.K.W., et al. Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats.[J]. European journal of pharmacology. 2006;550(1-3),173-179.
    [17]Yun S.N., Moon S.J., Ko S.K., et al. Wild ginseng prevents the onset of high-fat diet induced hyperglycemia and obesity in ICR mice.[J]. Archives of pharmacal research.2004;27(7),790-796.
    [18]Banz W.J., Iqbal MJ, Bollaert M., et al. Ginseng modifies the diabetic phenotype and genes associated with diabetes in the male ZDF rat.[J]. Phytomedicine.2007;14(10),681-689.
    [19]Xiong Y., Shen L., Liu K.J., et al. Antiobesity and antihyperglycemic effects of ginsenoside Rbl in rats.[J]. Diabetes.2010;59(10),2505-2512.
    [20]Shang W., Yang Y, Jiang B., et al. Ginsenoside Rbl promotes adipogenesis in 3T3-L1 cells by enhancing PPARgamma2 and C/EBPalpha gene expression.[J]. Life Sci.2007;80(7),618-625.
    [21]Shang W., Yang Y, Zhou L., et al. Ginsenoside Rbl stimulates glucose uptake through insulin-like signaling pathway in 3T3-L1 adipocytes.[J]. Journal of Endocrinology.2008;198(3),561-569.
    [22]Jang M.H., Chang H.K., Shin M.C., et al. Effect of ginseng radix on c-Fos expression in the hippocampus of streptozotocin-induced diabetic rats.[J]. Journal of pharmacological sciences.2003;91(2),149-152.
    [23]Wang H., Reaves L.A., Edens N.K. Ginseng extract inhibits lipolysis in rat adipocytes in vitro by activating phosphodiesterase 4.[J]. The Journal of nutrition.2006;136(2),337-342.
    [24]Savage D.B., Petersen K.F., Shulman G.I. Disordered lipid metabolism and the pathogenesis of insulin resistance.[J]. Physiological reviews.2007;87(2),507-520.
    [25]Santomauro AT, Boden G., Silva ME, et al. Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects.[J]. Diabetes.1999;48(9), 1836-1841.
    [26]Shimomura I., Hammer R.E., Richardson J.A., et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-lc in adipose tissue:model for congenital generalized lipodystrophy.[J]. Genes & development.1998;12(20),3182-3194.
    [27]Laustsen P.G., Michael M.D., Crute B.E., et al. Lipoatrophic diabetes in Irsl-/-/Irs3-/-double knockout mice.[J]. Genes & development.2002; 16(24),3213-3222.
    [28]S vik O., Vestergaard H., Trygstad O., et al. Studies of insulin resistance in congenital generalized lipodystrophy.[J]. Acta Paediatrica.1996;85,29-38.
    [29]Arioglu E., Rother K.I., Reitman M.L., et al. Lipoatrophy syndromes:when'too little fat'is a clinical problem.[J]. Pediatric Diabetes.2000; 1(3),155-168.
    [30]Oral E.A., Simha V., Ruiz E., et al. Leptin-replacement therapy for lipodystrophy.[J]. New England Journal of Medicine.2002;346(8),570-578.
    [31]Ahima R.S., Flier J.S:Leptin.[J]. Annual Review of Physiology.2000;62,413-437.
    [32]Berg A.H., Combs T.P., Scherer P.E. ACRP30/adiponectin:an adipokine regulating glucose and lipid metabolism.[J]. Trends in Endocrinology and Metabolism.2002;13(2),84-89.
    [33]UNGER R.H., ORCI L. Diseases of liporegulation:new perspective on obesity and related disorders.[J]. The FASEB Journal.2001;15(2),312-321.
    [34]Unger RH. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications.[J]. Diabetes.1995;44(8),863-870.
    [35]Christianson J.L., Nicoloro S., Straubhaar J., et al. Stearoyl CoA desaturase 2 is required for PPARy expression and adipogenesis in cultured 3T3-L1 cells.[J]. Journal of Biological Chemistry.2007;11,1-23.
    [36]Frayn K.N., Shadid S., Hamlani R., et al. Regulation of fatty acid movement in human adipose tissue in the postabsorptive-to-postprandial transition. [J]. American Journal of Physiology-Endocrinology And Metabolism. 1994;266(3),E308-E317.
    [37]Qatanani M., Lazar M.A. Mechanisms of obesity-associated insulin resistance:many choices on the menu.[J]. Genes & development.2007;21(12),1443-1455.
    [38]Kershaw E.E., Flier J.S. Adipose tissue as an endocrine organ.[J]. Journal of Clinical Endocrinology & Metabolism.2004;89(6),2548-2556.
    [39]Rajala M.W., Scherer P.E. Minireview:The adipocyte-at the crossroads of energy homeostasis, inflammation, and atherosclerosis.[J]. Endocrinology.2003;144(9),3765-3773.
    [40]Sartipy P., Loskutoff D.J. Monocyte chemoattractant protein 1 in obesity and insulin resistance.[J]. Proceedings of the National Academy of Sciences of the United States of America.2003;100(12),7265-7270.
    [41]Xu H., Barnes G.T., Yang Q., et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance.[J]. Journal of Clinical Investigation.2003;112(12),1821-1830.
    [42]Curat CA, Miranville A., Sengenes C., et al. Obesity Studies-From blood monocytes to adipose tissue-resident macrophages:Induction of diapedesis by human mature adipocytes.[J]. Diabetes-American Diabetes Association.2004;53(5),1285-1292.
    [43]Weisberg S.P., McCann D., Desai M., et al. Obesity is associated with macrophage accumulation in adipose tissue.[J]. Journal of Clinical Investigation.2003;112(12),1796-1808.
    [44]Inouye K.E., Shi H., Howard J.K., et al. Absence of CC chemokine ligand 2 does not limit obesity-associated infiltration of macrophages into adipose tissue.[J]. Diabetes.2007;56(9),2242-2250.
    [45]Lagathu C., Yvan-Charvet L., Bastard J.P., et al. Long-term treatment with interleukin-1β induces insulin resistance in murine and human adipocytes.[J]. Diabetologia.2006;49(9),2162-2173.
    [46]Unger R.H. Lipotoxic diseases.[J]. Annual review of medicine.2002;53(1),319-336.
    [47]Kanda H., Tateya S., Tamori Y., et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity.[J]. Journal of Clinical Investigation.2006;116(6),1494-1505.
    [48]Uysal K.T., Wiesbrock S.M., Marino M.W., et al. Protection from obesity-induced insulin resistance in mice lacking TNF-a function.[J]. Nature.1997;389(6651),610-614.
    [49]Solinas G., Vilcu C., Neels J.G., et al. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity.[J]. Cell metabolism.2007;6(5),386-397.
    [50]Harman-Boehm I., Bluher M., Redel H., et al. Macrophage infiltration into omental versus subcutaneous fat across different populations:effect of regional adiposity and the comorbidities of obesity. [J]. Journal of Clinical Endocrinology & Metabolism.2007;92(6),2240-2247.
    [51]Bruun J.M., Helge J.W., Richelsen B., et al. Diet and exercise reduce low-grade inflammation and macrophage infiltration in adipose tissue but not in skeletal muscle in severely obese subjects.[J]. American Journal of Physiology-Endocrinology And Metabolism.2006;290(5), E961-E967.
    [52]Cancello R., Henegar C., Viguerie N., et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss.[J]. Diabetes.2005;54(8),2277-2286.
    [53]Bouzakri K., Zierath J.R. MAP4K4 gene silencing in human skeletal muscle prevents tumor necrosis factor-α-induced insulin resistance.[J]. Journal of Biological Chemistry.2007;282(11),7783-7789.
    [54]Shulman G.I. Cellular mechanisms of insulin resistance.[J]. Journal of Clinical Investigation.2000;106(2), 171-176.
    [55]Biddinger S.B., Kahn C.R. From mice to men:insights into the insulin resistance syndromes.[J]. Annu Rev Physiol.2006;68,123-158.
    [56]Ofei F., Hurel S., Newkirk J., et al. Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM.[J]. Diabetes.1996;45(7),881-885.
    [57]Paquot N., Castillo M.J., Lefebvre P.J., et al. No increased insulin sensitivity after a single intravenous administration of a recombinant human tumor necrosis factor receptor:Fc fusion protein in obese insulin-resistant patients.[J]. Journal of Clinical Endocrinology & Metabolism.2000;85(3),1316-1319.
    [58]Randle P.J. Regulatory interactions between lipids and carbohydrates:the glucose fatty acid cycle after 35 years.[J]. Diabetes/metabolism reviews.1998;14(4),263-283.
    [59]Goossens GH, Blaak EE, Van Baak MA. Possible involvement of the adipose tissue renin-angiotensin system in the pathophysiology of obesity and obesity-related disorders.[J]. Obesity Reviews.2003;4(1),43-55.
    [60]Kurioka S., Murakami Y., Nishiki M., et al. Relationship between visceral fat accumulation and anti-lipolytic action of insulin in patients with type 2 diabetes mellitus.[J]. Endocrine journal.2002;49(4),459-464.
    [61]Egan J.J., Greenberg A.S., Chang M.K., et al. Mechanism of hormone-stimulated lipolysis in adipocytes: translocation of hormone-sensitive lipase to the lipid storage droplet.[J]. Proceedings of the National Academy of Sciences of the United States of America.1992;89(18),8537-8541.
    [62]Holm C., Osterlund T., Laurell H., et al. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis.[J]. Annual review of nutrition.2000;20,365-393.
    [63]Yeaman S.J. Hormone-sensitive lipase--new roles for an old enzyme.[J]. Biochemical Journal.2004;379(Pt 1), 11-22.
    [64]Holm C. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis.[J]. Biochemical Society Transactions.2003;31(Pt 6),1120-1124.
    [65]Anthonsen M.W., R nnstrand L., Wernstedt C., et al. Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro.[J]. Journal of Biological Chemistry.1998;273(1),215-221.
    [66]Greenberg A.S., Shen W.J., Muliro K., et al. Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway.[J]. Journal of Biological Chemistry.2001;276(48), 45456-45461.
    [67]Greenberg A.S., Egan J.J., Wek S.A., et al. Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets.[J]. Journal of Biological Chemistry. 1991;266(17),11341-11346.
    [68]Londos C., Brasaemle D.L., Schultz C.J., et al. Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells.1999;10(1),51-58.
    [69]Martinez-Botas J., Anderson J.B., Tessier D., et al. Absence of Perilipin results in leanness and reverses obesity in Leprdb/db mice.[J]. Nature genetics.2000;26(4),474-479.
    [70]Tansey JT, Sztalryd C., Gruia-Gray J., et al. Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity.[J]. Proceedings of the National Academy of Sciences of the United States of America.2001;98(11),6494-6499.
    [71]Brasaemle D.L., Rubin B., Harten I.A., et al. Perilipin A increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis.[J]. Journal of Biological Chemistry.2000;275(49),38486-38493.
    [72]Dalen K.T., Schoonjans K., Ulven S.M., et al. Adipose Tissue Expression of the Lipid Droplet-Associating Proteins S3-12 and Perilipin Is Controlled by Peroxisome Proliferator-Activated Receptor-y.[J]. Diabetes. 2004;53(5),1243-1252.
    [73]Arimura N., Horiba T., Imagawa M., et al. The peroxisome proliferator-activated receptor y regulates expression of the Perilipin gene in adipocytes.[J]. Journal of Biological Chemistry.2004;279(11), 10070-10076.
    [74]Souza S.C., Palmer H.J., Kang Y.H., et al. TNF-a induction of lipolysis is mediated through activation of the extracellular signal related kinase pathway in 3T3-L1 adipocytes.[J]. Journal of cellular biochemistry. 2003;89(6),1077-1086.
    [75]Ryden M., Arvidsson E., Blomqvist L., et al. Targets for TNF-[alpha]-induced lipolysis in human adipocytes.[J]. Biochemical and biophysical research communications.2004;318(1),168-175.
    [76]Shen W.J., Sridhar K., Bernlohr D.A., et al. Interaction of rat hormone-sensitive lipase with adipocyte lipid-binding protein.[J]. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(10),5528-5532.
    [77]Bernlohr D.A., Simpson M.A., Hertzel A.V., et al. Intracellular lipid-binding proteins and their genes.[J]. Annual review of nutrition.1997;17(1),277-303.
    [78]Shen W.J., Liang Y., Hong R., et al. Characterization of the functional interaction of adipocyte lipid-binding protein with hormone-sensitive lipase.[J]. Journal of Biological Chemistry.2001;276(52),49443-49448.
    [79]Jenkins-Kruchten A.E., Bennaars-Eiden A., Ross J.R., et al. Fatty acid-binding protein-hormone-sensitive lipase interaction.[J]. Journal of Biological Chemistry.2003;278(48),47636-47643.
    [80]Hotamisligil G.S., Johnson R.S., Distel R.J., et al. Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein.[J]. Science.1996;274(5291),1377-1379.
    [81]Feve B., Emorine LJ, Lasnier F., et al. Atypical beta-adrenergic receptor in 3T3-F442A adipocytes. Pharmacological and molecular relationship with the human beta 3-adrenergic receptor.[J]. Journal of Biological Chemistry.1991;266(30),20329-20336.
    [82]Van Liefde I., Van Witzenburg A., Vauquelin G. Multiple beta adrenergic receptor subclasses mediate the 1-isoproterenol-induced lipolytic response in rat adipocytes.[J]. Journal of Pharmacology and Experimental Therapeutics.1992;262(2),552-558.
    [83]Galitzky J., Carpene C., Bousquet-Melou A., et al. Differential activation of β1-, β2- and β3-adrenoceptors by catecholamines in white and brown adipocytes.[J]. Fundamental & clinical pharmacology.1995;9(4), 324-331.
    [84]Belfrage P., Fredrikson G., Nilsson NO, et al. Regulation of adipose tissue lipolysis:phosphorylation of hormones sensitive lipase in intact rat adipocytes.[J]. FEBS letters.1980;111(1),120-124.
    [85]Schimmel R.J., Buhlinger C.A., Serio R. Activation of adenosine 3',5'-monophosphate-dependent protein kinase and its relationship to cyclic AMP and lipolysis in hamster adipose tissue.[J]. Journal of Lipid Research. 1980;21(2),250-256.
    [86]Kawamura M., Jensen D.F., Wancewicz E.V., et al. Hormone-sensitive lipase in differentiated 3T3-L1 cells and its activation by cyclic AMP-dependent protein kinase.[J]. Proceedings of the National Academy of Sciences of the United States of America.1981;78(2),732-736.
    [87]Str lfors P., Belfrage P. Phosphorylation of hormone-sensitive lipase by cyclic AMP-dependent protein kinase.[J]. Journal of Biological Chemistry.1983;258(24),15146-15152.
    [88]Carel J.C., Le Stunff C., Condamine L., et al. Resistance to the lipolytic action of epinephrine:a new feature of protein Gs deficiency. [J]. Journal of Clinical Endocrinology & Metabolism.1999;84(11),4127-4131.
    [89]Chaudhry A., MacKenzie R.G., Georgic L.M., et al. Differential interaction of [beta] 1-and [beta] 3-adrenergic receptors with Gi in rat adipocytes.[J]. Cellular signalling.1994;6(4),457-465.
    [90]Gerhardt CC, Gros J., Strosberg AD, et al. Stimulation of the extracellular signal-regulated kinase 1/2 pathway by human beta-3 adrenergic receptor:new pharmacological profile and mechanism of activation.[J]. Molecular pharmacology.1999;55(2),255-262.
    [91]Soeder K.J., Snedden S.K., Cao W., et al. The β3-adrenergic receptor activates mitogen-activated protein kinase in adipocytes through a Gi-dependent mechanism.[J]. Journal of Biological Chemistry.1999;274(17), 12017-120122.
    [92]Lafontan M., Barbe P., Galitzky J., et al. Adrenergic regulation of adipocyte metabolism.[J]. Human reproduction.1997;12(suppl 1),6-20.
    [93]Gasic S., Tian B., Green A. Tumor necrosis factor a stimulates lipolysis in adipocytes by decreasing Gi protein concentrations.[J]. Journal of Biological Chemistry.1999;274(10),6770-6775.
    [94]Smith C.J., Vasta V., Degerman E., et al. Hormone-sensitive cyclic GMP-inhibited cyclic AMP phosphodiesterase in rat adipocytes. Regulation of insulin-and cAMP-dependent activation by phosphorylation. [J]. Journal of Biological Chemistry.1991;266(20),13385-13390.
    [95]Manganiello VC, Murata T., Taira M., et al. Diversity in cyclic nucleotide phosphodiesterase isoenzyme families.[J]. Archives of biochemistry and biophysics.1995;322(1),1-13.
    [96]Degerman E., Belfrage P., Manganiello V.C. Structure, localization, and regulation of cGMP-inhibited phosphodiesterase (PDE3).[J]. Journal of Biological Chemistry.1997;272(11),6823-6826.
    [97]Degerman E., Landstr m T.R., Wijkander J., et al. Phosphorylation and activation of hormone-sensitive adipocyte phosphodiesterase type 3B.[J]. Methods.1998;14(1),43-53.
    [98]ENGFELDT P., ARNER P., BOLINDER JAN, et al. Phosphodiesterase activity in human subcutaneous adipose tissue in insulin-and noninsulin-dependent diabetes mellitus.[J]. Journal of Clinical Endocrinology & Metabolism.1982;55(5),983-988.
    [99]Landstr m T.R., Mei J., Karlsson M., et al. Down-regulation of cyclic-nucleotide phosphodiesterase 3B in 3T3-L1 adipocytes induced by tumour necrosis factor alpha and cAMP.[J]. Biochemical Journal.2000;346(Pt 2),337-343.
    [100]Xue B., Greenberg A.G., Kraemer F.B., et al. Mechanism of intracellular calcium ([Ca2+] i) inhibition of lipolysis in human adipocytes.[J]. The FASEB Journal.2001;15(13),2527-2529.
    [101]Jimenez M., Leger B., Canola K., et al. [beta] 1/[beta] 2/[beta] 3-adrenoceptor knockout mice are obese and cold-sensitive but have normal lipolytic responses to fasting.[J]. FEBS letters.2002;530(1-3),37-40.
    [102]Flechtner-Mors M., Jenkinson CP, Alt A., et al. In Vivo α1-Adrenergic Lipolytic Activity in Subcutaneous Adipose Tissue of Obese Subjects.[J]. Journal of Pharmacology and Experimental Therapeutics.2002;301(1), 229-233.
    [103]Amer P. Adrenergic receptor function in fat cells.[J]. The American journal of clinical nutrition.1992;55(1), 228S-236S.
    [104]Galvin-Parton P.A., Chen X., Moxham C.M., et al. Induction of Gaq-specific antisense RNA in vivo causes increased body mass and hyperadiposity.[J]. Journal of Biological Chemistry.1997;272(7),4335-4341.
    [105]Thonberg H., Fredriksson J.M., Nedergaard J., et al. A novel pathway for adrenergic stimulation of cAMP-response-element-binding protein (CREB) phosphorylation:mediation via alphal-adrenoceptors and protein kinase C activation.[J]. Biochemical Journal.2002;364(Pt 1),73-79.
    [106]Sanchez-Margalet V., Gonzalez-Yanes C. Pancreastatin inhibits insulin action in rat adipocytes.[J]. American Journal of Physiology-Endocrinology And Metabolism.1998;275(6), E1055-E1060.
    [107]Gonzalez-Yanes C., Sanchez-Margalet V. Pancreastatin modulates insulin signaling in rat adipocytes: mechanisms of cross-talk.[J]. Diabetes.2000;49(8),1288-1294.
    [108]Naghshineh S., Noguchi M., Huang KP, et al. Activation of adipocyte adenylate cyclase by protein kinase C.[J]. Journal of Biological Chemistry.1986;261(31),14534-14538.
    [109]Fricke K., Heitland A., Maronde E. Cooperative activation of lipolysis by protein kinase A and protein kinase C pathways in 3T3-L1 adipocytes.[J]. Endocrinology.2004;145(11),4940-4947.
    [110]Romanelli A., van de Werve G. Activation of mitogen-activated protein kinase in freshly isolated rat hepatocytes by both a calcium-and a protein kinase C--dependent pathway* 1.[J]. Metabolism.1997;46(5), 548-555.
    [111]Lindquist J.M., Fredriksson J.M., Rehnmark S., et al. β3-and al-adrenergic Erkl/2 activation is Src-but not Gi-mediated in brown adipocytes.[J]. Journal of Biological Chemistry.2000;275(30),22670-22677.
    [112]Quinn C. E., Hamilton P. K., Lockhart C. J., et al. Thiazolidinediones:effects on insulin resistance and the cardiovascular system.[J]. Br J Pharmacol.2008; 153(4),636-645.
    [113]Bajaj M., Suraamornkul S., Hardies LJ, et al. Effects of peroxisome proliferator-activated receptor (PPAR)-a and PPAR-y agonists on glucose and lipid metabolism in patients with type 2 diabetes mellitus.[J]. Diabetologia.2007;50(8),1723-1731.
    [114]Duan S.Z., Usher M.G., Mortensen R.M. PPARs:the vasculature, inflammation and hypertension.[J]. Current Opinion in Nephrology and Hypertension.2009; 18(2),128-133.
    [115]Kershaw E. E., Schupp M., Guan H. P., et al. PPARgamma regulates adipose triglyceride lipase in adipocytes in vitro and in vivo.[J]. Am J Physiol Endocrinol Metab.2007;293(6), E1736-1745.
    [116]Wei S., Yang J., Lee S.L., et al. PPAR [gamma]-independent antitumor effects of thiazolidinediones.[J]. Cancer letters.2009;276(2),119-124.
    [117]Chiarelli F, Di Marzio D. Peroxisome proliferator-activated receptor-y agonists and diabetes:Current evidence and future perspectives.[J]. Vascular Health and Risk Management.2008;4(2),297-304.
    [118]Boden G., Zhang M. Recent findings concerning thiazolidinediones in the treatment of diabetes.[J].2006.
    [119]Stumvoll M. Thiazolidinediones-some recent developments.[J]. Expert Opinion on Investigational Drugs. 2003;12(7),1179-1187.
    [120]Erdmann E., Dormandy J.A., Charbonnel B., et al. The Effect of Pioglitazone on Recurrent Myocardial Infarction in 2,445 Patients With Type 2 Diabetes and Previous Myocardial Infarction::Results From the PROactive (PROactive 05) Study.[J]. Journal of the American College of Cardiology.2007;49(17), 1772-1780.
    [121]Wilcox R., Bousser M.G., Betteridge D.J., et al. Effects of pioglitazone in patients with type 2 diabetes with or without previous stroke:results from PROactive (PROspective pioglitAzone Clinical Trial In macro Vascular Events 04).[J]. Stroke.2007;38(3),865-873.
    [122]Kahn S.E., Haffner S.M., Heise M.A., et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy.[J]. New England Journal of Medicine.2006;355(23),2427-2443.
    [123]Rau O., Wurglics M., Dingermann T., et al. Screening of herbal extracts for activation of the human peroxisome proliferator-activated receptor.[J]. Pharmazie.2006;61(11),952-956.
    [124]Dong H., Lu F. E., Gao Z. Q., et al. Effects of emodin on treating murine nonalcoholic fatty liver induced by high caloric laboratory chaw.[J]. World J Gastroenterol.2005;11(9),1339-1344.
    [125]Li X., Liu W., Wang Q., et al. Emodin suppresses cell proliferation and fibronectin expression via p38MAPK pathway in rat mesangial cells cultured under high glucose.[J]. Mol Cell Endocrinol.2009;307(1-2),157-162.
    [126]Kim S.H., Choung S.Y. Antihyperglycemic and antihyperlipidemic action of Cinnamomi Cassiae (Cinnamon bark) extract in C57BL/Ks db/db mice.[J]. Archives of pharmacal research.2010;33(2),325-333.
    [127]Sheng X., Zhang Y, Gong Z., et al. Improved Insulin Resistance and Lipid Metabolism by Cinnamon Extract through Activation of Peroxisome Proliferator-Activated Receptors. [J]. PPAR Res.2008;2008, 581348-581357.
    [128]Li R. J., Qiu S. D., Chen H. X., et al. The immunotherapeutic effects of Astragalus polysaccharide in type 1 diabetic mice.[J]. Biol Pharm Bull.2007;30(3),470-476.
    [129]Shen P., Liu MH, Ng TY, et al. Differential effects of isoflavones, from Astragalus membranaceus and Pueraria thomsonii, on the activation of PPARalpha, PPARgamma, and adipocyte differentiation in vitro.[J]. The Journal of nutrition.2006;136(4),899-905.
    [130]Xu M. E., Xiao S. Z., Sun Y. H., et al. Effects of astragaloside IV on pathogenesis of metabolic syndrome in vitro.[J]. Acta Pharmacol Sin.2006;27(2),229-236.
    [131]Xu M. E., Xiao S. Z., Sun Y. H., et al. The study of anti-metabolic syndrome effect of puerarin in vitro.[J]. Life Sci.2005;77(25),3183-3196.
    [132]Waki H., Yamauchi T., Kadowaki T. PPARgamma antagonist as a potential drug for the treatment of obesity and diabetes.[J]. Nippon rinsho Japanese journal of clinical medicine.2010;68(2),350-355.
    [133]Chen Y, Li Y., Wang Y, et al. Berberine improves free-fatty-acid-induced insulin resistance in L6 myotubes through inhibiting peroxisome proliferator-activated receptor gamma and fatty acid transferase expressions.[J]. Metabolism.2009;58(12),1694-1702.
    [134]Huang C., Zhang Y, Gong Z., et al. Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARgamma pathway.[J]. Biochem Biophys Res Commun.2006;348(2),571-578.
    [135]Zhou J. Y., Zhou S. W., Zhang K. B., et al. Chronic effects of berberine on blood, liver glucolipid metabolism and liver PPARs expression in diabetic hyperlipidemic rats.[J]. Biol Pharm Bull.2008;31(6),1169-1176.
    [136]Lee H., Kang R., Kim Y. S., et al. Platycodin D inhibits adipogenesis of 3T3-L1 cells by modulating kruppel-like factor 2 and peroxisome proliferator-activated receptor gamma.[J]. Phytother Res. 2010;24(S2),S161-S167.
    [137]Gong Z., Huang C., Sheng X., et al. The role of tanshinone IIA in the treatment of obesity through peroxisome proliferator-activated receptor gamma antagonism.[J]. Endocrinology.2009;150(1),104-113.
    [138]谭漪,谢春光.白虎加人参汤治疗2型糖尿病的临床观察.[J].成都中医药大学学报.2002;25(4),23-24.
    [139]陈俊,万琳,董晓云,等.白虎人参汤对改善2型糖尿病IR的疗效观察.[J].辽宁中医学院学报.2005;7(2),138-139.
    [140]游龙,白会玲,谷艳丽.白虎加人参汤联合降糖药治疗2型糖尿病疗效观察.[J].现代中西医结合杂志.2009;18(19),2286-2287.
    [141]戴锦成,江月裴,等.人参白虎汤加减方对糖尿病模型大鼠影响的实验研究.[J].福建中医学院学报.2001:11(3),49-52.
    [142]李春光.人参石膏汤治疗糖尿病黎明现象50例.[J].内蒙古中医药.2005;24(3),3-4.
    [143]李秀英.人参茯苓散加减治疗2型糖尿病高尿酸血症48例临床观察.[J].中医药导报.2010;16(6),45-46.
    [144]赵玲瑜.人参宁神汤治疗糖尿病心血管自主神经病变35例.[J].湖南中医杂志.2005;21(3),76.
    [145]廖明波,常桂荣,王宏.人参降糖灵治疗2型糖尿病.[J].中国现代临床医学.2004;3(8),14-15.
    [146]尚文斌,杨颖,陈名道.人参及其主要成分抗糖尿病作用机制.[J].国际内分泌代谢杂志.2007;27(2),115-117.
    [147]陈艳,刘杨,高晓鸽,等.人参水提物对小鼠血糖及血脂代谢的影响.[J].东北师大学报:自然科学版.2009;41(4),112-115.
    [148]胡翠华,徐华丽,于晓风,等.人参二醇组皂苷对实验性2型糖尿病大鼠血糖及血脂代谢的影响.fJ].吉林大学学报:医学版.2006;32(6),1004-1008.
    [149]张学凯,赵宗江,崔秀明,等Rg1、Rb1对糖尿病肾病大鼠肾脏保护作用及其对肾组织MCP-1 mRNA与蛋白表达的影响.[J].中国中西医结合肾病杂志.2008;9(7),578-581.
    [150]Pedersen O. Genetics of insulin resistance.[J]. Exp Clin Endocrinol Diabetes.1999; 107(2),113-118.
    [151]王娟,李彩萍.胰岛素抵抗与2型糖尿病.[J].医学综述.2005;11(6),511-513.
    [152]李焱.氧化应激与胰岛素抵抗及其对策.[J].实用糖尿病杂志.2007;3(3),6-7.
    [153]Moran A., Zhang H. J., Olson L.K., et al. Differentiation of glucose toxicity from beta cell exhaustion during the evolution of defective insulin gene expression in the pancreatic islet cell line, HIT-T15.[J]. Journal of Clinical Investigation.1997;99(3),534-539.
    [154]Hannele Yki-Jrvinen. Toxicity of hyperglycaemia in type 2 diabetes.[J]. Diabetes/metabolism reviews. 1998;14(S1), S45-S50.
    [155]Souza S.C., de Vargas L.M., Yamamoto M.T., et al. Overexpression of Perilipin A and B blocks the ability of tumor necrosis factor a to increase lipolysis in 3T3-L1 adipocytes.[J]. Journal of Biological Chemistry. 1998;273(38),24665-24669.
    [156]Reaven GM. The fourth musketeer-from Alexandre Dumas to Claude Bernard.[J]. Diabetologia.1995;38(1), 3-13.
    [157]Golay A., Felber J.P., Jequier E., et al. Metabolic basis of obesity and noninsulin-dependent diabetes mellitus.[J]. Diabetes/metabolism reviews.1988;4(8),727-747.
    [158]Boden G. Effects of free fatty acids (FFA) on glucose metabolism:significance for insulin resistance and type 2 diabetes.[J]. Experimental and Clinical Endocrinology and Diabetes.2003;111(3),121-124.
    [159]Santomauro AT, Boden G., Silva ME, et al. Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects.[J]. Diabetes.1999;48(9), 1836-1841.
    [160]Charles MA, Eschwege E., Thibult N., et al. The role of non-esterified fatty acids in the deterioration of glucose tolerance in Caucasian subjects:results of the Paris Prospective Study.[J]. Diabetologia.1997;40(9), 1101-1106.
    [161]Paolisso G., Tataranni PA, Foley JE, et al. A high concentration of fasting plasma non-esterified fatty acids is a risk factor for the development of NIDDM.[J]. Diabetologia.1995;38(10),1213-1217.
    [162]Wellen K. E., Hotamisligil G. S. Inflammation, stress, and diabetes.[J]. J Clin Invest.2005;115(5),1111-1119.
    [163]Hotamisligil G. S., Shargill N. S., Spiegelman B. M. Adipose expression of tumor necrosis factor-alpha:direct role in obesity-linked insulin resistance.[J]. Science.1993;259(5091),87-91.
    [164]Uysal K. T., Wiesbrock S. M., Marino M. W., et al. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function.[J]. Nature.1997;389(6651),610-614.
    [165]Yin M. J., Yamamoto Y., Gaynor R. B. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta.[J]. Nature.1998;396(6706),77-80.
    [166]DeFronzo R.A., Gunnarsson R., Bj rkman O., et al. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type Ⅱ) diabetes mellitus.[J]. Journal of Clinical Investigation. 1985;76(1),149-155.
    [167]Ohmura E., Hosaka D., Yazawa M., et al. Association of free fatty acids (FFA) and tumor necrosis factor-alpha (TNF-a) and insulin-resistant metabolic disorder.[J]. Hormone and metabolic research.2007;39(3),212-217.
    [168]Zhang H.H., Halbleib M., Ahmad F., et al. Tumor necrosis factor-a stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP.[J]. Diabetes.2002;51(10),2929-2935
    [169]Mohamed-Ali V., Goodrick S., Rawesh A., et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-a, invivo.[J]. Journal of Clinical Endocrinology & Metabolism.1997;82(12),4196.
    [170]Pouliot MC, Despres JP, Nadeau A., et al. Visceral obesity in men. Associations with glucose tolerance, plasma insulin, and lipoprotein levels.[J]. Diabetes.1992;41(7),826-834.
    [171]Banerji MA, Lebowitz J., Chaiken R.L., et al. Relationship of visceral adipose tissue and glucose disposal is independent of sex in black NIDDM subjects.[J]. American Journal of Physiology-Endocrinology And Metabolism.1997;273(2), E425-E432.
    [172]Lemieux S., Prud'Homme D., Nadeau A., et al. Seven-year changes in body fat and visceral adipose tissue in women. Association with indexes of plasma glucose-insulin homeostasis.[J]. Diabetes Care.1996; 19(9), 983-991.
    [173]Klein S., Fontana L., Young V.L., et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease.[J]. New England Journal of Medicine.2004;350(25),2549-2557.
    [174]Abate N., Garg A., Peshock RM, et al. Relationships of generalized and regional adiposity to insulin sensitivity in men.[J]. Journal of Clinical Investigation.1995;96(1),88-98.
    [175]Goodpaster BH, Thaete FL, Simoneau JA, et al. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat.[J]. Diabetes.1997;46(10),1579-1585.
    [176]Richelsen B., Pedersen S.B., Moller-Pedersen T., et al. Regional differences in triglyceride breakdown in human adipose tissue:Effects of catecholamines, insulin, and prostaglandin E2.[J]. Metabolism.1991;40(9), 990-996.
    [177]Busetto L., Digito M., Dalla Monta P., et al. Omental and Epigastric Adipose Tissue Lipolytic Activity in Human Obesity.[J]. Horm Metab Res.1993;25(7),365-371.
    [178]Kabir M., Catalano K.J., Ananthnarayan S., et al. Molecular evidence supporting the portal theory:a causative link between visceral adiposity and hepatic insulin resistance.[J]. American Journal of Physiology-Endocrinology And Metabolism.2005;288(2), E454-E461.
    [179]Raz I., Eldor R., Cernea S., et al. Diabetes:insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage.[J]. Diabetes/metabolism research and reviews.2005;21(1), 3-14.
    [180]Kurioka S., Murakami Y, Nishiki M., et al. Relationship between visceral fat accumulation and anti-lipolytic action of insulin in patients with type 2 diabetes mellitus.[J]. Endocrine journal.2002;49(4),459-464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700