金针菇多糖的免疫调节作用、抗肿瘤作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量研究表明金针菇具有抗肿瘤、免疫调节、抗病毒、抗炎、抗疲劳、耐缺氧等功能。金针菇中含有多种有效成分,其中金针菇多糖受到广泛关注,其主要作用表现为免疫调节与抗肿瘤。免疫调节方面的研究证明金针菇多糖(FVP)能促进正常和荷瘤小鼠脾淋巴细胞转化,增强NK细胞活性和增加IL-2的生成,增强正常小鼠腹腔巨噬细胞的吞噬能力,增加正常小鼠的血清溶血素含量。抗肿瘤方面的研究证明金针菇多糖(FVP)对小鼠S_(180)肉瘤、小鼠腹水型肝细胞癌H_(22)有抑制作用,对治疗卵巢癌、乳腺癌都有较好疗效。但在细胞因子水平上金针菇多糖如何发挥免疫调节作用和抗肿瘤作用尚不完全清楚,有待深入研究。
     目的:
     1.研究金针菇多糖(FVP)对正常小鼠脾细胞产生肿瘤坏死因子-α(TNF-α)、干扰素-γ(INF-γ)、白细胞介素-2(IL-2)的影响,及对脾细胞代谢MTT活力的影响。
     2.研究金针菇多糖(FVP)对正常小鼠腹腔渗出细胞产生肿瘤坏死因子-α(TNF-α)的影响,及对腹腔渗出细胞代谢MTT活力的影响。
     3.研究金针菇多糖(FVP)对荷S_(180)实体瘤小鼠血清肿瘤坏死因子-α(TNF-α)、干扰素-γ(INF-γ)含量的影响及抑瘤作用。
     4.研究金针菇多糖(FVP)免疫调节作用和抗肿瘤作用的作用机制。
     方法:
     1.取正常小鼠脾细胞,加入金针菇多糖(FVP),在37℃下培养48h,收集培养上清,用ELISA方法检测其中TNF-α、IFN-γ、IL-2的含量,或者用MTT比色法检测细胞代谢MTT活力。
     2.取正常小鼠腹腔渗出细胞,加入金针菇多糖(FVP),在37℃下培养10h,收集培养上清,用ELISA方法检测其中TNF-α的含量,或者用MTT比色法检测细胞代谢MTT活力。
     3.建立荷S_(180)实体瘤小鼠动物模型,空白对照组:每天腹腔注射(ip)无菌生理盐水0.1ml/10g体重,其他组给药体积与此相同;阳性对照组:每天ip灵芝多糖100 mg/kg;FVP低、中、高剂量组:每天分别ip FVP 25、50、100mg/kg;连续给药7d后次日上午,分离血清用于TNF-α和IFN-γ的含量测定。取血后,分离瘤体,称重,并计算抑瘤率和脾脏指数。
     结果:
     1.FVP(50,100,200μg/ml)可以增强正常小鼠脾细胞代谢MTT活力,促进脾细胞分泌TNF-α、INF-γ、IL-2,且增强作用随多糖浓度的增加而增强,在一定浓度范围内具有剂量依赖关系。与对照组相比,FVP促进脾细胞分泌TNF-α的作用最为明显。
     2.FVP(50,100,200μg/ml)对正常小鼠腹腔渗出细胞代谢MTT活力有增强作用,可以显著促进腹腔渗出细胞分泌TNF-α(P=0.000,0.000,0.000),且有一定的浓度依赖关系。
     3.FVP(25,50,100mg/kg)三个剂量组对小鼠S_(180)实体瘤生长均有抑制作用(P=0.000,0.000,0.000),且可以增加S_(180)实体瘤小鼠的脾脏指数(P=0.000,0.000,0.000)。其中,中、高剂量组可提高荷S_(180)实体瘤小鼠血清中TNF-α的水平(P=0.005,0.000)和INF-γ的水平(P=0.047,0.009),具有一定的剂量依赖关系。
     4.FVP(200μg/ml)能促进正常小鼠腹腔渗出细胞产生TNF-α,抗TLR4抗体(1和2μg/ml)对这一促进作用有显著的对抗作用(P=0.034,0.010),但不能完全阻断;然而,p38 MAPK特异性阻断剂SB203580(20μM)和NF-κB特异性阻断剂helenalin(10μM),可以完全取消FVP促进荷瘤小鼠腹腔巨噬细胞分泌TNF-α的作用(P=0.006,0.003)。
     结论:
     1.金针菇多糖促进正常小鼠脾细胞代谢MTT活力和分泌细胞因子TNF-α、IFN-γ、IL-2。
     2.金针菇多糖促进正常小鼠腹腔渗出细胞代谢MTT活力和分泌细胞因子TNF-α。
     3.金针菇多糖抑制小鼠荷S_(180)实体瘤的生长,并且提高荷S_(180)实体瘤小鼠血清中TNF-α和IFN-γ的水平。
     4.金针菇多糖促进TNF-α产生的信号转导机制可能是作用于小鼠腹腔渗出细胞上的TLR4,然后经p38 MAPK信号转导途径激活NF-κB,后者启动TNF-α基因转录。
     5.金针菇多糖免疫调节作用和抗肿瘤作用可能与促进正常小鼠产生TNF-α有关。
Numerous studies have demonstrated that Flammulina velutipes polysaccharides have anti-tumor,immunomodulatory,anti-virus,anti-inflammation,anti-fatigue and anti-hypoxia effects.Flammulina velutipes have many biological active components and people have paid much attention to Flammulina velutipes polysaccharides(FVP), whose main functions are immunomodulatory action and anti-tumor effect.The research on immunomodulation has testified that FVP can promote spleen cells transformation in normal and S_(180) tumor-bearing mice,enhance activities of NK cells and the production of interleukin 2,strengthen phagocytosis of peritoneal macrophages in normal mice,and increase the amount of serum hemolysin in normal mice.The study of anti-tumor effect have proven that FVP can inhibit S_(180) sarcoma and H_(22) ascitic type hepatic tumor,and FVP have favorable effects on ovarian cancer and breast cancer.But the mechanism of immunomodulatory and anti-tumor effects of FVP on cytokines is still unclear.It is,therefore,necessary for the mechanism to be further studied.
     Objective:
     1.To study the effect of Flammulina velutipes polysaccharides(FVP) on the production of tumor necrosis factorα(TNF-α),interferonγ(INF-γ) and interleukin 2 (IL-2) by murine spleen cells,and the effect on spleen cells metabolic activity with methylthiazolyl tetrazolium(MTT) colorimetry assay.
     2.To investigate the effect of Flammulina velutipes polysaccharides(FVP) on the production of tumor necrosis factorα(TNF-α) by murine peritoneal exudate cells and the effect on peritoneal exudate cells metabolic activity with methylthiazolyl tetrazolium(MTT) colorimetry assay.
     3.To study the effect of Flammulina velutipes polysaccharides(FVP) on the serum amount of tumor necrosis factorα(TNF-α) and interferonγ(INF-γ) in S_(180) tumor-bearing mice,and the tumor growth inhibition rate.
     4.To explore the mechanisms of immunomodulatory and anti-tumor actions of Flammulina velutipes polysaccharides(FVP).
     Methods:
     1.Splenocytes from normal mouse were incubated at 37℃in the presence of Flammulina velutipes polysaccharides(FVP) for 48h.ELISA was employed to determine the amount of TNF-α,IFN-γ,and IL-2 in the culture supernatants.And MTT colorimetry was used for the assay of cell metabolic activity.
     2.Peritoneal exudate cells from normal mouse were incubated at 37℃in the presence of Flammulina velutipes polysaccharides(FVP) for 10h.ELISA was employed to determine the amount of TNF-αin the culture supernatants.And MTT colorimetry was used for the assay of cell metabolic activity.
     3.Mouse models bearing S_(180) solid tumor were established.The control group was then administered intraperitoneally with sterile physiological saline solution at 0.1ml/10g body weight.The administered volume of other groups was the same as that of control.The positive control group was administered with Ganoderma lucidum polysaccharides(GLP),at 100 mg/kg intraperitoneally and the low,median and high dose groups of Flammulina velutipes polysaccharides were administered at 25,50,and 100mg/kg intraperitoneally.After 7 consecutive days,the serum samples were collected.Then TNF-αand IFN-γlevels in the samples were measured by using enzyme-linked immunosorbent assay(ELISA).Then the implanted tumors and spleens were removed and weighed,and the tumor growth inhibition rate and spleen index were calculated.
     Results:
     1.FVP(50,100 and 200μg/ml) could promote the metabolic activity of murine splenocytes and increase the amount of TNF-α,INF-γand IL-2 in the supernatants of splenocyte cultures.The effect increased along with the increment of the concentration of FVP was in a concentration-dependent manner in a certain range of concentrations.Compared with control group,the promotion effect on TNF-αlevel appeared to be strongest among the cytokines examined.
     2.FVP(50,100,and 200μg/ml) could promote the metabolic activity of murine peritoneal exudate cells and obviously increase the amount of TNF-αin peritoneal exudate cells cultures(P=0.000,0.000,and 0.000) in a concentration-dependent manner.
     3.FVP(25,50,and 100mg/kg) could inhibite the growth of S_(180) solid tumor (P=0.000,0.000,and 0.000),and increase the index of spleen in S_(180) solid tumor mice (P=0.000,0.000,and 0.000).The median and high doses of FVP could raise the serum levels of TNF-α(P=0.005 and 0.000) and INF-γ(P=0.047 and 0.009) in the S_(180) tumor-bearing mice in a dose-dependent manner.
     4.FVP(200μg/ml) promoted the production of TNF-αby murine peritoneal exudate cells.Anti-TLR4 antibody(1 and 2μg/ml) showed marked,although not complete,suppression on this effect(P=0.034 and 0.010).However,specific p38 MAPK blocker SB203580(20μM) and NF-κB blocker helenalin(10μM) could completely abolish the stimulatory effect of FVP on the production of TNF-αby murine peritoneal exudate cells(P=0.006 and 0.003).
     Conclusion:
     1.FVP can promote the metabolic activity of murine splenocytes and increase the amount of TNF-α,INF-γand IL-2 in the supernatants of splenocytes cultures.
     2.FVP can promote the metabolic activity of murine peritoneal exudate cells and obviously increase the amount of TNF-αin peritoneal exudate cells cultures.
     3.FVP can inhibite the growth of S_(180) solid tumor,and increase the serum levels of TNF-αand INF-γin S_(180) solid tumor mice.
     4.The signaling mechanism by which FVP promote TNF-αproduction may be as follows,the polysaccharides act on the TLR4 receptors on murine peritoneal exudate cells,signal through p38 MAPK pathway,and then activate NF-κB.The activated NF-κB in turn initiates the gene transcription of TNF-α.
     5.The mechanism of immunomodulatory and anti-tumor effects of FVP may be related with their potentiation of the production of TNF-αin mice.
引文
[1]王超,康立源.中药多糖的药理学研究进展[J].世界科学技术-中医药现代化,2008,(03):82-86.
    [2]张群,雷林生,吴曙光.多糖类药物作用的受体及信号转导机制的研究进展[J].中草药,2005,36(04):614-616.
    [3]吴梧桐,高美凤,吴文俊.多糖的抗肿瘤作用研究进展[J].中国天然药物,2003,1(03):182-186.
    [4]周永.多糖抗肿瘤作用的研究进展[J].国外医学卫生分册,2001,28(3):129-132.
    [5]聂伟,张永祥.多糖的免疫调节作用及其作用机制研究进展[J].中国药理学通报,1999,15(06):484-487.
    [6]Wasser SP,Weis AL.Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms:a modern perspective.Crit Rev Immunol,1999,19(1):65-96.
    [7]Wasser SP.Meducinal mushrooms as a source of antitumor and immunomodulating polysaccharides[J].Appl Microbial Biotechnol,2002,6(3):258-274.
    [8]陈旋,张翼,张剑波.植物多糖的研究进展[J].中国新药杂志,2007,16(13):1000-1005.
    [9]吴希哲,高向东.金针菇提取物的保肝及抗肿瘤作用[J].中国生化药物杂志,2002,23(04):176-178.
    [10]何朝勇,王立为.多糖的免疫调节作用综述[J].安徽中医学院学报,2002,21(04):62-64.
    [11]王阳,王伯初,周菁.多糖的免疫调节功能研究进展[J].重庆大学学报(自然科学版),2004,27(03):104-107
    [12]贺新怀,席孝贤.中医药免疫学[M].北京:人民军医出版社.2002.
    [13]Tang W,Heman I,Bertram B.Recent development of antitumor a-gents from Chinese Herbal medicines,PartⅡ.High molecular com-pounds[J].Planta Med,2003,69(3):193-201.
    [14]白吉庆,王小平,贺新怀,席孝贤.中药多糖的免疫佐剂作用[J].陕西中医学院学报,2005,28(04):64-65.
    [15]李循,孔繁智,朱婉萍.中药多糖抗肿瘤作用研究进展[J].浙江中医杂志,2006,41(20):113-116.
    [16]辛晓明,王大伟,赵娟.多糖化合物抗肿瘤机制研究进展[J].医学综述,2008,14(16):2436-38
    [17]郑敏,王亚平.中药多糖抗肿瘤的药理学研究进展[J].国外医学中医中药分册,2000,22(5):259-263.
    [18]侯新江.中药多糖抗肿瘤机制研究进展[J].井冈山医专学报,2005,(03):26-8.
    [19]李建军,雷林生,余传林.灵芝多糖抗肿瘤作用的免疫学相关性研究[J].中药材,2007,30(1):71-73.
    [20]Carpenter CL,Cantley LC.Phosphoinositide kinases[J].Biochemistry,1990,29(51):11147-56.
    [21]Ponzoni M.Retinoic acid rapidly decreases phosphatidylinositol turnover during neuroblastoma cell differentiation[J].J Neurochem,1990,54(2):540-6.
    [22]Rana RS,Hokin LE.Role of phosphoinositides in transmembrane signaling[J].Physical Rev,1990,70(1):115-164.
    [23]李明春,雷林生,王庆彪.灵芝多糖对小鼠巨噬细胞内三磷酸肌醇和二酰基甘油的作用研究[J].中药药理与临床,1999,15(5):20-22.
    [24]袁仲.金针菇的保健功能与加工利用[J].农产品加工(学刊),2005,(06,07):125-128.
    [25]刁治民,芦光新.金针菇的营养价值及保健作用[J].青海草业, 1998,7(04):28-30.
    [26]魏华,谢俊杰,吴凌伟.金针菇的营养保健作用[J].食用菌学报,1995,2(01):59-64.
    [27]Rick G.Kelsey,Nan C.Vance.The treatment of human cancer with agents prepared from bovine cartilage[J].Journal of Natural Product,1992,55(7):912-918.
    [28]方哨征,严茂祥,陈芝芸,项柏康.金针菇多糖抗肿瘤作用的研究[J].浙江中医学院学报,1996,20(05):34-35.
    [29]朱曙东,严茂祥,陈芝芸,曹俊敏.金针菇多糖免疫活性的研究[J].浙江中医学院学报,2001,25(04):43-44.
    [30]陈芝芸,严茂祥,项柏康,朱曙东,黄小民.金针菇多糖对小鼠体内脾淋巴细胞转化、自然杀伤细胞活性及白细胞介素-2产生的影响[J].中国中西医结合杂志,2001,21(06):105-107.
    [31]严茂祥,陈芝芸,项柏康,黄小民.金针菇多糖对小鼠血清溶血素产生及抗体形成细胞的影响[J].中医药信息,2003,20(05):56-57.
    [32]安明榜,梁发权,吕宝璋.金针菇多糖对大鼠脾淋巴细胞增殖反应及IL—2产生的影响[J].中国免疫学杂志,1994,10(02):113.
    [33]袁强,陈芝芸,严茂祥.金针菇多糖对环磷酰胺的增效减毒作用[J].中国中药杂志,2005,30(12):933-935.
    [34]Kamasuka T,Momoki T,Sakai S.Antitumor activity of polysaccharide fractions prepared from some strains of Basidiomycetes[J].Gann,59(5):443-445.
    [35]Ohkuma T,Otagiri K,Ikekawa T..Augmentation of antitumor activity by combined cryo-destruction of sarcoma 180 and protein-bound polysaccharide,EA6,isolated from Flammulina velutipes(Curt.ex Fr.) Sing.in ICR mice[J].J Pharmacobiodyn,1982,5(6):439-44.
    [36]Ohkuma T,Tanaka S.Augmentation of host's immunity by combined of sarcoma 180 and administration of protein-bound polysacchride,EA6,isolated from Flammulina velutipes(Curt.Ex Fr.) Sing.In ICR mice[J].J Pharmacobiodyn,1983,6(2):88-95.
    [37]Leung N Y,Fung K P.The isolation and characterization of an immunomodulatory and anti-tumeor polysaccharide preparation from Flammulina velutipes[J].Immunopharmacology,1997,35(3):255-263.
    [38]严茂祥,陈芝芸,项柏康,黄小民.金针菇多糖对小鼠移植性肿瘤抗瘤效应的实验研究[J].中国中医药科技,1999,6(06):379-380.
    [39]苗立成,王立强,吴迪.金针菇多糖对小鼠抗肿瘤及抗白血病效应的实验研究[J].解放军药学学报,2003,19(03):171-173.
    [40]古翠萍,张沂平.TNF-α抗肿瘤作用机制新进展[J].中国肿瘤,2007,(02):102-105.
    [41]陈蕾.细胞因子与肿瘤治疗.癌变·畸变·突变[N],2003,15(3):189-192.
    [42]张冬青,廖俊杰.铁皮石斛试管培养物多糖含量测定[J].中药材,2005,28(06):450-451.
    [43]26.Baugh JA,Bucala R.Mechanisms for modulating TNF-αin immune and inflammatory disease[J].Curr Opin Drug Discov Devel,2001,4(5):635-650.
    [44]马常慧,陈海滨.肿瘤坏死因子受体1的信号传导与肿瘤的关系[J].汕头大学医学院学报,2008,21(01):58-60.
    [45]Takada Y,Sung B,Setii G,et al.Evidence that genetic deletion of the TNF receptor p60 or p80 inhibits Fas mediated apoptosis in macrophages[J].Biochem Pharmacol,2007,74(7):1057-1064.
    [46]M Saeed S,Ying H.Death receptor activation complex:it takes two to active TNF receptor 1[J].Cell Cycle,2003,2(6):550-552.
    [47]Zhang JY,Adams AE,Ridky TW,et al.Tumor necrosis factor receptor1/c-Jun-NH_2-kinase signaling promotes human neoplasia[J].Cancer Res,2007,67(8):3827-3834.
    [48]Tesz GJ,Guilherme A,Guntur KV,et al.Tumor necrosis factor alpha (TNFalpha) stimulates Map4k4 expression through TNFalpha receptor 1signaling to c-Jun and activating transcription factor 2[J].J Biol Chem,2007,282(27):19302-19312.
    [49]薛爱珍,邓旻,史亦谦.中药多糖促诱生细胞因子的研究进展[J].浙江中西医结合杂志,2007,(01):64-66.
    [50]张建,韦星呈,鲍蕾.北冬虫夏草多糖对人肿瘤坏死因子α、白细胞介素2及其可溶性受体水平的影响[J].中国实用内科杂志,1997,17(12):727-728.
    [51]奚瑾磊,彭仁,杨哲琼.当归多糖及其中性组分对巨噬细胞分泌TNF-α的影响[J].武汉大学学报(医学版),2002,23(1):21-23.
    [52]曾献春,江岩,刘金宝.杏多糖粗提物对荷瘤小鼠免疫功能的影响[J].中国临床康复,2005,9(18):142-143.
    [53]Medzhitov R,Preston-Hurlburt P,Janeway CA Jr.A human homologue of the Drosophila toll protein signals activation of adaptive immunity[J].Nature,1997,388(6640):394-7.
    [54]宫存杞;张君;谢建新;多糖免疫调节作用的受体研究进展[J].西部医学,2007,19(2):290-291.
    [55]Chervonsky AV,Medzhitov RM,Denzin LK.Subtle conformational changes induced in major histocompatibility complex class Ⅱ molceules by binding peptides[J].Proc Natl Acad sci USA,1998,95(17):10094-10099.
    [56]Medzhitov R,Janeway CA Jr.An ancient system of host defense[J].Curr Opin Immunol,1998,10(1):12-15.
    [57]Medzh itov R,Preston2Hurlburt P,Janeway CA Jr.A human homologue of the Drosophila Toll protein signals activation of adaptive immunity[J].N ature, 1997,388(6640):394-397.
    [58]LiW,Yajima T,Saito K,et al.Immuno stimulating properties of ntragastrically administered A cetobacter-derived soluble branched(1,4)-beta-D-glucans decrease murine susceptibility to Listeria monocytogenes[J].Infect Immun,2004,72(12):7005-7011.
    [59]Brown GD,Herre J,William s DL,et al.Dectin-1 mediates the biological effects of glucans[J].J Exp Med,2003,197(9):1119-1124.
    [60]Ando I,Tsukumo Y,et al.Safflower polysaccharides activate the transcription factor NF-κB via Toll-like receptor 4 and induce cytokine production by macrophages[J].Int Immunopharmacol,2002,2(8):1155-1162.
    [61]S.B.Han,Y.D.Yoon,H.J.A hn et al.Toll-like receptor-mediated activation of B cells and macrophages by polysaccharide isolated from cell culture of A canthopanax senticosus[J].International Immunopharmacology,2003,3(9):1301-1312.
    [62]Lin YL,Liang YC,Lee SS,et al.Polysaccharide purified from Ganoderma lucidum induced activation and maturation of human monocyte-derived dendritic cellsby the NF-kappaB and p38 mitogen-activated protein kinase pathways[J].J Leukoc Biol,2005,78(2):533-543.
    [63]王国兴.Toll样受体及其信号转导[J].细胞与分子免疫学杂志,2002,18(06):666-669.
    [64]Thoma-Uszynski S,Stenger S.Induction of direct antimicrobial activity through mammalian Toll-like receptor[J].Science,2001,291(5508):1544-1547.
    [65]Chang L,Karin M.Mammalian MAP kinase signaling cascades[J].Nature,2001;410(6824):37-40.
    [66]Obata T,Brown GE,Yaffe MB.MAP kinase pathways activated by stress:the p38MAPK pathway[J].Crit Care Med,2000,28(4):67-77.
    [67]Zarubin T,Han J.Activation and signaling of the p38 MAP kinase pathway[J].Cell Res,2005;15(1):11.
    [68]Brewster JL,De Valoir.An osmosensing signal transduction pathway in yeast[J].Science,1993,259(5099):1760-1763.
    [69]唐皓,马中富.p38 MAPK信号转导通路研究进展[J].热带医学杂志,2004,4(4):501-504.
    [70]Maher P.p38 mitogen-activated protein kinase activation is required for fibroblast growth factor-2-stimulated cell proliferation but not differentiation[J].J Biol Chem,1999,274(25):17491-8.
    [71]Ono K,et al.The p38 signal transduction pathway:activation and function.[J].Cell Signal,2000,12(1):1-13.
    [72]杜宏举,汤宁.丝裂原活化蛋白激酶信号通路及其生物学功能[J].国外医学.卫生学分册,2005,32(04):197-201.
    [73]ST Denis A,Chano F,Tremblay P,et al.Protein kinase C modulates LPS-induced functions in a murine macrophage cell line[J].J Biol Chem,1998,273(49):32787-32792.
    [74]刘海霞,何建.p38MAPK的转导机制及相关疾病[J].中国急救医学,2003,23(12):883-884.
    [75]Badger AM,Bradbeer JN,Votta B,et al.Pharmacological profile of SB 203580,a selective inhibitor of cytokine suppressive binding protein/p38 kinase,in animal models of arthritis,bone resorption,endotoxin shock and immune function[J].J Pharmacol Exp Ther.1996;279(3):1453-61.
    [76]Stanger BZ,Leder P,Lee TH,et al.RIP:a novel protein containing a death domain that interacts with Fas/APO-1(CD95) in yeast and causes cell death[J].Cell,1995;81(4):513-23.
    [77]Rothe M,Sarma V,Dixit VM,et al.TRAF2- mediated activation of NF-kappa-B by TNF-receptor-2 and CD40[J].Science,1995;269(5229):1424-1427.
    [78]徐洁,姚红兵.TNF-α信号传导通路的研究现状[J].泸州医学院学报,2007,30(02):156-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700