siRNA沉默EC109细胞中肿瘤坏死因子受体1对细胞增殖和凋亡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     肿瘤坏死因子受体1(tumor necrosis factor receptor 1,TNFR1)是肿瘤坏死因子(tumor necrosis factor,TNF)的膜受体之一。TNFR1在人体内广泛分布于正常细胞膜表面,也存在于多种肿瘤细胞表面。TNFR1与配体TNF-α或TNF-β结合后,启动相关的信号通路,功能涉及到细胞的活化、增殖、凋亡及细胞毒活性等方面,但在不同的细胞,可以出现相反的结果,其作用机制目前尚不完全清楚。RNA干扰(RNA interference,RNAi)技术是由与靶基因序列同源的双链RNA(double-stranded RNA,dsRNA)引发的普遍存在于生物体中的序列特异性基因转录后沉默过程,越来越广泛地应用于基础实验研究。本研究主要应用RNAi的实验方法,沉默食管癌细胞系EC109中TNFR1的表达,随后探讨对照组与实验组细胞增殖、凋亡等生物学行为的变化。
     材料和方法:
     1. EC109细胞用DMEM+F12培养基常规培养传代,RNAiso Reagent提取细胞总RNA,RT-PCR检测细胞中TNFR1在基因水平的表达。EC109细胞用DMEM+F12培养基常规培养传代,胰酶消化后收集贴壁生长的细胞,PBS清洗、离心、裂解,试剂盒分级提取可溶性亚细胞蛋白组分,所得膜蛋白进行Western Blot分析,检测EC109中TNFR1在蛋白水平的表达。
     2. EC109细胞用DMEM+F12培养基在六孔板内培养,在对转染条件进行优化后,对细胞进行转染,细胞分三组:空白对照组(未加转染试剂及siRNA),阴性对照组(加入转染试剂及阴性对照siRNA),实验组(加入转染试剂及TNFR1-siRNA)。RNAiso Reagent消化细胞后提取各组细胞总RNA,RT-PCR检验基因水平转染效果。试剂盒分级提取可溶性亚细胞蛋白组分,Western Blot技术检验蛋白水平转染效果。
     3.转染24小时后倒置相差显微镜观察细胞形态。
     4.将EC109细胞种于96孔板,对转染条件进行优化,细胞转染后用四甲基偶氮唑蓝(MTT)检测转染前后细胞增殖能力的改变,绘制细胞生长曲线。
     5.收集转染后六孔板中各组细胞,应用流式细胞术检测细胞凋亡的变化情况。
     结果:
     1.由RT-PCR以及Western Blot等手段验证TNFR1在食管癌细胞系EC109中高表达。
     2.将TNFR1-siRNA转染进EC109细胞中,成功封闭了TNFR1的表达。
     3. RNAi处理后,三组细胞在形态上没有显示差别;RNAi处理后MTT检测结果显示,空白对照组和阴性对照组的细胞32小时内的细胞增殖没有差异(P>0.05),实验组的细胞增殖加快(P<0.05);RNAi处理后空白对照组和阴性对照组的细胞凋亡情况无差异(P>0.05),实验组的细胞凋亡率降低(P<0.05)。
     结论:
     1. TNFR1在食管癌细胞系EC109中高表达。
     2.阻断TNFR1的表达使食管癌细胞的增殖、凋亡均发生变化,提示TNFR1在食管癌发生发展中发挥十分重要的作用。
     3.在食管癌细胞系EC109中,TNFR1主要发挥促进细胞凋亡的作用。
Objective:
     Tumor necrosis factor receptor 1(TNFR1) is one of the membrane receptors of tumor necrosis factor (TNF). TNFR1 distributes on the surface of human normal cell membranes generally, as well as many kinds of tumor cell membranes. After binding with its’specific ligand TNF-αor TNF-β, TNFR1 plays an important part in many aspects, such as cell activation, multiplication, apoptosis and toxicity; but the effect may be opposite in different cells. At present, the concrete mechanism is not clear. RNA interference (RNAi), a new experimental technique in recent years, is a specific post-transcriptional gene silencing progress exsisting in the organisms widely, triggered by the double-stranded RNA which is homologous with the target gene sequence. The technology is used in the experimental research more and more extensively. Applying the RNAi, we silenced the expression of TNFR1 in esophageal carcinoma cell line, and then showed the biological behavior changes between experimental group and control group.
     Materials and methods:
     1. EC109 cell line was cultivated in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum. Total RNA was extracted from cells by RNAiso Reagent, the genetic level of TNFR1 was detected by RT-PCR. EC109 cell line was cultivated in DMEM supplemented with 10% fetal bovine serum, then the adherent cells were collected by trypsinization, soluble subcellular protein components were extracted fractionally by ProteoExtract Subcellular Proteome Extraction Kit after PBS washing, centrifugation and spallation, membrane protein component was analysed by Western Blot detecting the protein level of TNFR1 in EC109 cell line.
     2. EC109 cell line was cultivated in DMEM supplemented with 10% fetal bovine serum in six pore plate preparing for transfection, after optimization of cell transfection conditions, cells were divided into three groups : blank control group(without transfection regent and siRNA), negative control group (added transfection regent and negative control-siRNA),experimental group(added transfection regent and TNFR1-siRNA). Cell total RNA was extracted by RNAiso reagent for RT-PCR detecting the effect of RNAi on genetic level. Soluble subcellular protein components were extracted fractionally by ProteoExtract Subcellular Proteome Extraction Kit after PBS washing, centrifugation and spallation, membrane protein component was analysed by Western Blot detecting the effect of RNAi on protein level.
     3. 24 hours after transfection, morphology investigation with inverted phase contrast microscope was adopted.
     4. EC109 cell line grew in 96-well plates, after optimization of cell transfection conditions, proliferation changes by methylthiazolyl tetrazolium (MTT) was adopted after transfection.
     5. Collecting cells in six pore plate, Flow cytometry was adopted to detect cell apoptosis changes after transfection.
     Results:
     1. It is confirmed that TNFR1 has a high expression in EC109 cell line by RT-PCR and Western Blot.
     2. We silenced the expression of TNFR1 successfully by transferring TNFR1-siRNA to EC109 cell line.
     3. After RNAi, three groups showed no diffenrences in morphology; The MTT results were similar between blank control group and negative control group within 32 hours after RNAi (P>0.05); there had a increasing proliferation in experimental group (P<0.05); The flow cytometry results were similar between blank control group and negative control group after RNAi (P>0.05); there had a decreased apoptosis in experimental group (P<0.05).
     Conclusions:
     1. TNFR1 expressed highly in EC109 cell line.
     2. TNFR1 gene silencing effect esophageal carcinoma cell on proliferation and apoptosis; it suggests TNFR1 plays an important role in cancer genesis and development.
     3. TNFR1 is inclined to be a role mediating apoptosis in esophageal carcinoma EC109 cell line.
引文
[1] Daly JM, Karnell LH, Menck HR. National Cancer Data Base report on esophageal carcinoma.Cancer, 1996, 78(8):1820-8.
    [2] DeMeeter SR, DeMeester TR. Columnar mucosa and intestinal metaplasia of the esophagus: fifty years of controversy. Ann Surg, 2000, 231(3):303-21.
    [3] Dinjens WN. Genetic alterations in Barrett’s esophagus and esophageal adenocarcinoma. Minerva Chir, 2002, 57(6):733-52.
    [4] Koppert LB, Wijnhoven BP, van Dekken H, et al. The molecular biology of esophageal adenocarcinoma. J Surg Oncology, 2005, 92(3):169-90.
    [5] Lehrbach DM, Nita ME, Cecconello I. Molecular aspects of esophageal squamous cell carcinoma carcinogenesis. Arq Gastroenterol, 2003, 40(4):256-61.
    [6] Kyrgidis A, Kountouras J, Zavos C, et al. New molecular concepts of Barrett’s esophagus: clinical implications and biomarkers. J Surg Res, 2005, 125(2):189-212.
    [7] McManus DT, Olaru A, Meltzer SJ. Biomarkers of esophageal adenocarcinoma and Barrett’s esophagus. Cancer Res, 2004, 64(5):1561-9.
    [8] Lord RV, O’Grady R, Sheehan C, et al. K-ras codon 12 mutations in Barrett’s oesophagus and adenocarcinomas of the oesophagus and oesophagogastric junction. J Gastroenterol Hepatol, 2000, 15(7): 730-36.
    [9] Guner D, Sturm I, Hemmati P, et al. Multigene analysis of Rb pathway and apoptosis control in esophageal squamous cell carcinoma identifies patients with good prognosis. Int J Cancer, 2003, 103:445-454.
    [10] Gerber JK, Richter T, Kremmer E, et al. Progressive loss of PAX9 expression correlates with increasing malignancy of dysplastic and cancerous epithelium of the human oesoagus. J Pathol, 2002, 197(3):293-297.
    [11] McFarlane SM, Pashmi G, Connell MC, et al. Differential activation of nuclear factor-kappaB by tumor necrosis factor receptor subtypes.TNFR1 predominates whereas TNFR2 activates transcription poorly. FEBS Lett, 2002 Mar 27; 515(1-3):119-26.
    [12] Tartaglia LA, Goeddel DV. Two TNF receptors. Immunology Today, 1992; 13:151-3.
    [13] Fang L, Fang J, Chen GQ. TNF receptor-associated factor-2 binding site is invoved in TNFR75-dependent enhancement of TNFR55 -induced cell death. Cell Res, 2001 Sep; 11(3):217-22.
    [14] Amrani Y, Ammit AJ, Panettieri RA Jr. Tumor necrosis factor receptor (TNFR) 1, but notTNFR2, mediates tumor necrosis factor-alpha-induced interleukin-6 and RANTES in human airway smooth muscle cells: role of p38 and p42/44 mitogen-activated protein kinases. Mol Pharmacol, 2001 Oct; 60(4):646-55.
    [15] Zhang JY, Adams AE, Ridky TW et al. Tumor necrosis factor receptor-1/c-Jun-NH2-kinase signaling promotes human neoplasia. Cancer Res, 2007 Apr 15,67(8):3827-34.
    [16] Tesz GJ, Guilherme A, Guntur KV et al. Tumor necrosis factor alpha (TNFalpha) stimulates Map4k4 expression through TNFalpha receptor 1 signaling to c-Jun and activating transcription factor 2. J Biol Chem, 2007 Jul 6,282(27):19302-12.
    [17] Takada Y, Sung B, Sethi G et al. Evidence that genetic deletion of the TNF receptor p60 or p80 inhibits Fas mediated apoptosis in macrophages. Biochem Pharmacol, 2007 Oct 1, 74(7):1057-64.
    [18] M.Saeed S, Ying H. Death receptor activation complex. It takes two to active TNF receptor 1. Cell Cycle, 2003, 2(6):550-552.
    [19] Barnhart BC, Peter ME. The TNF receptor 1: a split personality complex. Cell, 2003 Jul 25; 114(2):148-50.
    [20] Le Page C, Ouellet V, Madore J, et al. Gene expression profiling of primary cultures of ovarian epithelial cells identifies novel molecular classifiers of ovarian cancer. Br J Cancer, 2006, 94: 436-445.
    [21] Diegmann J, Tomiuk S, Sanjmyatav J, et al.Comparative transcriptional and functional profiling of clear cell and papillary renal cell carcinoma. Int J Mol Med, 2006 Sep, 18(3):395-403.
    [22] Wen W, Sanelli T, Ge W, et al. Activated microglial supernatant inducedmotor neuron cytotoxicity is associated with upregulation of the TNFR1 receptor. Neurosci Res, 2006 May,55(1):87-95.
    [23] Aigner A. Applications of RNA interference: current state and prospects for siRNA based strategies in vivo. Appl Microbilo Biotechnol, 2007 Aug; 76(1):9-21.
    [24] Wu MY, Chen MH, Liang YR,et al. Experimental and clinicopathologic study on the relationship between transcription factor Egr-1 and esophageal carcinoma. World J Gastroenterol, 2001; 7(4):490-495.
    [25] Old, LJ. Tumor necrosisfactor (TNF). Science,1985; 230:630-632.
    [26] Al-Lamki RS, Wang J, Thiru S, et al. Expression of silencer of death domains and death-receptor-3 in normal human kidney and in rejecting renal transplants. Am J Pathol, 2003, 163(2):401-411.
    [27] Takada Y, Sung B, Sethi G, et al.Evidence that genetic deletion of the TNF receptor p60 orp80 inhibits Fas mediated apoptosis in macrophages. Biochem Pharmacol, 2007, 74(7):1 057-1 064.
    [28] M.Saeed S, Ying H. Death receptor activation complex. It takes two to active TNF receptor 1. Cell Cycle, 2003, 2(6):550-552.
    [29]孟洁如,赵宁,颜真等.肿瘤细胞中两种TNFR的表达及新型rhTNF对肿瘤细胞生长的影响.细胞与分子免疫学杂志.2002,18(1):10-12.
    [30] Zamore PD, Tuschl T, Sharp PA, et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000, 101(1):25-33.
    [31] Sharp PA. RNA interference---2001.Genes Dev, 2001, 15(5): 485-490.
    [32] Fumiyo Saito, Hirofumi Yokota, Yoshihisa Sudo, et al. Application of RNAi inducible TNFRⅠknockdown cells to the analysis of TNFα-induced cytotoxicity. Toxicology in Vitro, 2006, 20; 1343-1353.
    [33] Yin JQ, Wan Y. RNA-mediated gene regulation system: now and the future. Int J Mol Med, 2002, 10(4):355-365.
    [34] Laskov R, Berger N, Scharff MD, et al.Tumor necrosis factor-alpha and CD40L modulate cell surface morphology and induce aggregation in Ramos Burkitt's lymphoma cells. Leuk Lymphoma, 2006 Mar, 47(3): 507 -519.
    [35] Kerr JF, Wyllie AH, Currie, AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972, 26(4): 239-57.
    [36] Daniel JC, Smythe WR. The role of Bcl-2 family members in non-small cell lung cancer. Semin Thorac Cardiovasc Surg, 2004, 16(1):19– 27.
    [37] Takimoto R, Niitsu Y. Tumor suppressor gene p53 and molecular targeting therapy.Can To Kagaku Ryoho, 2004, 31(9):1309-1313.
    [38] Denault JB, Salvesen GS. Apoptotic caspase activation and activity. Methods Mol Biol. 2008; 414:191-220.
    [39] Ho PK, Hawkins CJ. Mammalian initiator apoptotic caspases. FEBS J. 2005 Nov; 272(21):5436-53.
    [40] Utaisincharoen P, Ubol S, Tangthawornchaikul N, et al.Binding of tumour necrosis factor-alpha (TNF-alpha) to TNF-RI induces caspase(s)-dependent apoptosis in human cholangiocarcinoma cell lines. Clin Exp Immunol. 1999 Apr; 116(1):41-7.
    [41]田芳,许培荣,侯卫红等. NF-κB信号通路在食管鳞癌细胞系中的激活.肿瘤防治研究. 2006; 33(1): 11-14.
    [42] Beg AA, Sha WC, Bronson R T. et al. Emtyonic lethality and liver degeneration in micelacking the RelA component of NF-κB. Nature, 1995, 376:167-170.
    [43] Cun-Yu Wang, James C, Cusack Jr, et al. Control of inducible chemoresistance: Enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-κB. Nature Medicine, 1999, 356(5):412-417.
    [1] Zhou Z, Connell MC, MacEwan DJ. TNFR1-induced NF-kappaB, but not ERK, p38MAPK or JNK activation, mediates TNF-induced ICAM-1 and VCAM-1 expression on endothelial cells[J]. Cell Signal, 2007, 19(6):1 238-1 248.
    [2] Takada H, Chen NJ, Mirtsos C, et al. Role of SODD in regulation of tumor necrosis factor responses[J]. Mol Cell Biol, 2003, 23(11):4 026-4 033.
    [3] Zhang JY, Adams AE, Ridky TW, et al. Tumor necrosis factor receptor 1/c-Jun-NH2-kinasesignaling promotes human neoplasia[J]. Cancer Res, 2007, 67(8):3 827-3 834.
    [4] Tesz GJ, Guilherme A, Guntur KV, et al. Tumor necrosis factor alpha (TNFalpha) stimulates Map4k4 expression through TNFalpha receptor 1 signaling to c-Jun and activating transcription factor 2[J]. J Biol Chem, 2007, 282(27):19 302-19 312.
    [5] Takada Y, Sung B, Sethi G, et al.Evidence that genetic deletion of the TNF receptor p60 or p80 inhibits Fas mediated apoptosis in macrophages[J]. Biochem Pharmacol, 2007, 74(7):1 057-1 064.
    [6] M.Saeed S, Ying H. Death receptor activation complex: it takes two to active TNF receptor 1[J]. Cell Cycle, 2003, 2(6):550-552.
    [7] Brouwer RE, Hoefnagel J, Borger van Der Burg B, et al. Expression of co-stimulatory and adhesion molecules and chemokine or apoptosis receptors on acute myeloid leukaemia: high CD40 and CD11a expression correlates with poor prognosis[J]. Br J Haematol, 2001, 115(2): 298-308.
    [8] Le Page C, Ouellet V, Madore J, et al. Gene expression profiling of primary cultures of ovarian epithelial cells identifies novel molecular classifiers of ovarian cancer[J]. Br J Cancer, 2006, 94: 436-445.
    [9] Diegmann J, Tomiuk S, Sanjmyatav J, et al.Comparative transcriptional and functional profiling of clear cell and papillary renal cell carcinoma[J]. Int J Mol Med, 2006, 18(3):395-403.
    [10] Wen W, Sanelli T, Ge W, et al. Activated microglial supernatant induced motor neuron cytotoxicity is associated with upregulation of the TNFR1 receptor[J]. Neurosci Res, 2006, 55(1):87-95.
    [11] Jackson-Bernitsas DG, Ichikawa H, Takada Y, et al. Evidence that TNF-TNFR1-TRADD -TRAF2-RIP-TAK1-IKK pathway mediates constitutive NF-kappaB activation and proliferation in human head and neck squamous cell carcinoma [J]. Oncogene, 2007, 26(10): 1 385- 1 397.
    [12] Kumamoto H, Ooya K. Expression of tumor necrosis factor alpha, TNF-related apoptosis-inducing ligand, and their associated molecules in ameloblastomas [J]. J Oral Pathol Med,2005, 34(5):287-294.
    [13]徐海洋,路秀英,马婧,等.肿瘤坏死因子受体及其信号转导蛋白TRAF2在喉癌中的表达[J].吉林大学学报(医学版),2006, 32(2): 322-325.
    [14] Laskov R, Berger N, Scharff MD, et al.Tumor necrosis factor-alpha and CD40L modulate cell surface morphology and induce aggregation in Ramos Burkitt's lymphoma cells[J]. Leuk Lymphoma, 2006, 47(3): 507-519.
    [15] Hayashi S, Yamamoto M, Ueno YE, et al. Expression of nuclear factor-kappa B, tumor necrosis factor receptor type 1, and c-Myc in human astrocytomas[J]. Neurol Med Chir(Tokyo), 2001, 41(4): 187-195.
    [16] Yoshimura H, Dhar DK, Nakamoto T,et al.Prognostic significance of tumor necrosis factor receptor in colorectal adenocarcinoma [J]. Anticancer Res, 2003, 23(1A):85-89.
    [17]刘宇,贾友鹏,巩鹏,等.胆管癌中肿瘤坏死因子α及肿瘤坏死因子受体1表达情况的研究[J].中国医师进修杂志, 2006, 29(5):33-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700