用户名: 密码: 验证码:
Zoledronic acid和Genistein对OPG基因敲除鼠骨代谢影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分OPG基因敲除骨丢失鼠的骨微结构及生物力学改变
     目的观察护骨素(OPG)基因敲除骨丢失鼠的骨微结构、骨生物力学、骨密度、骨矿含量及骨转换生化指标的变化,探讨OPG在骨丢失中的作用。
     方法SPF级10周龄雌性OPG基因敲除纯合子(OPG~(-/-))小鼠与野生型(WT)小鼠各10只。OPG~(-/-)与WT小鼠均由具有C57BL/6J×129/SV背景的OPG杂合子(OPG~(+/-))小鼠相互交配产生。应用μCT测定小鼠右侧胫骨近端松质骨和皮质骨的骨微结构参数;DXA测定左侧股骨骨密度;应用三点弯曲试验检测右侧股骨的骨生物力学性能;以ELISA法检测血清骨源性碱性磷酸酶、抗酒石酸酸性磷酸酶以及NF-κB受体活化因子配基。
     结果与野生型小鼠比较,OPG基因敲除小鼠的胫骨松质骨体积骨密度、组织骨密度、骨体积分数、骨面积分数、骨小梁数目及骨小梁连结密度均明显下降,而结构模型指数、骨小梁厚度及骨小梁间隔明显增加;皮质骨厚度、皮质骨面积、截面总面积、截面惯性矩、皮质骨密度和皮质骨骨矿含量明显降低,内径周长与骨髓腔面积则明显增加。股骨的最大载荷、最大应力、弹性模量及刚性系数均明显下降。股骨骨密度与骨矿含量明显下降。血清骨源性碱性磷酸酶、抗酒石酸酸性磷酸酶以及核因子κB受体活化因子配基均明显升高。
     结论OPG基因敲除小鼠的松质骨与皮质骨出现高转换型骨丢失,伴显著的骨微结构破坏和生物力学性能下降。
     第二部分Zoledronic acid抗骨吸收的作用机制研究
     目的探讨在体内环境中二膦酸盐Zoledronic acid的抗骨吸收作用机制及其与OPG途径的关系。
     方法SPF级6周龄雌性OPG基因敲除小鼠纯合子(OPG~(-/-))20只随机分为Zoledronic acid(Zol)组和溶媒对照组,另10只野生型小鼠(WT)为正常对照组。OPG~(-/-)与WT小鼠均由具有C57BL/6J×129/SV背景的OPG杂合子(OPG~(+/-))小鼠相互交配产生。Zol组给予Zoledronic acid 150μg/kg,皮下注射,每周2次,相应的溶媒对照组每周2次皮下注射等容量溶媒(无菌蒸馏水),干预时间6周。应用μCT测定小鼠右侧胫骨近端松质骨和皮质的骨微结构参数;DXA测定左侧股骨总体骨密度与骨矿含量;三点弯曲试验检测右侧股骨的骨生物力学性能。ELISA法检测血清骨源性碱性磷酸酶、抗酒石酸酸性磷酸酶以及NF-κB受体活化因子配基。
     结果与H_2O溶媒对照组比较,Zoledronic acid组的股骨总体骨密度与骨矿含量均明显增加,达到野生型小鼠水平。股骨的生物力学参数最大载荷、最大应力、弹性模量及刚性系数明显升高。胫骨松质骨微结构参数体积骨密度、组织骨密度、骨体积分数、骨面积分数、骨小梁数目、骨小梁连接密度和骨小梁厚度均较溶媒对照组明显升高,其中,组织骨密度、骨小梁连接密度、骨体积分数和骨小梁厚度还显著高于野生型小鼠;而结构模型指数与骨小梁间隔则明显降低。胫骨皮质微结构参数皮质骨厚度、截面惯性矩、皮质骨面积、截面总面积、皮质骨密度和皮质骨矿含量均明显增高,其中,皮质骨厚度、皮质骨密度和皮质骨矿含量还显著高于野生型小鼠;而内径周长与骨髓腔面积则明显下降。血清抗酒石酸酸性磷酸酶明显下降,血清NF-κB受体活化因子配基明显上升,而血清骨源性碱性磷酸酶无明显变化。
     结论在小鼠体内OPG基因功能缺失状况下,Zoledronic acid仍具有良好的拮抗骨丢失作用。提示Zoledronic acid在体内的抗骨吸收作用并非依赖OPG途径,对破骨细胞的直接抑制可能是其抗骨吸收的主要途径。
     第三部分Genistein调节骨代谢的作用机制研究
     目的探讨植物雌激素Genistein在体内对骨代谢的作用与OPG途径之间的关系。
     方法SPF级6周龄雌性OPG基因敲除纯合子(OPG~(-/-))小鼠40只随机分为Genistein(Gen)组、17β-Estradiol组(E_2)组、DMSO对照组、Zoledronic acid(Zol)组及H_2O对照组,8只野生型(WT)小鼠为正常对照组。OPG~(-/-)与WT小鼠均由具有C57BL/6J×129/SV背景的OPG杂合子(OPG~(+/-))小鼠相互交配产生。Gen组给予Genistein 0.8mg/只/天,皮下注射。E_2组给予17β-Estradiol(0.03μg/只/天),皮下注射。相应的溶媒对照DMSO组每天皮下注射等容量的DMSO与聚乙二醇300混合物。Zol组给予Zoledronic acid 150μg/kg,皮下注射,每周2次,相应的溶媒对照H_2O组每周2次皮下注射等容量的无菌蒸馏水。干预时间为6周。应用μCT测定小鼠右侧胫骨近端松质骨和皮质的骨微结构参数;DXA测定左侧股骨总体骨密度与骨矿含量;三点弯曲试验检测右侧股骨的骨生物力学性能;ELISA法检测血清骨源性碱性磷酸酶、抗酒石酸酸性磷酸酶和NF—κB受体活化因子配基。
     结果与DMSO溶媒对照组比较,Genistein组与17β-Estradiol组股骨总体骨密度与骨矿含量无增加。股骨生物力学参数最大载荷、最大应力、弹性模量及刚性系数均无明显变化。胫骨松质微结构参数骨体积骨密度、组织骨密度、骨体积分数、骨面积分数、结构模型指数、骨小梁数目、骨小梁联接密度、骨小梁间隔及骨小梁厚度,和皮质的骨微结构参数皮质骨厚度、截面惯性矩、内径周长、外径周长、骨髓腔面积、皮质骨面积、截面总面积、皮质骨密度及皮质骨矿含量亦无改善。血清骨源性碱性磷酸酶、抗酒石酸酸性磷酸酶以及NF-κB受体活化因子配基水平无变化。Zoledronic acid则能显著改善OPG基因敲除小鼠的骨密度、骨生物力学性能及骨微结构,部分指标达到甚至超过野生型小鼠水平。
     结论在小鼠体内OPG基因功能缺失的状况下,Genistein与17β-Estradiol调节骨代谢的作用完全消失,提示Genistein与17β-Estradiol对骨代谢的作用完全依赖于OPG途径。
     第四部分OPG转基因小鼠模型的建立
     目的护骨素OPG是调节骨代谢重要的细胞因子之一,为开展其在整体水平上的功能研究,建立OPG转基因小鼠模型。
     方法构建带有人类OPG基因启动子的真核表达载体pCI-hOPGp-m OPG,以显微注射法转入C57BL/6J×CBA小鼠受精卵雄核中,导入假孕母鼠输卵管后培养子代小鼠,PCR鉴定子代小鼠基因型。
     结果构建的表达载体pCI-hOPGp-mOPG质粒经酶切与测序鉴定序列正确。在69只原代小鼠中,有7只转基因阳性的Founder小鼠。在F_1代120只小鼠中,有4系共15只转基因阳性小鼠。
     结论初步获得4个稳定表达OPG的转基因小鼠系,为深入研究OPG在体内的生物学功能与基因调控创造了条件。
Part one Changes of bone mineral density, microarchitecture andbiomechanical property in OPG - knockout mice
     Objective To study the changes of bone mineral density (BMD),microarchitecture and biomechanical property in osteoprotegerin(OPG)-knockout mice (OPG~(-/-)).
     Methods 10-week-old female OPG~(-/-) mice (n=10) and wild-type mice(n=10) were involved in the study. The trabecular and cortical bonemicroarchitecture was assessed by micro-CT in the right proximal tibia.BMD of the left femur was detected by DXA. The biomechanicalproperty of the right femur was determined by a three-point bending test.Serum biochemical markers of bone turnover such as bone alkalinephosphatase(B-ALP),tartrate-resistant acid phosphatase-5b (TRACP-5b),and receptor activator of nuclear factorκB ligand (RANKL) weredetermined by ELISA.
     Results Compared with wild-type mice, the OPG~(-/-) mice showed adecreased volumetric BMD (vBMD),tissue BMD(tBMD), bone volumefraction (BVF), bone surface fraction(BSF), trabecular number (Tb.N),and trabecular connectivity density (Conn.D), with an increased structuremodel index(SMI), trabecular thickness(Tb.Th) and trabecular separation(Tb.Sp). The cortical bone microarchitecture parameters such as corticalthickness (Ct.Th), cortical area (Ct.Ar), total area (Tt.Ar), Moment ofInertia (Mm), cortical BMD (Ct.BMD) and cortical bone mineral containt(Ct.BMC) were also decreased, with an increased inner perimeter(In.Pm) and marrow area (Ma.Ar). Three-point bending test revealed adecrease in ultimate load, ultimate stress, stiff index and elastic modulus.The BMD was reduced by DXA determination, while serum B-ALP,TRACP-5b, and RANKL were all elevated at the same time.
     Conclusions The turnover rate of OPG knockout mice is high withdramatic disturbances in bone microarchitecture and deterioration in bonebiomechanical property.
     Part two In vivo studies of zoledronic acid on the mechanism ofanti-bone resorption
     objective To study the in vivo anti-bone resorption mechanism ofzoledronic acid.
     Methods Six-week-old female OPG~(-/-) mice (n=20) and wild-type mice(n=10) were involved in the study. OPG~(-/-) mice were randomly dividedinto two groups(10 for each group), and treated with zoledronic acid at adose of 0μg/kg (H_2O group) and 150μg/kg (Zol group) subcutaneouslytwice per week. The mice were killed 6 weeks after intervention.Trabecular and cortical bone microarchitecture in the right proximal tibiawas assessed by micro-CT and the bone mineral density (BMD) of theleft femur was measured by DXA. The biomechanical property of theright femur was determined by a three-point bending test. Serum bonealkaline phosphatase (B-ALP), tartrate-resistant acid phosphatase-Sb(TRACP-Sb) and receptor activator of nuclear factorκB ligand (RANKL)were determined by ELISA.
     Results Compared with the mice in H_2O group, the zoledronicacid-treated mice showed an increased total BMD and BMC, almostequal to the levels of wild-type mice.μCT analysis revealed an increasein vBMD, tBMD, BVF, BSF, Tb.Th,Tb.N and Conn.D, with a decreasein SMI and Tb.Sp; the cortical bone microarchitechitecture parameterssuch as Ct.Th, Mm, Ct.Ar, Tt.Ar, Ct.BMD and Ct.BMC were allincreased, with an decreased In.Pm and Ma.Ar. Three-point bending testshowed an increase in ultimate load, ultimate stress, elastic modulus andstress index. A decrease in serum TRACP-Sb and an increase in serumRANKL were revealed by ELISA analysis.
     Conclusions Zoledronic acid could effectively prevent bone lose in mice lacking osteoprotegerin, suggesting that the in vivo anti-boneresorption effect of zoledronic acid is triggered via an OPG-independentpathway, possibly by direct suppression of the activity of osteoclasts.
     Part three Studies of genistein effects on bone metabolism in OPG~(-/-)mice
     Objective To study genistein in vivo effects on bone metabolism inOPG~(-/-) mice
     Methods Following heterozygotes(OPG~(+/-)) matings, thehomozygotes(OPG~(-/-))and wild type(WT)with a mixed C57BL/6J×129/SVbackground were obtained. 6-week-old female OPG~(-/-) mice (n=40) andwild-type mice (n=8) were involved in the study. OPG~(-/-) mice wererandomly divided into 5 groups (n=8 for each group): 1) Genistein-treatedmice: treated with genistein at a maximal dose(0.8mg/day)subcutaneously(Gen); 2) 17β-Estradiol-treated mice: treated with17β-Estradiol at a maximal dose(0.034μg/day) subcutaneously(E_2); 3)DMSO-treated mice: treated with a mixture of dimethylsulfoxide(DMSO) and polyethylenglycol-300 subcutaneously; 4) Zoledronicacid-treated mice: treated with zoledronic acid at a dose (150μg/kg)twice per week subcutaneously (Zol); 5) H_2O-treated mice: treated withsterilized water twice per week subcutaneously. The mice were killed 6weeks after intervention. Trabecular and cortical bone microarchitecturewas assessed by micro-CT in the right proximal tibia. The bone mineraldensity (BMD) of the left femur was measured using DXA. Thebiomechanical property of the right femur was determined by athree-point bending test. Serum bone alkaline phosphatase (B-ALP),tartrate-resistant acid phosphatase-5b (TRACP-Sb) and receptor activator of nuclear factorκB ligand (RANKL) were determined by ELISA.
     Results DXA analysis revealed that the total BMD of femur was notsignificantly changed in Gen, E_2, H_2O, and DMSO groups. Three-pointbending test showed no significant differences in biomechanicalparameters including ultimate load, ultimate stress,stiff index, and elasticmodulus, and micro-CT analysis showed that trabecular bonemicroarchitectural parameters (vBMD、tBMD、BVF、BSF、SMI、Tb.N、Conn.D、Tb.Sp and Tb.Th) and cortical bone microarchitecturalparameters(Ct.Th、Mm、In.Pm、Ot.Pm、Ma.Ar、Ct.Ar、Tt.Ar、Ct.BMDand Ct.BMC) were not different either in these groups. Genistein and17β-Estradiol did not modify either serum TRACP-5b or B-ALP orRANKL levels. However, in addition to increases of bone mass,zoledronic acid could effectively improve biomechanical property andprevented the architectural bone from deteriorating in OPG~(-/-) mice.
     Conclusions Lack of osteoprotegerin in mice, the effects of genisteinas well as 17β-Estradiol on bone metabolism in vivo disappeared,suggesting that their activity on bone metabolism should be totallyOPG--dependent.
     Part four Estabolishment of osteoprotegerin transgenic mice.
     Objective osteoprotegerin(OPG) may play a key role in the regulationof bone metabolism. In order to evaluate its effects in vivo, wedeveloped an OPG transgenic mouse model.
     Method Expression plasmid pCI-hOPGp-mOPG containing humanOPG promoter was successfully reconstructed, and micro-injected intofertilized zygotes from C57BL/6J×CBA mice to prepare trangenic mice.Progeny were screened for the presence of the transgene by PCR.
     Resuts Out of the 69 founder generation, 7 founder mice wereidentified by PCR dectetion of OPG. Out of the 120 F_1 generation, 15OPG transgenic mice were obtained.
     Conclusion Four OPG transgenic mice lines have been developed,which could be valuable for studying the biological significance and generegulation of OPG in vivo.
引文
[1]SimonetWS Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 1997,89:309-319.
    [2]Hofbauer LC, Khosla S, Dunstan CR, et al. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res, 2000, 15:2-12.
    [3]Kong YY, Yoshida H, Sarosi L, et al. OPGL is a key regulation of osteoclastogenesis, lymphocyte development and lymphnode organogensis. Nature, 1999, 397: 315-323
    [4]Teitelhaum SL. Rone resorption by osteoclasts. Science, 2000, 289:1504-1508.
    [5]Austin CP, Battey JF, Bradley A, et al. The Knockout mouse project. Nai Genet, 2004, 36(9): 921-924.
    [6]Hofbauer LC, Heufelder AE. Vit D receptor knock-out mice: the expectational and exceptional. European Journal of Endorcrinology, 1998, 138: 372-374
    [7]Sims NA, Nupont S, Resche-Rogon M, et al. In vivo analysis of male and female estrogen receptor α , β and double knock-out reveals a dual role for ERβ in bone remodeling. J Bone Miner Res, 2000, 15(supple):S160-165
    [8]Hiroko Yamazaki, Takahisa Sasaki. Effect of osteoprotegerin administration on osteoclast differentiation and trabecular bone structure in osteoprotegerin-deficient mice. Journal of Electron Microscopy, 2005, 54(5):467-477
    
    [9]Tabucbi M, Miyazawa K, Kimura M, et al. Enhancement of crude bone morphogenetic protein-induced new bone formation and normalization of endochondral ossification by bisphosphonate treatment in Osteoprotegerin-deficient mice. Calcif Tissue Tnt, 2005,77:239-249
    [10] Bucay N, Sarosi I, Dunstan CR, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev, 1998,12: 1260-1268
    [11] Nakamura M, Udagawa N, Matsuura S, et al. osteoprotegerin regulates bone formation through a coupling mechanism with bone resorption. Endocrinology, 2003,144(12): 5441-5449
    [12] Udagawa N, Takahashi N, Yasuda H, et al. Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology, 2000, 141: 3478-3484
    [13] McErlain DD, Chhem RK, Bohay RN, et al. Micro-computed tomography of a 500 year-old tooth: technical note. Can Assoc Radiol J, 2004, 55(44): 242-245
    [14] Choplin RH, Buckwalter KA, Rydberg J, et al. CT with 3D rendering of the tendons of the foot and ankle: technique, normal anatomy, and disease. Radiographics, 2004, 24(2): 343-356
    [15] Mazess RB, Nord RH, Hanson JA, et al. Bilateral measurement of femoral bone mineral density. J Clin Densitometry, 2000, 3: 133-140
    [16] Peacock M, Turner CH, Econs MJ, et al. Genetics of osteoporosis. Endocrine Reviews, 2002, 23:303-326.
    [17] Lacey DL, Timms E, Tan H-L, et al. Osteoprotegerin(OPG) ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 1998,93:165-176
    [18] Hofbauer LC, Kuhne CA,Viereck V. The OPG/RANKL/RANK system in metabolic bone diseases. J Musculoskel Neuron Interact, 2004, 4(3): 268-275
    [19] Miller PD, Siris ES, Barrett-connor E, et al. Prediction of fracture risk in postmenopausal women with peripheral bone densitometry: evidence from the national osteoporosis risk assessment. J Bone Miner Res, 2002,17:2222-2230
    [20]Levasseur R, Sabatier JP, Marcelli C. Physiopathology of osteoporosis. Rev Med Interne, 2004, 25 suppl 5:S531-537.
    [21] Mike B, Vander MM, Kingsley DM, et al. Mechanical and geometric changes in the growthing femora of BMP-5 deficient mice. Bone, 1996, 18:601-607
    [22]Tseng K, Bonadio JE, Stewart TA, et al. Local expression of human growth hormone in bone results in impaired mechanical integrity in the skeletal tissue of transgenic mice. J Orthop Res, 1996, 14:598-604
    [23] Michael DB, Cara BE, Matthew JS. Growing C57BL/6 mice increasing geometric and material properties. J Bone Miner Res, 1999, 14(12):2159-2166
    
    [24] Wang Z, Goh J, Das De S, et al. Efficacy of bone marrow-derived stem cells in strengthening osteoprorotic bone in a rabbit model. Tissue Eng, 2006, 12(7):1753-1761
    [25] Kristensen M, Jensen M, Kudsk J, et al. Short - term effects on bone turnover of replacing milk with cola beverages: a 10- day interventional study in young men. Osteoporos Int, 2005, 10(2):1803-1808
    [26] Chan SM, Nelson EA, Leung SS, et al. Bone mineral density and calcium metabolism of Hong Kong Chinese postpartum women: a 1 year longitudinal study. Eur J Clin Nutr, 2005, 59(7):868-876
    [27] Halleen JM, Tiitinen SL,Ylipahkla H, et al. Tartrate-resistant acid phosphatase 5b(TRACP-5b) as a marker of bone resorption. Clin Lab, 2006, 52(9-10):499-509
    [28] Halleen JM. Tartrate-resistant acid phosphatase is a specific and sensitive marker of bone resorption. Anticancer Res, 2003, 23(2A): 1027-1029
    [29] Hannon RA, Clowes JA, Eaqleton AC,et al. Clinical performance of immunoreactive tartrate-resistant acid phosphatase isoform 5b as a marker of bone resorption. Bone, 2004, 34(1):187-194
    [30] Priemel M, Schilling AE, Haberland M, et al. Osteopenic mice: Animal models of the aging skeleton. J Musculoskel Neuron Interact, 2002,12(3):212-218
    [31]Mansuy IM, Suter U. Mouse genetics in cell biology. Exp Physiol, 2000, 85(6):661-679
    [32]Norio Amizuka, Junko Shimomura, Mingi Li, et al. Defective bone remodeling in osteoprotegerin-deficient mice. Journal of Electron Microscopy, 2003, 52(6):503-513.
    [1] Delmas PD. Treatment of postmenopausal osteoporosis. Lancet, 2002, 8:2018-2026
    [2] Marcus R, Wong M, Heath III H, et al. Antiresorptive treatment of postmenopausal osteoporosis: comparison of study designs and outcomes in large clinical trials with fracture as an endpoint. Endocr Rev, 2002, 23:16-37
    [3] Reid IR, Brown JP, Burckhardt P, et al. Intravenous zoledronic acid in postmenopausal women with low bone mineral density. N Eng J Med, 2002, 346:653-661
    [4] Adami S, Bevilacqua M, Broggini M, et al. short-term intravenous therapy with Neridronate in Paget's disease. Clin Exp Rheumatol, 2002, 20:55-58
    [5] Tauchmanova L, Ricci P, Serio B, et al. Short-term zoledronic acid treatment increases bone mineral density and marrow clonogenic fibroblast progenitors after allogeneic stem cell transplantation. J Clin Endocrinol Metab, 2005, 90(2):627-634
    [6] Teitelbaum S L. Osteoclasts: what do they do and how do they do it? Am J Pathol, 2007, 170(2):427-435
    [7] Zhao Q, Shao J, Chen W, et al. osteoclast differentiation and gene regulatin. Front Biosci, 2007, 12: 2519-2529
    [8] Schett G. Cells of the synovium in rheumatoid arthritis. Arthritis Res Ther, 2007, 15(9): 203-206
    [9] Hughes DE, Mac Donald BR, Russell RG, et al. Inhibition of osteoclast-like cell formation by bisphosphonates in long-term cultures of human bone marrow. J Clin Invest, 1989, 83: 1930-1935
    [10] Schmidt A, Rutkledge SJ, Endo N, et al. Protein-tyrosine phosphatase activity regulates osteoclast formation and function: Inhibition by alendronate. Proc Natl Acad Sci USA, 1996, 93: 3068-3073
    [11] Hughes DE, Wright KR, Uy HL, et al. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res, 1995, 10: 1478-1487
    [12] MureKami H, Takahashi N, Sasaki T, et al. A possible mechanism of the specific action of bisphosphonates on osteoclasts: Tiludronate preferentially affects polarized osteoclasts having ruffled borders. Bone, 1995, 17: 137-144
    [13] Van Beck ER, Lowik CW, Papapoulous SE. Effect of alendronate treatment on the osteoclastogenic potential of bone marrow cells in mice. Bone, 1997, 20: 335-340
    [14] 伍贤平,廖二元,伍汉文.破骨细胞及其调节机制的某些进展.中华内分泌代谢杂志,2002,18(2):157-160
    [15] Sahni M, Guenther HL, Fleisch H, et al. Bisphosphonates act on rat bone resorption through the mediation of olsteoblasts. J Clin Invest, 1993, 91: 2004-2011
    [16] Vitte C, Fleisch H, Guenther HL. Bisphosphonates induce osteoblast to secrete an inhibitor of osteoclast-mediated resorption. Endocrinology, 1996, 137: 2324-2333
    [17] Yu X, Scholler J, Foged NT. Interaction between effects of parathyroid hormone and bisphosphonate on regulation of osteoclast activity by the osteoblast-like cell line UMR-106. Bone, 1998, 19: 339-345
    [18] Hofbauer LC, Khosla S, Dunstan CR, et al. The role of osteoprotegerin and osteoprotegrin ligand in the paracrine regulation of bone resorption. J Bone Miner Res, 2000, 15: 2-12
    [19]Arron JR, Choi Y. Bone versus immune system. Nature, 2000, 408:535-536
    [20] Bucay N, Sarosi I, Dunstan CR, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dov, 1998,12: 1260-1268
    [21]Tejtelbaum SL. Bone resorption by osteoclasts. Science, 2000, 289:1504-1508
    [22]Pan BQ, Farrugia AN, To LB, et al. The nitrogen-containing bisphosphonate, Zoledronic acid, influences RANKL expression in human osteoblast-like cells by TNF-α converting enzyme (TACE). J Bone Miner Res, 2004, 19:147-154
    [23] Mackie PS, Fisher JL, Zhou H, et al. Bisphosphonates regulate cell growth and gene expression in the UMR 106-01 clonal rat osteosarcoma cell line. Br J Cancer, 2001, 84:951-956
    [24] Dobnig H, Hofbauer LC, Viereck V, et al. Changes in the RANK ligand /osteoprotegerin system are correlated to changes in bone mineral density in bisphosphonate-treated osteoporotic patients. Osteoporos Int, 2006, 17(5):693-703
    [25] Vioreck V, Emons G, Lauck V, et al. Bisphosphonates pamidronate and zoledronic acid stimulate osteoprotegerin production by primaryhuman osteoblasts. Biochem Biophys Res Commun, 2002, 291:680-686
    [26]Udagawa N, Takahashi N, Yasuda H, et al. Osteoprotegerin Produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology, 2000,141: 3478-3484
    [27]Yu-Po Lee, Edward MS, Mark D, et al.Use of zoledronate to treat osteoblastic versus osteolytic lesions in a severe combined immuno-deficient mouse model. Cancer Research, 2002,62:5564-5570
    [28]Mazess RB, Nord RH, Hanson JA, et al. Bilateral measurement of femoral bone mineral density. J Clin Densitometry, 2000,3: 133-140
    [29] McErlain DD, Chhem RK, Bohay RN, et al. Micro-computed tomography of a 500-year-old tooth: technical note. Can Assoc Radiol J, 2004, 55(44): 242-245
    [30] Choplin RH, Buckwalter KA, Rydberg J, et al. CT with 3D rendering of the tendons of the foot and ankle: technique, normal anatomy, find disease. Radiographics, 2004, 24(2): 343-356
    [31] Rogers MJ, Gorden S, Benford HL, et al. Cellular and molecular mechanisms of action of bisphosphonates. Cancer, 2000, 88:2961-2978
    [32] Rogers MJ. New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des, 2003, 9(32):2643-2658
    [33] Roe lot's AJ, Thompson K, Gordon S, et al. Molecular mechanisms of action of bisphosphonates: current status. Clin Cancer Res, 2006, 12(20pt2):6222s-6230s
    [34]Hall A. Rho GTP ases and the actin cytoskeleton. Science, 1998, 279:509-514
    [35] Fisher JE, Rodan GA, Reszka, et al. In vivo effects of bisphosphonates on the osteoclast mevalonate pathway. Endocrinology, 2000, 141:4793-4796
    [36]Frith JC, Monkkonen J, Auriola S, et al. The molecular mechanism of action of the antiresorptive and anti-inflammatory drug clodronate: Evidence of the formation in vivo of metabolite that inhibits bone resorption and causes osteoclast and macrophage apoptosis. Arthrits Rhevm, 2001, 44:2201-2210
    [37]Colucci S Minielli V, Zambonin G, et al. Alendronate reduces adhesion of human osteoclast-like cella to bone and bone protein-coated surface. Calcif Tissue Int, 1998, 63:230-235
    [38] Bucay N, Sarosi I, Dunstan CR, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev, 1998,12: 1260-1268 [39]Norio Amizuka, Junko Shimomura, Mingi Li, et al. Defective bone remodeling in osteoprotegerin-deficient mice. Journal of Electron Microscopy, 2003, 52(6):503-513.
    [40] Miller PD, Siris ES, Barrett-connor E, et al. Prediction of fracture risk in postmenopausal women with peripheral bone densitometry: evidence from the National Osteoporosis Risk Assessment. J Bone Miner Res, 2002, 17:2222-2230
    [41]Legrand E, Chappard D, Pascaretti C, et al. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res, 2000, 15:13-19.
    [42]Michael DB, Cara BE, Matthew JS. Growing C57BL/6 mice increasing geometric and material properties. J Bone Miner Res, 1999, 14(12):2159-2166
    [43] Halleen JM, Tiitinen SL, Ylipahkla H, et al. Tartrate-resistant acid phosphatase 5b(TRACP-5b) as a marker of bone resorption. Clin Lab, 2006, 52(9-10): 499-509
    [44] Hannon RA, Clowes JA, Eaqleton AC, et al. Clinical performance of immunoreactive tartrate-resistant acid phosphatase isoform 5b as a marker of bone resorption. Bone, 2004, 34(1):187-194
    [45] Kristensen M, Jensen M, Kudsk J, et al. Short - term effects on bone turnover of replacing milk with cola beverages: a 10- day interventional study in young men. Osteoporos Int, 2005, 10(2):1803-1808
    [16] Wang Z, Goh J, Das De S, et al. Efficacy of bone marrow-derived stem cells in strengthening osteoprorotic bone in a rabbit model. Tissue Eng, 2006, 12(7): 1753-1761
    [47] Yong Hee Kim, Gwan-shik Kim, Jeong-Hwa Baek. Inhibitory action of bisphosphonates on bone resorption does not involve the regulation of RANKL and OPG expression. Exp Mol Med, 2002, 34(2):145-151
    [1]Writing Group for the Women' s Health Initiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopasual women: principal results from the Women's Health Initiative randomized controlled trial. JAMA, 2002, 288(4): 321 - 333
    [2] Lacey JV Jr, Mink PJ, Lubin JH, et al. Menopausal hormone replacement therapy and the risk of ovarian cancer. JAMA, 2002, 288(4): 334 - 341
    [31 Nikander E, Rutanen EM, Nieminen P, et al. Lack of effect of isoflavonoids on the vagina and endometrium in postmenopausal women. Fertil Steril, 2005, 83(1): 137-142
    [4] Somekawa Y, Chiguchi M, Ishibashi T, et al. Soy intake related to menopausal symptoms, serum lipids, and bone mineral density in postmenopausal Japanese women. Obstet Gynecol, 2001, 97(1): 109 - 115
    [5] Chen YM, Ho SC, Lam SS, et al. Beneficial effect of soy isoflavones on bone mineral content was modified by years since menopause, body weight, and calcium intake: a double-blind, randomized, controlled trial. Menopause, 2004, 11(3): 246-254
    [6] Wu J, Oka J, Higuchi M, et al. Cooperative effects of isoflavones and exercise on bone and lipid metabolism in postmenopausal Japanese women: a randomized placebo-controlled trial. Metabolism, 2006, 55(4): 423-433
    [7] Chanawirat A, Khemapech S, Patumraj S, et al. genistein replacement therapy on endothelial dysfunction and bone loss in bilateral ovariectomized rats. Clin Hemorheol Microcirc, 2006, 34(1-2): 309-314
    [8] Erlandsson MC, Islander U, Moverare S, et al. estrogenic agonism and antagonism of the soy isoflavone Genistein in uterus, bone and lymphopoiesis in mice. APMIS, 2005, 113(5): 317-323
    [9] Simonet WS, Lacey DL, Danstan CR, et al. Osteoprotegerin: A novel secreted protein in volved in the regulation of bone density. Cell,1997, 89: 309-319
    [10]Kong YY, Yoshida H, Sarosi L, et al. OPGL is a key regulation of osteoclastogenesis, lymphocyte development and lymphnode organogensis. Nature, 1999, 397:315-323
    [11]Teitelbaum SL. Bone resorption by osteoclasts. Science, 2000,289: 1504-1508
    [12] Hofbauer LC, Khosla S, Dunstan CR, et al. The role of osteoprotegerin and osteoprotegrin ligand in the paracrine regulation of bone resorption. J Bone Miner Res, 2000,15: 2-12
    [13]Spelsberg TC, Subramaniam M, Riggs BL, et al. The actions and interactions of sex steroids and growth factors /cytokines on the skeleton. Mol Endocrinol, 1999,13: 819-828
    [14]Oreffo RO, Kusec V, Virdi AS, et al. Expression of estrogen receptor-alpha in cells of the osteoclastic lineage. Histochem Cell Biol, 1999, 111(2): 125-133
    
    [15] Compton JE. Sex steroids and Bone Physic Rew, 2001; 81: 419-447
    [16] Michael H, Harkonen PL, Vaananen HK, et al. Estrogen and testosterone use different cellular pathways to inhibit osteoclastogenesis and bone resorption. J Bone Miner Res, 2005, 20(12):2224-2232
    [17]Anderson JJ, Garner SC. Phytoestrogens and bone. Baillieres Clin Endocrino Metab, 1998, 12:543-557
    [18] Viereck V, Crundker C, Blaschke S, et al. Phytoestrogen genistein stimulates the production of osteoprotegerin by human trabecular osteoblasts. Journal of Cellular Biochemistry, 2002,84: 725-735
    [19] Crisafulli A, Altavilla D, Squadrito G, et al. Effects of the phytoestroge genistein on the circulating soluble receptor activator of RANKL-OPG system in early postmenopausal women. J Clin Endocrino Metab, 2004,89(1): 188-192
    [20] Bucay N, Sarosi I, Dunstan CR, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev, 1998,12: 1260 1268
    [21] Udagawa N, Takahashi N, Yasuda H, et al. Osteoprotegerin Produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology, 2000,141: 3478-3484
    [22] Wu J , Wang XW, Takasaki M, et al. Cooperative effects of exercise training and genistein administration on bone mass in ovariectomized mice. J Bone Miner Res, 2001,16: 1829-1836
    [23]Yu-Po Lee, Edward MS, Mark D, et al. Use of zoledronate to treat osteoblastic versus osteolytic lesions in a severe combined immuno-deficient mouse model. Cancer Research, 2002,62:5564-5570
    [24]Mazess KB, Nord RH, Hanson JA, et al. Bilateral measurement of femoral bone mineral density. J Clin Densitometry, 2000,3: 133-140
    [25]M. J. Oursler. Direct and indireet effects of estrogen on osteoclasts. J Musculoskel Neuron Interact, 2003,3(4): 363-366
    [26] Hofbauer LC, Khosla S, Dunstan CR, et al. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cell. Endocrinology, 1999,140: 4382-4389
    [27] Saike M , Inoue D, Kido S, et al. 17β-Estradiol stimulates expression of osteoprotegerin by a mouse stromal cell line, ST-2, Via estrogen receptor_alpha. Endocrinology, 2001, 142:2205-2212
    [28] Chen xw, Garner SC, Anderson JJB, et al. Isoflavones regulate interleukin-6 and osteoprotegerin synthesis during osteoblast cell differentiation via an estrogen-recaptor-dapendent pathway. BBRC, 2002, 295:417-422
    [29] Miller PD, Siris ES, Barrett-connor E, et al. Prediction of fracture risk in postmenopausal women with peripheral bone densitometry: evidence from the National Osteoporosis Risk Assessment. J Bone Miner Res, 2002, 17:2222-2230
    [30]Binbin Li, Shifeng Yu. Genistein prevents bone resporption diseases by inhibiting bone resorption and stimulating bone formation. Biol pharm bull, 2003, 26: 780-786.
    [31] 李斌斌,于世凤.Genistein对破骨细胞分化和骨吸收功能影响及机理探讨.中国骨质疏松杂志,2004,10:272-276
    [32] MORABITO Nunziata, CRISAFULLI Alessandra, VERGARA Caterina, et al. Effects of genistein and hormone-replace ment therapy on bone loss in early postmenopausal women: A randomized double-blind placebo-controlled study. J Bone Miner Res, 2002, 17: 1904-1912.
    [33] Cao YH, Yamagughi M. Suppressive effect of genistein on rat osteoclast apopotis is induced through Ca~(2+) signaling. Biol pharm Bull, 1999, 22: 805-809
    [34] Ishimi Y, Arai N, Wang XX, et al. Difference in effective dosage of genistein on bone and uterus in ovariectomized mice. Biochem Biophys Res Commune, 2000, 274: 697-701
    [35] Ishimi Y, Miyaura C, Ohmura M, et al. Selective effects of genistein, a soybean is of lavone, on B-lymphopoiesis and bone loss caused by estrogen deficiency. Endocrinology, 1999, 1893-1900
    [1] Hadjikis DJ, Androulakis Ⅱ. Bone remodeling. Ann N Y Acad Sci, 2006, 1092: 385-396
    [2] Boyce BF, Xing L. Osteoclasts, no longer osteoblast slave. Nat Med, 2006, 12(12): 1356-1358
    [3] Cohen MM Jr. The new bone biology: pathologic, molecular, and clinical correlates. Am J Med Genet A, 2006, 140(23): 2646-2706
    [4] Yamada A, Takami M. Interleukin-4 inhibition of osteoclast differentiation is stronger than that of Interleukin-13 and they are equivalent for induction of osteoprotegerin production from osteoblasts. Immunology, 2007, 120(4): 573-579.
    [5] Palmqvist PV, Lundbery P, Pernilla L, et al. Inhibition of Hormone and cytokine stimulated osteoclastogenesis and bone resorption by interleukin-4 and interleukin-13 is associated with increased osteoprotegerin and RANK in a STAT6-dependent pathway. J Biol Chem, 2006,281:2414-2429.
    [6] F Ben, Tul Cohen. Statins decrease TNF-alpha-induced osteoprotegerin production by endothedial cells and smooth muscle cells in vitro. Biochem Pharmacol, 2007, 73(1):77-83
    [7] Itonaga I, Sabokbar A, Sun SG, et al. Transforming growth factor-beta induces osteoclast formation in the absence of RANKL. Bone, 2004, 34:57-64
    [8] Hai Z, Mansur A, Gloria G, et al. Effects of transforming growth factor-beta 1(TGF-β1) on in vitro mineralization of human osteoblasts on implant materials. Biomaterials, 2003, 24:2013-2020
    [9] Charlotte Swanson, Mattias Lorentzen. Glucocorticoid regulation of osteoclast differentiation and expression of receptor activator of nuclear factor-κB ligand, osteoprotegerin, and the receptor activator of NF-κB mouse calvarial bones. Endocrinology, 2006, 147:3613-22. [10]M. J. Oursler. Direct and indirect effects of estrogen on osteoclasts. J Musculoskel Neuron Interact, 2003,3(4): 363-366
    [11] Shin HH , Kim SJ. Soluble glucocorticoid-induced tumor necrosis factor receptor stimulates osteoclastogenesis by down-regulation of osteoprotegerin in bone marrow stroma cells. Bone, 2006, 39(4):716-23.
    [12] Hofbauer LC, Kuhne CA, Viereck V. The OPG/RANKL/RANK system in metabolic bone diseases. J Musculoskel Neuron Interact, 2004, 4(3): 268-275
    [13] Lacey DL, Timms E, Tan H-L, et al. Osteoprotegerin(OPG) ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 1998, 93:165-176
    [14] Hofbauer LC, Khosla S, Dunstan CR, et al. The role of osteoprotegerin and osteoprotegrin ligand in the paracrine regulation of bone resorption. J Bone Miner Res, 2000, 15: 2-12
    [15] 许勇,项佑贵,严兰珍,等.hOPG基因启动子驱动报告基因LacZ的转基因小鼠模型的建立.中国生物工程杂志,2005,25(11):12-15.
    [16] Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 1997, 89: 309-319.
    [17] Samadfam R, Xia Q. Co-treatment of PTH with osteoprotegerin or alendronate increases its anabolic effect on the skeleton of oophorectomized mice. Miner Res, 2007, 22(1): 55-63.
    [18] Koji Suda, Nobuyuki Udagawa. Suppression of osteoprotegerin expression by prostaglandinE_2 is crucially involved in lipopolysaccharide-induced osteoclast formation. J Immunol, 2004, 172: 2504-2511
    [19] Moreno JL, Kaczmarek M, Keegan AD, et al. IL-4 suppresses osteoclast development and mature osteoclast function by a STAT6 dependent mechanism: Irreversible innibition of the differentiation program activated by RANKL. Blood, 2003, 102: 1078-1086
    [20] Suda T, Veno Y, Fujii K, et al. Vitamin D and bone. J Cell Biochem, 2003, 88(2): 259-266
    [21] Shimizi-Ishiuram, Kawana F, Sasaki T, et al. Osteoprotegerin administration reduces femoral bone loss in ovariectomized mice via impairment of osteoclast structure and function. J Electron Microse, 2002, 51: 315-325
    [22] Haynes DR, Barg E, Crotti TN, et al. Osteoprotegerin expression in synovial tissue from patients with rheumatoid arthritis, spondyloarth-ropathis and osteoarthritis and normal control. Rheumatology(Oxford) 2003, 42: 123-134
    [23] Bekker PJ, Holloway D, Nakanishi A, et al. The effect of a single dose of OPG in postmenepausal women. J Bone Miner Res, 2001, 16: 348-360
    [24] Croucher PI, Shipman CM, Van Camp B, et al. Bisphosphonates and osteoprotegerin as inhibitors of myeloma bone disease. Cancer, 2003, 97(3 supple): 818-824
    [25] Body JJ, Greipp P, Coleman RE, et al. A phase 1 study of AMGN-0007, arecombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer, 2003, 97(3 supple): 887-892
    [26] 彭依群、伍贤平.护骨素/核因子-κB活化因子受体/核因子-κB活化因子受体配基系统。见廖二元、谭利华主编:代谢性骨病学。人民卫生出版社,2003:210
    [27] Bucay N, Sarosi I, Dunstan CR, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev, 1998, 12: 1260-1268
    [28] Bengtsson AK, Ryan EJ. Immune function of the decoy receptor osteoprotegerin. Crit Rev Immunol, 2002, 22(3): 201-205
    [1] Sigrist IM, Gerhardt C, Alini M. The long term effects of ovariectomy on bone metabolism in sheep. J Bone Miner Metab, 2007, 25(1): 28-35
    [2] Hasegawa T, Inufusa A, Imai Y, et al. Hydroxyapatite-coating of pedicle screws improves resistance against pull-out force in the osteoporotic canine lumbar spine model: a pilot study. Spine J, 2005, 5(3): 239-243
    [3] Binte Anwar R, Tanaka M, Kohno S, et al. Relationship between porotic changes in alveolar bone and spinal osteoporosis. J Dent Res, 2007, 86(1): 52-57
    [4] Akahoshi S, Sakai A, Arita S, et al. Modulation of bone turnover by alfacalcidol and/or alendronate does not prevent glucocorticoid-induced osteoporosis in growing minipigs. J Bone Miner Metab, 2005, 23(5): 341-350
    [5] Uehara M. Prevention of osteoporosis by foods and dietary supplements. Hesperidin and bone metabolism. Olin Calcium, 2006, 16(10): 1669-1676
    [6] Turner RT, Maran A, Lotinun S, et al. Animal models for osteoporosis. Rev Endocr Metab Disord, 2001, 2(1): 117-127
    [7] Turner AS. Animal models of osteoporosis-necessity and limitations. Eur Cell Mater, 2001, 22(1): 66-81
    [8] Soriano P, Montgomery C, Geske R, et al. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell, 1991, 64(4): 693-702
    [9] Felix R, Hofstetter W, Cecchini MG.. Recent developments in the understanding of the pathophysiology of osteopetrosis. Eur J Endocrinol, 1996,134(2):143-156
    [10] Amling M, Neff L, Priemel M, et al. Progressive osteopetrosis and development of odontomas in aging c-Src deficient mice. Bone, 2000, 27(5): 603-610
    [11]Amizuka N, Warshawsky H, Henderson JE, et al. Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J Cell Biol, 1994, 126(6): 1611-1623
    [12] Lanske B, Karaplis AC, Lee K, et al. PTH/PTHrP receptor in early , development and Indian hedgehog-regulated bone growth. Science, 1996, 273(5275):663-666
    [13]Amling M, Neff L, Tanaka S, et al. Bcl-2 lies downstream of parathyroid hormone-related peptide in a signaling pathway that regulates chondrocyte maturation during skeletal development. J Cell Biol, 1997, 136(1):205-213
    [14] Lanske B, Amling M, Neff L, et al. Ablation of the PTHrP gene or the PTH/PTHrP receptor gene leads to distinct abnormalities in bone development. J Clin Invest, 1999,104(4):399-407
    [15]Schilling AF, Priemel M, Timo Beil F, et al. Transgenic and knock out mice in skeletal research. Towards a molecular understanding of the mammalian skeleton. J Musculoskelet Neuronal Interact, 2001, 1(3): 275-289
    [16] Amling M, Herden S, Posl M, et al. Heterogeneity of the skeleton: comparison of the trabecular microarchitecture of the spine, the iliac crest, the femur, and the calcaneus. J Bone Miner Res,1996, 11 (1) : 36-45.
    
    [17]Wu J , Wang XW, Takasaki M, et al. Cooperative effects of exercise training and genistein administration on bone mass in ovariectomized mice. J Bone Miner Res, 2001,16: 1829-1836
    
    [18] Bain SD, Bailey MC, Celino DL, et al. High dose estrogen inhibits bone resorption and stimulates bone formation in the ovariectomized mouse. J Bone Miner Res, 1993, 8(4):435-442
    [19] Alexander JM, Bab I, Fish S, et al. Human parathyroid hormone 1 -34 reverses bone loss in ovariectomized mice. J Bone Miner Res, 2001, 16(9): 1665- 1673
    [20]Andersson N, Lindberg MK, Ohlsson C, et al. Repeated in vivo determinations of bone mineral density during parathyroid hormone treatment in ovariectomized mice. J Endocrinol , 2001, 170(3) :529 - 537
    [21] Pierroz DD, Bouxsein ML, Rizzoli R, et al. Combined treatment with a β-blocker and intermittent PTH improves bone mass and microarchitecture in ovariectomized mice. Bone, 2006, 39(2):260 - 267
    [22] Kim D, Cho SW, Her SJ, et al. Retrovirus-mediated gene transfer of receptor activator of nuclear factor-kappaB-Fc prevents bone loss in ovariectomized mice. Stem Cells, 2006, 24(7):1798-1805
    [23] Perkins SL, Gibbons R, Kling S, et al. Age-related bone loss in mice is associated with an increased osteoclast progenitor pool. Bone, 1994, 15(1): 65-72
    [24] Bikle DD, Sakata T, Leary C, et al. Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone. J Bone Miner Res, 2002, 17(9): 1570-1578
    [25]Cao J, Venton L, Sakata T, et al. Expression of RANKL and OPG correlates with age-related bone loss in male C57BL/6 mice. J Bone Miner Res, 2003, 18(2) :270 - 277
    [26]Ferguson VL, Ayers RA, Bateman TA, et al. Bone development and age-related bone loss in male C57BL/6J mice. Bone, 2003, 33(3) :387-398
    [27] Bergman RJ, Gazit D, Kahn AJ, et al. Age-related changes in osteogenic stem cells in mice. J Bone Miner Res, 1996,11(5): 568-577
    [28lTakeda T, Matsushita T, Kurozumi M, et al. Pathobiology of the senescence accelerated mouse (SAM). Exp Gerontol, 1997, 32(1-2) : 117 - 127
    [29] Matsushita M., Tsuboyama T, Kasai R, et al. Age-related changes in bone mass in the senescence-accelerated mouse (SAM). SAM-R/3 and SAM-P/6 as new murine models for senile osteoporosis. Am J Pathol, 1986, 125(2) :276-283
    [30] Jilka RL, Weinstein RS, Takahashi K, et al. Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J Clin Invest, 1996, 97(7):1732 - 1740
    [31] Kajkenova O, Lecka-Czernik B, Gubrij I, et al. Increased adipogenesis and myelopoiesis in the bone marrow of SAMP6, a murine model of defective osteoblastogenesis and low turnover osteopenia. J Bone Miner Res, 1997, 12(11):1772 - 1779
    [32]Silva MJ, Brodt MD, Ettner SL. Long bones from the senescence accelerated mouse SAMP6 have increased size but reduced whole-bone strength and resistance to fracture. J Bone Miner Res, 2002, 17(9): 1597-1603
    [33] Watanabe K, Hishiya A. Mouse models of senile osteoporosis. Mol Aspects Med, 2005, 26(3): 221-231
    [34]Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 1997, 89(2):309-319
    [35]Mizuno A, Amizuka N, Irie K, et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin Biochem Biophys Res Commun, 1998, 247(3):610-615
    [36]Min H, Morony S, Sarosi I, et al. Osteoprotegerin Reverses Osteoporosis by Inhibiting Endosteal Osteoclasts and Prevents Vascular Calcification by Blocking a Process Resembling Osteoclastogenesis. J Exp Med, 2000, 192(4):463-474
    [37] Nakamura M, Udagawa N, Matsuura S, et al. Osteoprotegerin regulates bone formation through a coupling mechanism with bone resorption. Endocrinology, 2003, 144(12):5441 - 5449
    [38]Tintut Y, Demer L. Role of osteoprotegerin and its ligands and competing receptors in atherosclerotic calcification. J Investig Med, 2006, 54(7) :395-401
    [39]Theill LE, Boyle WJ, Penninger JM, et al. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol, 2002, 20: 795 - 823
    [40]Suda T, Ueno Y, Fujii K, et al. Vitamin D and bone. J Cell Biochem, 2003, 88 (2):259-266
    [41] Walsh MC, Choi Y. Biology of the TRANCE axis. Cytokine Growth Factor Rev, 2003, 14(3-4): 251-263
    [42]Yamazaki H, Sasaki T. Effects of osteoprotegerin administration on osteoclast differentiation and trabecular bone structure in osteoprotegerin-deficient mice. J Electron Microsc, 2005, 54(5): 467-477
    [43]Shimizu-Ishiura T, Kawana F, Sasaki T. Osteoprotegerin administration reduces femural bone loss in ovariectomized mice via impairment of osteoclast structure and function. J Electron Microsc, 2002, 51(5):315 - 325
    [44]Kostenuik, PJ. Osteoprotegerin and RANKL regulate bone resorption, density, geometry and strength. Curr Opin Pharmacol, 2005, 5(6): 618-625
    [45] Bucay N, Sarosi I, Danstan CR, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev, 1998, 12(9):1260-1268
    [46]Mizuno A, Amizuka N, Irie K, et al. Severe Osteoporosis in Mice Lacking Osteoclastogenesis Inhibitory Factor/Osteoprotegerin. Biochem Biophys Res Commun, 1998, 247(3): 610-615
    [47]Amizuka N, Shimomura J, Li M, et al. Defective bone remodeling in osteoprotegerin-deficient mice. J Electron Microsc, 2003, 52(6): 503-513
    [48]Hofbauer LC, Schoppet M. Osteoprotegerin deficiency and juvenile Paget' s disease. N Engl J Med, 2002, 347(20): 175-184.
    [49]Kawan F, Sasaki T. Osteoclast differentiation and characteristic trabecular bone formation during growth plate destruction in osteprotcgerin-deficient mice. J Electron Microsc, 2003, 52(6): 515-525
    [50]Ducy P, Starbuck M, Priemel M, et al. A Cbfa1 dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev, 1999, 13:1025-1036.
    [51] Lecka-Czernik B, Gubrij I, Moerman E J, et al. Inhibition of Osf2/ Cbfa1 expression and terminal osteoblast differentiation by PPARgamma2. J Cell Biochem, 1999, 74(3): 357-371
    [52]Alliston T, Choy L, Ducy P, et al. TGF-b induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. Embo J, 2001, 20(9): 2254-2272
    [53]Gilbert L, He X, Farmer P, et al. Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2alpha A) is inhibited by tumor necrosis factor-alpha. J Biol Chem, 2002, 277(4):2695-2701
    [54] Komori T. A fundamental transcription factor for bone and cartilage. Biochem Biophys Res Commun, 2000, 276(3):813-816
    [55]Drissi H, Luc Q, Shakoori R, et al. Transcriptional autoregulation of the bone related CBFA1/RUNX2 gene. J Cell Physiol, 2000,184(3):341-350
    [56]Ducy P. Cbfal: a molecular switch in osteoblast biology, 2000, 219(4):461-471
    [57] Frost HM. Treatment of osteoporoses by manipulation of coherent bone cell populations. Clin Orthop Rela Res, 1979, (143):227-244
    [58]Rodan GA, Martin TJ. Role of osteoblasts in hormonal control of bone resorption a hypothesis. Calcif Tissue Int,1981, 33(4):349-351
    [59]Culver KW, Ram Z, Wallbridge S, et al. In vivo gene transfer with retroviral vector producer cells for treatment of experimental brain tumors. Science,1992, 256(5063):1550-1552
    [60]Humel W, Magnelli L, Chiarugi VP, et al. Herpes simplex virus thymidine kinase/ganciclovir-mediated apoptotic death of bystander cells. Cancer Research, 1996, 56(12):2697-2702
    [61]Corral DA, Amling M, Priemel M, et al. Dissociation between bone resorption and bone formation in osteopenic transgenic mice. Proc Natl Acad Sci USA, 1998, 95(23):13835-13840
    [62]Priemel M, Schilling AF, Haberland M, et al. Osteopenic mice: Animal models of the aging skeleton. J Musculoskelet Neuronal Interact, 2002, 2(3): 212-218
    [63]Ducy P, Amling M, Takeda S, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell, 2000, 100(2):197-207
    
    [64]Amling M, Takeda S, Karsenty G. A neuro (endo)crine regulation of bone remodeling. Bioassays, 2000, 22(11):970-975
    [65]Haberland M, Schilling AF, Rueger JM, et al. Brain and Bone: Central regulation of bone mass. A new paradigm in skeletal biology. J Bone Joint Surg Am, 2001,83-A(12):1871-1876
    [66]NanSY, Kratzsch J, Kin KW, et al. Cerebrospinal fluicl and plasma concentrations of lepin, NPY, and α- MSH in obese women and their relationship to negative energy balance. J Clin Endocrinol Metab, 2001, 86(10): 4849-4853
    
    [67]Ducy P, Schinke T, Karsenty G. The osteoblast: a sophisticated fibroblast under central surveillance. Science, 2000,289 (5484):1501 - 1504
    [68]Whitfield JF. Leptin: brains and bones. Expert Opin Investig Drugs, 2001, 10(9):1617 - 1622

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700