基于主动转向与差动制动的汽车防侧翻控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车工业的迅速发展,公路网络建设的日益完善,汽车的行驶速度得到了极大地提高,与此同时,路上的汽车数量也越来越多,汽车的交通事故也就不断地增加。由汽车交通事故造成的生命财产损失日益严重,汽车的行驶安全性能,尤其是侧向安全性能越来越受到人们的重视。被动安全技术和主动安全技术成为了研究重点和热点。汽车侧翻由于其严重的危害性也得到了大家的重视,越来越多的学者和汽车制造商对汽车侧翻的形成机理和控制方法进行研究。而我国对于这一领域的研究处于起步阶段,进行汽车防侧翻控制的研究对进一步提高汽车的安全性能有着现实的意义和广阔的应用前景。
     轮胎的侧向力与制动力都与其垂直载荷有关,而垂直载荷的大小受到汽车侧倾运动的影响,而横向载荷转移率正是反映垂直载荷及其变化的重要参数,因此,建立了基于横向载荷转移率的非线性轮胎模型,并在此基础上建立基于横向载荷转移率并能够反映汽车运动状态的八自由度汽车系统动力学模型,并将该模型作为汽车防侧翻控制研究的基础。
     主动转向技术可以主动改变转向角的大小来调整汽车的运动姿态。本文通过深入分析转向角大小对汽车侧翻的影响,采用主动转向来进行防侧翻控制,并进行了数值仿真分析,分析结果说明主动转向能够通过改变汽车的横摆角速度和侧向加速度来降低汽车的横向载荷转移率,从而提高了汽车的防侧翻能力。同时该分析结果为主动转向防侧翻控制设计提供依据。
     差动制动能够通过改变汽车的动力学特性来改变汽车的行驶姿态。本文通过分析单轮差动制动对汽车动力学特性的影响以及差动制动防侧翻控制的基本原理,建立了基于横向载荷转移率的汽车差动制动防侧翻动力学模型,并在此基础上进行数值仿真研究。通过比较了差动制动与普通制动的防侧翻效果来说明差动制动的优越性,然后研究分析了差动制动时制动力大小对汽车运动姿态的影响,为防侧翻控制设计提供依据。
     最后,在上述的理论分析的基础上,本文提出一种联合主动转向和差动制动的汽车防侧翻的滑模控制策略及其控制器的设计方法。仿真结果表明该控制策略能够有效地提高汽车的防侧翻能力以及行车轨迹保持能力,增强了汽车的操纵稳定性。
With the rapid development of the vehicle industry and the enhancement of the road condition, the vehicle speed has become higher and higher. Meanwhile, more and more traffic accidents occur after the number of automobiles increasing fast. Because of the loss of lives and property grows heavier caused by the traffic accidents, the vehicle security, especially the lateral security, has wined more and more attention. The Active Safety Technology and the Passive Safety Technology have become focus of the vehicle security research. Due to the serious harm of rollover, more and more researcher and auto manufacturers have been doing much research on the theory of rollover and the anti-rollover control methods. But in China, the research on this field is just in the initial stage. So, Studying on the anti-rollover control to enhance the vehicle security has practical significance and broad application prospects.
     For a tire, its lateral force and braking force are both related to its vertical load, and the vertical load is affected by the roll movement, moreover the Lateral-load Transfer Rate (LTR) is an important parameter to describe the change of the vertical load. By considering this, a nonlinear tire model and an 8-DOF vehicle dynamic model have been built based on the LTR, and the study on anti-rollover control is base on these models.
     Active steering theology can change the steering angle independently to change the movement of the automobile. Through analysis how the steering angle influences the roll movement, this paper uses active steering theology as an anti-rollover control method. During the simulation, the method is validated. The results show that active steering theology can improve the anti-rollover performance by reducing the LTR through change the yaw rate and the lateral acceleration.
     Differential braking technology can change the vehicle dynamic to improve the driving movement. After analyzing the differential braking effect on the dynamic and its fundamental for anti-rollover control, a special dynamic model has been built based on the LTR, and then, simulation has been done. Through compare the effect of differential braking and the common braking, differential braking was proved better. Furthermore, how the braking force yielded by differential braking do effect on the driving movement was discussed. All of these study provide theory for the anti-rollover controller design.
     Finally, based on the analysis above, a sliding mode control theory and its controller design method for anti-rollover by integrated active steering and differential braking was presented. During the simulation, the method works. The results show that this control method can not only enhance the anti-rollover ability but also keep the car driving on the right way.
引文
[1]National Highway Traffic Safety Administration, Initiative to address the mitigation of vehicle rollover Docket NO.NHTSA-2003-14622-1,2003
    [2]Traffic safety facts 2005:a compilation of motor vehicle crash data from the fatality analysis reporting system and the general estimates system,2007,61-65 (National Highway Traffic Safety Administration, US Department of Transportation, Washington DC
    [3]Motor vehicle traffic crash injury and fatality estimates,2002 early assessment, National Center for Statistics and Analysis Advanced Research and analysis,2003
    [4]WHO(2004).World Report on Road Traffic Injury Prevention, World Health Organization,Geneva,2004
    [5]YJ.Kweon, K.M.Kocklman, Overall injury risk to different drivers:combining exposure, frequency, and severity models[J], Accident Analysis and Prevention,2003,35,441-450.
    [6]D.C.Viano,C.S.Parenteau, Rollover crash sensing and safety overview[J], SAE Technical Paper 2004-01-0342,2004
    [7]佐藤武,吴关昌,陈倩.汽车安全技术[M],.北京:机械工业出版社,1988
    [8]钱宇彬,胡宁,现代汽车安全技术[M],上海:上海交通大学出版社,2006
    [9]中国汽车工程学会,汽车安全技术[M],北京:人民交通出版社,2004
    [10]魏朗,刘浩学,汽车安全技术概论[M],北京:人民交通出版社,1999
    [11]宋健,王伟玮,李亮,汽车安全技术的研究现状和展望[J],汽车安全节与能学报,2010,vol.1 No.2
    [12]Yasui Yoshiyuki, Tozu Kenji, Hattoti Notiaki, Improvement of vehicle directional stability for transient steering maneuvers using active brake control[J]。SAE paper, NO.960485
    [13]Yamamoto Masaki, Active control strategy for improved handling and stability[R].SAE paper,NO.911902
    [14]余志生,汽车理论(第四版)[M],北京:机械工业出版社,2006
    [15]Chen B, Peng H, Differential-braking Based Rollover Prevention for sport Utility Vehicle with Human-in-loop Evaluation[J], Vehicle system Dynamic,2001,36
    [16]Alekasnder Hac, Rollover Stability Index Including Effect of Suspension Design[J], SAE Transaction,2002-01-0965
    [17]Jangyeol Yoon,Kyongsu Yi, A Roll-Rollover Mitigation Control Scheme Based on Rollover Index[C], Proceedings of the 2006 American Control Conference, USA,2006
    [18]Jangyeol Yoon,Wanki Cho,Bongyeong Koo,Unified Chassis Control for Rollover Prevention and Lateral Stability[C],IEEE Transactions on Vehicular Technology Vol.58,NO.2,2009
    [19]Chen B, Peng H, Rollover warming for articulated heavy vehicles based on time-to-rollover metric[J]. Transaction of the ASME,2005,127(9)
    [20]Vasilios T,Damrongrit P,Alexander C,New Method of identifying Real-Time Predictive Lateral Load Transfer Ratio for Rollover Prevention Systems[C], American Control Conference,USA,2009
    [21]P.J.Liu,S.Rakheja,A.K.W.Ahmed, Detection of Dynamic Roll Instability of Heavy Vehicle for Open-loop Rollover Control[J], SAE paper NO973263
    [22]Robert E, Christopher W, Steven K,A Centrifuge Concept for Measuring the Rollover Threshold of Light-Duty Vehicles[J], SAE paper No2002-01-1603
    [23]Niladri.S,Bangalore.A,James.C, Estimation of Dynamic Rollover Threshold of Commercial Vehicles Using Low Speed Experimental Data[J], SAE paper NO932949
    [24]Julian Happian-Smith, An introduction to modern vehicle design[M],2002
    [25]DELPHI,Driving Tomorrow's Technology.News release,2003
    [26]金智林等,基于模糊差动制动的运动型多功能汽车防侧翻控制[J],汽车技术,2008(1)
    [27]金智林,翁建生,胡海岩,汽车侧翻及稳定性分析[M],机械科学与技术,Vo1.26 No.3,2007
    [28]金智林,翁建生,胡海岩,汽车侧翻预警及防侧翻控制[M],动力学与控制学报,Vo1.5No4,2007
    [29]李杰,宋小文,王耘,胡树根,一种改进的汽车侧翻模型及其应用研究[M],汽车工程,2009(31)10
    [30]陈琳,车辆滚翻事故再现轨迹模型及仿真的研究[吉林大学硕士论文],2006
    [31]徐延海,基于主动转向技术的汽车防侧翻控制的研究[M],汽车工程,Vol.27 No.5,2005
    [32]余强,马建,主动悬架系统对汽车侧翻稳定性改善分析[M],中国公路学报,Vol.18,No.3,2005
    [33]花家寿,刘合法,车辆静态侧翻试验方法的分析研究[M],传动技术
    [34]W.A.H.Oraby,S.M.EI-Demerdash,A.M.Selim, Improvement of Vehicle Lateral Dynamics by Active Front Steering Control[J], SAE paper NO.2004-01-2018
    [35]Junjie He,David A.Crolla,Martin C.Levesley,Warren J.Manning, Integrated Active Steering and Variable Torque Distribution Control for Improving Vehicle Handling and Stability[J], SAE paper NO.2004-01-1071
    [36]Bjorn.J,Magnus.G, Untripped SUV Rollover Detection and Prevention[C],43rd IEEE Conference on Decision and Control,2004
    [37]Shuichi Takano,Masao Nagai, Dynamics Control of Large Vehicle for Rollover Prevention[C],IEEE Conference NO.20014555
    [38]Brad.S,Tore.H.Anders.R, Vehicle Dynamic Control and Controller Allocation for Rollover Prevntion[C], IEEE International Conference on Control Applications, Germany,2006
    [39]Roland.L,Roland.A, Predition of steady State Roll Threshold for Load Flat Bed Trailers-Theory and Calculation[J], SAE paper NO.973261
    [40]Daniel E.Wiliams and Wassim M.Haddad, Nonlinear Control of Roll Moment Distribution to Influence Vehicle Yaw characteristics[C],IEEE transactions on control system technology 1995.3(3)
    [41]Jun Wang etc, Active suspension control to improve-vehicle ride and steady-state handling[C],44rdIEEE conference on Decision and Control, Seville,2005
    [42]Qiang Li,Guobiao Shi,Yi Lin,Yaw Stability Control of Active Front Steering with Fractional-order PID Controller[C],IEEE Conference,2009
    [43]Daniel E.William,Wassim M.Haddad, Nolineer Control Moment Distribution to Influence Vehicle Yaw Characteristics[C], IEEE conference on Control System.Vol.3,No.1,1995
    [44]何锋,杨利勇,刘章仪,基于差动制动的防侧翻车辆动力学控制研究[J],现代机械,Vol.5,2003
    [45]Tom P, Vehicle Steering Intervention Through Differential Braking[C], American Control Conference,NO.TA6-10:15
    [46]J Acherman, T Bunte, D Odenthal.Advantages of Steering for Vehicle Dynamic Control[J],9ME013
    [47]李一染,朱卿,陈慧,主动前轮转向控制技术的现状与发展[J],上海汽车,2008.10
    [48]Selim Solamz,Martin Corless, A,ethodology for the design of robust rollover prevention controllers for automotive vehicle:Part 1_Differential braking[C],45th IEEE conference on Decision & Control,USA,2006
    [49]张晓宇,苏宏业,滑模变结构控制理论进展综述[J],化工自动化及仪表,2006.33(2):1-8
    [50]童克文,张兴,滑模变结构控制及应用[J],电气应用,vol.26,No.3,2007
    [51]刘金琨,孙富春,滑模变结构控制理论及其算法研究与进展[J],控制理论与应用,Vol.24No.3,2007
    [52]刘金琨,滑模变结构控制Matlab仿真[M],北京:清华大学出版社,2005
    [53]黄永安,李文成,高小科,Matlab7.0/Simulink6.0应用实例仿真与高效算法开发[M],北京:清华大学出版社,2008
    [54]黄向华,控制系统仿真[M],北京:北京航空大学出版社,2008
    [55]喻凡,林逸,汽车系统动力学[M],北京:机械工业出版社,2008
    [56]李道飞,基于轮胎力最优分配的车辆动力学集成控制研究[D],上海交通大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700