纤维素基抗菌复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素基抗菌纳米复合材料以纤维素为基体相,银、氯化银、二氧化钛等无机抗菌材料为增强相,结合了纤维素和无机抗菌材料的优点,具有生物可降解性、生物适应性和抗菌性,在组织工程、生物医用等领域具有潜在的利用前景。目前,纤维素基抗菌纳米复合材料存在制备方法繁琐、增强相在基体相中分散性差等问题。本论文针对这些科学问题,利用绿色环保的方法快速制备一系列纤维素基抗菌纳米复合材料,实现无机抗菌材料与纤维素均匀复合,对其物相、形态、分散性和性能进行全面表征和系统研究,探讨其复合机理。
     以微晶纤维素为基体相,乙二醇为溶剂、微波吸收剂和还原剂,硝酸银为银源,通过微波辅助加热法原位快速制备纤维素/银纳米复合材料。研究结果表明,在140℃反应10min就获得纤维素/银纳米复合材料;通过优化制备参数,可以实现银纳米颗粒均匀稳定的分布在纤维素表面;与单体-微晶纤维素比较,所得纤维素/银纳米复合材料热稳定性能显著提高;制备出的复合材料对大肠杆菌以及金黄色葡萄球菌具有明显的抗菌特性。
     以微晶纤维素为基体相,通过LiC1/DMAc预处理纤维素,DMAc为溶剂,抗坏血酸为还原剂,通过微波辅助加热法制备纤维素/氯化银-银和纤维素/银纳米复合材料。研究表明,通过调节抗坏血酸浓度,可以制备纤维素/氯化银-银、纤维素/银-氯化银以及纤维素/银等一系列纳米复合材料;与油浴加热相比较,微波辅助加热有利于氯化银相向银相的转变;与油浴加热相比较,微波辅助加热有利于提高纤维素/银纳米复合材料中银的比例。抗菌实验说明,与纤维素/银纳米复合材料相比,制备出的纤维素/氯化银-银纳米复合材料对大肠杆菌和金黄色葡萄球菌具有更好的抗菌效果。
     以微晶纤维素为基体相,通过LiC1/DMAc预处理纤维素,DMAc为溶剂,不添加任何还原剂,通过微波辅助加热法制备纤维素/氯化银纳米复合材料。研究结果表明,氯化银纳米晶体的形成与纤维素的再生几乎同时发生;较高的微波加热温度以及较长的微波加热时间对于复合材料中氯化银纳米颗粒的成核生长是至关重要的;制备出的纤维素/氯化银纳米复合材料对大肠杆菌和金黄色葡萄球菌有比较好的抗微生物活性。
     以棉秆综纤维素为基体相,通过NaOH/尿素体系预处理综纤维素,采用水热法制备棉秆综纤维素/银纳米复合材料。研究表明,与硼氢化钠和葡萄糖作还原剂相比较,采用果糖处理水热反应制备的复合材料其表面分布有大量的片状结构纳米银;较长的水热反应时间更有利于银的晶化,但不利于银纳米颗粒的均匀分布;与微晶纤维素制备的复合材料相比较,农林生物质棉秆综纤维素作为银纳米颗粒的载体,更有利于提高其分散性;经NaOH/尿素体系预处理棉秆综纤维素,其纤维形态分布较好,更有利于提高银的分散性。
     以棉秆纤维为基体相,通过NaOH/尿素体系预处理棉秆纤维,采用超声波法制备棉秆纤维/银纳米复合材料。研究结果表明,硼氢化钠作还原剂,超声波反应40min时,复合材料表面生成线状纳米银;添加葡萄糖作还原剂,更有利于片状纳米银的生成;超声波反应时间增加导致棉秆纤维结晶度下降;硼氢化钠作还原剂制备的复合材料其热稳定性能有很大提高。
     以微晶纤维素为基体相,分别采用LiC1/DMAc体系和NaOH/尿素体系预处理纤维素,再利用水热法将纤维素与二氧化钛进行复合。研究表明,不同的纤维素溶解体系制备的复合材料其形态有较大差别;NaOH/尿素体系预处理纤维素制备的复合材料无论是在物相、热稳定性还是抗菌性能上都优于LiC1/DMAc体系预溶解纤维素制备的复合材料。复合材料通过煅烧处理最终获得金红石相二氧化钛。
     以微晶纤维素为基体相,乙酸锰和六次甲基四胺为原料,二甲基甲酰胺为溶剂,通过微波法制备纤维素/锰氧化物纳米复合材料。研究结果表明,加热时间增加导致纤维素结晶度降低;通过煅烧处理纤维素/锰氧化物纳米复合物获得三氧化二锰材料。以微晶纤维素为基体相,乙酸锰为锰源,采用超声波法制备纤维素/四氧化三锰纳米复合材料。研究表明,超声波反应90min,尿素、六次甲基四胺、氢氧化钠和氢氧化钾四种碱制备的复合材料其基体相表面的四氧化三锰颗粒形态有所不同;强碱氢氧化钠有利于无机颗粒形成具有长薄片状的形态;与尿素和六次甲基四胺相比较,氢氧化钠和氢氧化钾制备的纤维素/四氧化三锰纳米复合材料其热稳定性能更佳。通过煅烧处理纤维素/锰氧化物纳米复合材料获得具有尖晶石结构的四氧化三锰材料。
Combined with the advantages of the cellulose and inorganic antibacterial materials, the cellulose-based antimicrobial nanocomposites were synthesized by using cellulose as the matrix, and silver, silver chloride, titanium dioxide, other inorganic antimicrobial materials as the reinforcing phase, which had potential applications in the field of tissue engineering and biomedical owing to its unique properties such as biodegradation, biocompatibility, and antibacterial activities. Currently, there had been problems about the cellulose-based antimicrobial nanocomposites, such as the tedious preparation method and poor dispersion of the reinforcing phase in the matrix. This thesis focused on the above scientific issues, used green method to fabricate series of cellulose-based antimicrobial nanocomposites, characterized their phase, shape, dispersion, and explored the mechanism of the composites.
     The cellulose/silver nanocomposites were in-situ synthesized by fast microwave-assisted heating method by using microcrystalline cellulose (MCC) as the matrix, ethylene glycol as the solvent, microwaves absorbers and reducing agent, and silver nitrate as reactant. The results showed that cellulose-silver nanocomposites were synthesized by microwave heating at140℃for only10min. By optimized the preparation parameters, it can be achieved uniform and stable distribution of silver nanoparticles on the cellulose matrix. Compared to the monomer-MCC, the thermal stability of the cellulose/silver nanocomposites had significantly improved. The prepared composites had obvious antibacterial properties against Escherichia coli and Staphylococcus aureus.
     The cellulose/AgCl-Ag nanocomposites and cellulose/Ag nanocomposites were synthesized via microwave-assisted heating method by LiCl/DMAc pretreatment of cellulose using MCC as the matrix, DMAc as the solvent, and ascorbic acid as a reducing agent. The results indicated that series of cellulose/AgCl-Ag, cellulose/Ag-AgCl, and cellulose/Ag nanocomposites were synthesized by adjusted the concentration of ascorbic acid. Compared with the oil bath heating, microwave-assisted heating method was much more favor of the phase transition from silver chloride to silver and also conducive to improve the proportion of silver in nanocomposites. Compared to the cellulose/Ag nanocomposites, the antibacterial experiment demonstrated that the cellulose/AgCl-Ag nanocomposites had better antimicrobial effect against Escherichia coli and Staphylococcus aureus.
     The cellulose/AgCl nanocomposites were synthesized via microwave-assisted heating method by LiCl/DMAc pretreatment of cellulose without any reducing agent using MCC as the matrix and DMAc as the solvent. The novel preparation method was based on the simultaneous formation of the AgCl nanoparticles and precipitation of the cellulose. The high heating temperature and long heating time are favorable for the complete formation of AgCl nanoparticles in the cellulose/AgCl nanocomposites. The cellulose/AgCl nanocomposites had good antibacterial activities against both E. coli (Gram-negative) and S. aureus (Gram-positive).
     The holocellulose/Ag nanocomposites were synthesized via hydrothermal method by NaOH/urea pretreatment of holocellulose using holocellulose as the matrix from cotton stalk. Compared with the reductants of sodium borohydride and glucose, there had been a large number of silver nanosheets dispersed on the surface of composites prepared using fructose as reducing agent by hydrothermal method. The long hydrothermal reaction time is conducive to the crystallization of silver, but not favorable for the uniform distribution of silver nanoparticles. Holocellulose from cotton stalk as the carrier for silver nanoparticles, are much more conducive to improve the dispersion of silver nanoparticles in the cellulose matrix compared with the composites prepared by MCC. It has been well distributed for cotton stalk holocellulose fiber by NaOH/urea pretreatment, which were much more conducive to improve the dispersion of silver nanoparticles.
     The cotton stalk fiber/Ag nanocomposites were synthesized via ultrasonic treatment by NaOH/urea pretreatment of cotton stalk fiber. It was generated linear nano-silver on the surface of the composites by using sodium borohydride as reducing agent via ultrasonic treatment for40min. It was much more conducive to the generation of the chip-like nano-silver using glucose as reducing agent. The crystallinity of cotton stalk fiber decreased with the increasing ultrasonic treatment time. The thermal stability was greatly improved by using sodium borohydride as reducing agent.
     The cellulose/TiO2nanocomposites were synthesized via hydrothermal method by LiCl/DMAc pretreatment and NaOH/urea pretreatment of Cellulose, respectively, which were used MCC as the matrix. The morphology of the composites was different by using different cellulose dissolution systems. The composites prepared by NaOH/urea pretreatment were superior to the composites pretreated by LiCl/DMAc solution either in phase, thermal stability and antibacterial properties. The TiO2crystals were obtained by calcination the composites.
     The cellulose/manganese oxide nanocomposites were synthesized via microwave-assisted heating method using MCC as the matrix, manganese acetate and hexamethylenetetramine (HMT) as raw materials, dimethylformamide (DMF) as a solvent. The crystallinity of cellulose decreased with the increasing microwave heating time. The Mn2O3materials were obtained by calcination the nanocomposites. The cellulose/Mn3O4nanocomposites were synthesized via ultrasonic treatment using MCC as the matrix, manganese acetate as manganese source. The particle morphology of the manganese tetroxide on the matrix of composites synthesized by ultrasonic treatment for90min were different using four kinds of alkalis——urea, HMT, sodium hydroxide and potassium hydroxide. Sodium hydroxide is conducive to the formation of inorganic particles having a long thin sheet-like morphology. Compared with urea and HMT, the thermal stability of the cellulose/Mn3O4nanocomposites prepared by sodium hydroxide and potassium hydroxide were much better. The Mn3O4materials with spinel structure were obtained by calcination the nanocomposites.
引文
1.毕思玮,李桂芝.N—亚水杨基亮氨酸及其与锰(Ⅱ)配合物的合成,表征和抗菌活性[J].临沂师专学报,1995,6.
    2.陈四红,吕曼祺,张敬党,董加胜,杨柯.含Cu抗菌不锈钢的微观组织及其抗菌性能[J].金属学报,2004,40(3):314-318.
    3.康湛莹,李瑞增.重金属离子杀菌作用的机理[J].哈尔滨科学技术大学学报,1995,19(003):103-106.
    4.李辉芹.微生物生产的纤维素——细菌纤维素[J].产业用纺织品,2005,23(002):42-44.
    5.刘康时,江显异,赵英.银系无机抗菌剂作用机理的研究进展[J].佛山陶瓷,2001,11(56):1-5.
    6.吕昂,张俐娜.纤维素溶剂研究进展[J].高分子学报,2007,10:937-944.
    7.孙东平,杨加志,李骏,周伶俐,于俊伟.载银细菌纤维素抗菌敷料的制备及其抗菌性能的研究[J].生物医学工程学杂志,2009,26(5):1034-1038.
    8.王旭,黄锐,钱欣,周春晖,濮阳楠.超声波对聚合物/纳米CaCO3复合材料性能的影响[J].工程塑料应用,2003,3(3):23-25.
    9.邬义明.植物纤维化学[M].轻工出版社,1999.
    10.杨淑蕙.植物纤维化学[M].中国轻工业出版社,2001.
    11.殷年伟,陈克强,卢新安.超声波无皂乳液制备BA/AM/纳米SiO2复合材料[J].高分子材料科学与工程,2004,20(3):216-223.
    12.张俐娜,薛奇,莫志深.高分子物理近代研究方法[J].武汉:武汉大学出版社,2006,10:248-252.
    13.张燕瑰,程和法,黄笑梅,吴进,胡志君.超声波搅拌对SiCp/ZL105复合材料制备的影响[J].中国铸造装备与技术,2011,2:17-19.
    14.周贯宇.复合银系无机抗菌剂的制备及应用[D].浙江大学硕士学位论文,2003.
    15. Ajayan P M, Stephan O, Redlich P, Colliex C. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures[J]. Nature,1995,375 (6532):564-567.
    16. Alemdar A, Sain M. Isolation and characterization of nanofibers from agricultural residues-Wheat straw and soy hulls[J]. Bioresource Technology,2008,99 (6):1664-1671.
    17. Antova G, Vasvasova P, Zlatanov M. Studies upon the synthesis of cellulose stearate under microwave heating[J]. Carbohydrate Polymers,2004,57 (2):131-134.
    18. Aono H, Tatsumi D, Matsumoto T. Characterization of aggregate structure in mercerized cellulose/LiCl·DMAc solution using light scattering and rheological measurements [J]. Biomacromolecules,2006,7 (4):1311-1317.
    19. Aono H, Tatsumi D, Matsumoto T. Scaling analysis of cotton cellulose/LiCl·DMAc solution using light scattering and rheological measurements [J]. Journal of Polymer Science Part B:Polymer Physics,2006,44 (15):2155-2160.
    20. Banks E C, Ferretti L E, Shucard D W. Effects of low level lead exposure on cognitive function in children:A review of behavioral, neuropsychological and biological evidence[J]. Neurotoxicology, 1997,18(1):237-281.
    21. Barud H S, Barrios C, Regiani T, Marques R F C, Verelst M, Dexpert-Ghys J, Messaddeq Y, Ribeiro S J L. Self-supported silver nanoparticles containing bacterial cellulose membranes[J]. Materials Science and Engineering:C,2008,28 (4):515-518.
    22. Berger T J, Spadaro J A, Bierman R, Chapin S E, Becker R O. Antifungal properties of electrically generated metallic ions[J]. Antimicrobial Agents and Chemotherapy,1976,10 (5):856-860.
    23. Bicer M, Sisman I. Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution[J]. Powder Technology,2010,198 (2):279-284.
    24. Bicerano J, Brewbaker J L. Reinforcement of polyurethane elastomers with microfibers having varying aspect ratios[J]. Journal of the Chemical Society-Faraday Transactions,1995,91 (16): 2507-2513.
    25. Bickmore C R, Waldner K F, Baranwal R, Hinklin T, Treadwell D R, Laine R M. Ultrafine titania by flame spray pyrolysis of a titanatrane complex[J]. Journal of the European Ceramic Society, 1998,18 (4):287-297.
    26. Blanchard L A, Hancu D, Beckman E J, Brennecke J F. Green processing using ionic liquids and CO2[J]. Nature,1999,399 (6731):28-29.
    27. Cai J, Zhang L N. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions[J]. Macromolecular Bioscience,2005,5 (6):539-548.
    28. Cai J, Zhang L N. Unique gelation behavior of cellulose in NaOH/urea aqueous solution[J]. Biomacromolecules,2006,7 (1):183-189.
    29. Cai J, Zhang L N, Zhou J P, Qi H, Chen H, Kondo T, Chen X, Chu B. Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution:Structure and properties[J]. Advanced Materials,2007,19 (6):821-825.
    30. Cai J, Zhang L N, Zhou J P, Li H, Chen H, Jin H M. Novel fibers prepared from cellulose in NaOH/urea aqueous solution[J]. Macromolecular Rapid Communications,2004,25 (17): 1558-1562.
    31. Calandra P, Longo A, Marciano V, Turco Liveri V. Physicochemical investigation of lightfast AgCl and AgBr nanoparticles synthesized by a novel solid-solid reaction[J]. The Journal of Physical Chemistry B,2003,107 (28):6724-6729.
    32. Cao S W, Zhu Y J, Ma M Y, Li L, Zhang L. Hierarchically nanostructured magnetic hollow spheres of Fe3O4 and y-Fe2O3:Preparation and potential application in drug delivery[J]. The Journal of Physical Chemistry C,2008,112 (6):1851-1856.
    33. Caruso F. Nanoengineering of particle surfaces[J]. Advanced Materials,2001,13 (1):11-22.
    34. Cascaval C N, Cristea M, Rosu D, Ciobanu C, Paduraru O, Cotofana C. Preparation and characterization of polyvinyl alcohol-:Colloidal silver nanocomposites[J]. Journal of Optoelectronics and Adavnced Materials,2007,9 (7):2116-2120.
    35. Chang L T, Yen C C. Studies on the preparation and properties of conductive polymers. Ⅷ. Use of heat treatment to prepare metallized films from silver chelate of PVA and PAN[J]. Journal of Applied Polymer Science,2003,55 (2):371-374.
    36. Chau J L H, Hsu M K, Hsieh C C, Kao C C. Microwave plasma synthesis of silver nanopowders[J]. Materials Letters,2005,59 (8):905-908.
    37. Chen J, Tang X, Liu J, Zhan E, Li J, Huang X, Shen W. Synthesis and characterization of Ag-hollandite nanofibers and its catalytic application in ethanol oxidation[J]. Chemistry of Materials,2007,19(17):4292-4299.
    38. Chen J, Wang J, Zhang X, Jin Y. Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate[J]. Materials Chemistry and Physics,2008,108 (2):421-424.
    39. Cheng D, Xia H, Chan H S O. Facile fabrication of AgCl@ polypyrrole-chitosan core-shell nanoparticles and polymeric hollow nanospheres[J]. Langmuir,2004,20 (23):9909-9912.
    40. Choi S H, Lee K P, Park S B. Preparation and characterization of poly (ester)-silver and nylon-silver nanocomposites[J]. Studies in Surface Science and Catalysis,2003,146:93-96.
    41. Christensen P A, Curtis T P, Egerton T A, Kosa S A M, Tinlin J R. Photoelectrocatalytic and photocatalytic disinfection of E. coli suspensions by titanium dioxide[J]. Applied Catalysis B: Environmental,2003,41 (4):371-386.
    42. Corr S A, Rakovich Y P, Gun'ko Y K. Multifunctional magnetic-fluorescent nanocomposites for biomedical appli cations [J]. Nanoscale Research Letters,2008,3 (3):87-104.
    43. Cortes D A, Medina A, Escobedo J C, Escobedo S, Lopez M A. Effect of wollastonite ceramics and bioactive glass on the formation of a bonelike apatite layer on a cobalt base alloy [J]. Journal of Biomedical Materials Research Part A,2004,70 (2):341-346.
    44. Cullity B D, Stock S R. Elements of X-ray diffraction[M]. Upper Saddle River, NJ:Prentice hall, 2001.
    45. Czaja W K, Young D J, Kawecki M, Brown R M. The future prospects of microbial cellulose in biomedical applications[J]. Biomacromolecules,2007,8 (1):1-12.
    46. Dallinger D, Kappe C O. Microwave-assisted synthesis in water as solvent[J]. Chemical Reviews, 2007,107:2563-2591.
    47. Daoud W A, Xin J H, Zhang Y H. Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities[J]. Surface Science,2005,599 (1): 69-75.
    48. Davies R L, Etris S F. The development and functions of silver in water purification and disease control[J]. Catalysis Today,1997,36 (1):107-114.
    49. Dawsey T R, McCormick C L. The lithium chloride/dimethylacetamide solvent for cellulose:a literature review[J]. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics,1990,30 (3-4):405-440.
    50. de la Hoz A, Diaz-Ortiz A, Moreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects[J]. Chemical Society Reviews,2005,34 (2):164-178.
    51. de Santa Maria L C, Santos A L C, Oliveira P C, Barud H S, Messaddeq Y, Ribeiro S J. Synthesis and characterization of silver nanoparticles impregnated into bacterial cellulose[J]. Materials Letters,2009,63 (9):797-799.
    52. Deng M, Zhou Q, Du A, van Kasteren J, Wang Y. Preparation of nanoporous cellulose foams from cellulose-ionic liquid solutions[J]. Materials Letters,2009,63 (21):1851-1854.
    53. Dogan H, Hilmioglu N D. Dissolution of cellulose with NMMO by microwave heating[J]. Carbohydrate Polymers,2009,75 (1):90-94.
    54. Dupont J, de Souza R F, Suarez P A Z. Ionic liquid (molten salt) phase organometallic catalysis[J]. Chemical Reviews-Columbus,2002,102 (10):3667-3692.
    55. Eichhorn S J, Dufresne A, Aranguren M, Marcovich N E, Capadona J R, Rowan S J, Weder C, Thielemans W, Roman M, Renneckar S, et al. Review:Current international research into cellulose nanofibres and nanocomposites[J]. Journal of Materials Science,2010,45 (1):1-33.
    56. El-Khadem H S. Carbohydrate chemistry:Monosaccharides and their oligomers[M]. Academic Press Inc.,1988.
    57. Eren E, Afsin B, Onal Y. Removal of lead ions by acid activated and manganese oxide-coated bentonite[J]. Journal of Hazardous Materials,2009,161 (2):677-685.
    58. Espinal L, Suib S L, Rusling J F. Electrochemical catalysis of styrene epoxidation with films of MnO2 nanoparticles and H2O2[J]. Journal of the American Chemical Society,2004,126 (24): 7676-7682.
    59. Evans R, Wallis A F A. Cellulose molecular weights determined by viscometry[J]. Journal of Applied Polymer Science,2003,37 (8):2331-2340.
    60. Favier V, Chanzy H, Cavaille J Y. Polymer nanocomposites reinforced by cellulose whiskers[J]. Macromolecules,1995,28 (18):6365-6367.
    61. Feng Q L, Cui F Z, Kim T N, Kim J W. Ag-substituted hydroxyapatite coatings with both antimicrobial effects and biocompatibility[J]. Journal of Materials Science Letters,1999,18 (7): 559-561.
    62. Feng Q L, Kim T N, Wu J, Park E S, Kim J O, Lim D Y, Cui F Z. Antibacterial effects of Ag-HAp thin films on alumina substrates [J]. Thin Solid Films,1998,335 (1):214-219.
    63. Feng Q L, Wu J, Chen G Q, Cui F Z, Kim T N, Kim J O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus[J]. Journal of Biomedical Materials Research,2000,52 (4):662-668.
    64. Feng X, Liu Y, Lu C, Hou W, Zhu J J. One-step synthesis of AgCl/polyaniline core-shell composites with enhanced electroactivity[J]. Nanotechnology,2006,17 (14):3578-3583.
    65. Ferraria A M, Boufi S, Battaglini N, Botelho do Rego A M, ReiVilar M. Hybrid systems of silver nanoparticles generated on cellulose surfaces[J]. Langmuir,2009,26 (3):1996-2001.
    66. Fievet F, Lagier J P, Blin B, Beaudoin B, Figlarz M. Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles[J]. Solid State Ionics,1989,32:198-205.
    67. Fink H P, Weigel P, Purz H J, Ganster J. Structure formation of regenerated cellulose materials from NMMO-solutions[J]. Progress in Polymer Science,2001,26 (9):1473-1524.
    68. Francesca P, Sara M, Luigi T. New biosorbent materials for heavy metal removal:Product development guided by active site characterization[J]. Water Research,2008,42 (12):2953-2962.
    69. Fritzsche W, Porwol H, Wiegand A, Bornmann S, Kohler, J M. In-situ formation of Ag-containing nanoparticles in thin polymer films[J]. Nanostructured Materials,1998,10 (1):89-97.
    70. Gao F, Lu Q, Komarneni S. Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions[J]. Chemistry of Materials,2005,17 (4):856-860.
    71. Ge J, Zhuo L, Yang F, Tang B, Wu L, Tung C. One-dimensional hierarchical layered KxMnO2 (x<0.3) nanoarchitectures:Synthesis, characterization, and their magnetic properties[J]. The Journal of Physical Chemistry B,2006,110 (36):17854-17859.
    72. Gindl W, Keckes J. All-cellulose nanocomposite[J]. Polymer,2005,46 (23):10221-10225.
    73. Gindl W, Keckes J. Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose[J]. Composites Science and Technology,2004,64 (15):2407-2413.
    74. Golubovich V N, Rabotnova I L. Kinetics of growth inhibition in Candida utilis by silver ions[J]. Microbiology,1974,43:948-950.
    75. Habibi Y, Lucia L A, Rojas O J. Cellulose nanocrystals:Chemistry, self-assembly, and applications[J]. Chemical Reviews,2010,110 (6):3479-3500.
    76. Han S O, Son W K, Youk J H, Park W H. Electrospinning of ultrafine cellulose fibers and fabrication of poly (butylene succinate) biocomposites reinforced by them[J]. Journal of Applied Polymer Science,2008,107 (3):1954-1959.
    77. Hanif K M, Meulenberg R W, Strouse G F. Magnetic ordering in doped Cd(1-x)Co(x)Se diluted magnetic quantum dots[J]. Journal of the American Chemical Society,2002,124 (38): 11495-11502.
    78. Hashimoto K, Irie H, Fujishima A. TiO2 photocatalysis:A historical overview and future prospects [J]. Japanese Journal of Applied Physics Part 1 Regular Papers Short Notes and Review Papers, 2005,44 (12):8269-8285.
    79. Hatton B, Landskron K, Whitnall W, Perovic D, Ozin G A. Past, present, and future of periodic mesoporous organosilicas the PMOs[J]. Accounts of Chemical Research,2005,38 (4):305-312.
    80. He J H, Kunitake T, Nakao A. Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers[J]. Chemistry of Materials,2003,15 (23):4401-4406.
    81. He J H, Kunitake T, Watanabe T. Porous and nonporous Ag nanostructures fabricated using cellulose fiber as a template[J]. Chemical Communications,2005 (6):795-796.
    82. Heinze T, Liebert T. Unconventional methods in cellulose functionalization[J]. Progress in Polymer Science,2001,26 (9):1689-1762.
    83. Heng J Y Y, Pearse D F, Thielmann F, Lampke T, Bismarck A. Methods to determine surface energies of natural fibres:A review[J]. Composite Interfaces,2007,14 (7-9):581-604.
    84. Hong K H, Park J L, Sul I N H, Youk J H, Kang T J. Preparation of antimicrobial poly (vinyl alcohol) nanofibers containing silver nanoparticles[J]. Journal of Polymer Science Part B:Polymer Physics,2006,44 (17):2468-2474.
    85. Hong L, Wang Y L, Jia S R, Huang Y, Gao C, Wan Y Z. Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route[J]. Materials Letters,2006,60 (13):1710-1713.
    86. Hu W, Chen S, Li X, Shi S, Shen W, Zhang X, Wang H. In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes[J]. Materials Science and Engineering:C,2009, 29(4):1216-1219.
    87. Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P D. Room-temperature ultraviolet nanowire nanolasers[J]. Science,2001,292 (5523):1897-1899.
    88. Huang Z M, Zhang Y Z, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology, 2003,63 (15):2223-2253.
    89. Iguchi M, Yamanaka S, Budhiono A. Bacterial cellulose-a masterpiece of nature's arts[J]. Journal of Materials Science,2000,35 (2):261-270.
    90. Inoue Y, Hoshino M, Takahashi H, Noguchi T, Murata T, Kanzaki Y, Hamashima H, Sasatsu M. Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions[J]. Journal of Inorganic Biochemistry,2002,92 (1):37-42.
    91. Jain S K, Awasthi A M, Jain N K, Agrawal G P. Calcium silicate based microspheres of repaglinide for gastroretentive floating drug delivery:Preparation and in vitro characterization[J]. Journal of Controlled Release,2005,107 (2):300-309.
    92. Jia N, Li S M, Ma M G, Sun R C, Zhu J F. Hydrothermal synthesis and characterization of cellulose-carbonated hydroxyapatite nanocomposites in NaOHUrea aqueous solution[J]. Science of Advanced Materials,2010,2 (2):210-214.
    93. Jia N, Li S M, Zhu J F, Ma M G, Xu F, Wang B, Sun R C. Microwave-assisted synthesis and characterization of cellulose-carbonated hydroxyapatite nanocomposites in NaOH-urea aqueous solution[J]. Materials Letters,2010,64 (20):2223-2225.
    94. Jiang L, Li Y, Wang X, Zhang L, Wen J, Gong M. Preparation and properties of nano-hydroxyapatite/chitosan/carboxymethyl cellulose composite scaffold[J]. Carbohydrate Polymers,2008,74 (3):680-684.
    95. Juntaro J, Pommet M, Kalinka G, Mantalaris A, Shaffer M S, Bismarck A. Creating hierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fibers[J]. Advanced Materials,2008,20 (16):3122-3126.
    96. Juntaro J, Pommet M, Mantalaris A, Shaffer M, Bismarck A. Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites [J]. Composite Interfaces,2007,14 (7-9): 753-762.
    97. Kadokawa J, Murakami M, Kaneko Y. A facile method for preparation of composites composed of cellulose and a polystyrene-type polymeric ionic liquid using a polymerizable ionic liquid[J]. Composites Science and Technology,2008,68 (2):493-498.
    98. Katsuki H, Komarneni S. Microwave-assisted polyol synthesis of Ag powders[J]. Journal of Materials Research-Pittsburgh Then Warrendale-,2003,18 (4):747-750.
    99. Kilpelainen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos D S. Dissolution of wood in ionic liquids[J]. Journal of Agricultural and Food Chemistry,2007,55 (22):9142-9148.
    100. Kim C W, Kim D S, Kang S Y, Marquez M, Joo Y L. Structural studies of electrospun cellulose nanofibers[J]. Polymer,2006,47 (14):5097-5107.
    101. Kim J, Kwon S, Ostler E. Antimicrobial effect of silver-impregnated cellulose:potential for antimicrobial therapy[J]. Journal of Biological Engineering,2009,3(1):20-28.
    102. Klemm D, Heublein B, Fink H P, Bohn A. Cellulose:Fascinating biopolymer and sustainable raw material[J]. Angewandte Chemie International Edition,2005,44 (22):3358-3393.
    103. Klemm D, Philpp B, Heinze T, Heinze U, Wagenknecht W. Comprehensive cellulose chemistry. Volume 1:Fundamentals and analytical methods[M]. Wiley-VCH Verlag GmbH,1998.
    104. Klemm D, Schumann D, Kramer F, HeBler N, Hornung M, Schmauder H P, Marsch S. Nanocelluloses as innovative polymers in research and application[M]. Polysaccharides ii, Springer Berlin Heidelberg,2006:49-96.
    105. Klemm D, Schumann D, Udhardt U, Marsch S. Bacterial synthesized cellulose-artificial blood vessels for microsurgery[J]. Progress in Polymer Science,2001,26 (9):1561-1603.
    106. Kokot S, Anh N, Rintoul T L. Discrimination of reactive dyes on cotton fabric by Raman spectroscopy and chemometrics[J]. Applied Spectroscopy,1997,51 (3):387-395.
    107. Kokubo T, Kawai M, Kawashita M, Yamamoto K, Nakamura T. Fabrics of polymer fibers modified with calcium silicate for bone substitute[J]. Key Engineering Materials,2005,284:775-778.
    108. Komarneni S, Li D S, Newalkar B, Katsuki H, Bhalla A S. Microwave-polyol process for Pt and Ag nanoparticles[J]. Langmuir,2002,18 (15):5959-5962.
    109. Kondo T. Hydrogen bonds in cellulose and cellulose derivatives[J]. Polysaccharides:Structural Diversity and Functional Versatility. Marcel Dekker, New York,2005:69-98.
    110. Kong H, Jang J. Antibacterial properties of novel poly (methyl methacrylate) nanofiber containing silver nanoparticles[J]. Langmuir,2008,24 (5):2051-2056.
    111. Konwar U, Karak N, Mandal M. Vegetable oil based highly branched polyester/clay silver nanocomposites as antimicrobial surface coating materials[J]. Progress in Organic Coatings,2010, 68 (4):265-273.
    112. Kroon-Batenburg L M J, Kroon J, Northolt M G Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibers[J]. Polymer Communications,1986,27 (10): 290-292.
    113. Kulpinski P. Cellulose nanofibers prepared by the N-methylmorpholine-N-oxide method[J]. Journal of Applied Polymer Science,2005,98 (4):1855-1859.
    114. Lala N L, Ramaseshan R, Li B J, Sundarrajan S, Barhate R S, Liu Y J, Ramakrishna S. Fabrication of nanofibers with antimicrobial functionality used as filters:Protection against bacterial contaminants[J]. Biotechnology and Bioengineering,97 (6),1357-1365.
    115. Langan P, Nishiyama Y, Chanzy H. X-ray structure of mercerized cellulose Ⅱ at 1 A resolution[J]. Biomacromolecules,2001,2 (2):410-416.
    116. Leopold N, Lendl B. A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride[J]. The Journal of Physical Chemistry B,2003,107 (24):5723-5727.
    117. Li H, Chang J. Preparation, characterization and in vitro release of gentamicin from PHBV/wollastonite composite microspheres[J]. Journal of Controlled Release,2005,107 (3): 463-473.
    118. Li S M, Jia N, Zhu J F, Ma M G, Xu F, Wang B, Sun R C. Rapid microwave-assisted preparation and characterization of cellulose-silver nanocomposites[J]. Carbohydrate Polymers,2011,83 (2): 422-429.
    119. Li S M, Jia N, Zhu J F, Ma M G, Sun R C. Synthesis of cellulose-calcium silicate nanocomposites in ethanol/water mixed solvents and their characterization[J]. Carbohydrate Polymers,2010,80 (1): 270-275.
    120. Li X, Shi J, Zhu Y, Shen W, Li H, Liang J, Gao J. A template route to the preparation of mesoporous amorphous calcium silicate with high in vitro bone-forming bioactivity[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2007,83 (2):431-439.
    121. Liang D, Hsiao B S, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications[J]. Advanced Drug Delivery Reviews,2007,59 (14):1392-1412.
    122. Liang L F, Xu H F, Su Q, Konishi H, Jiang Y B, Wu M M, Wang Y F, Xia D Y. Hydrothermal synthesis of prismatic NaHoF4 microtubes and NaSmF4 nanotubes[J]. Inorganic Chemistry,2004, 43(5):1594-1596.
    123. Liao X H, Zhu J M, Zhu J J, Xu J Z, Chen H Y. Preparation of monodispersed nanocrystalline CeO2 powders by microwave irradiation[J]. Chemical Communications,2001 (10):937-938.
    124. Liau S Y, Read D C, Pugh W J, Furr J R, Russell A D. Interaction of silver nitrate with readily identifiable groups:Relationship to the antibacterialaction of silver ions[J]. Letters in Applied Microbiology,1997,25 (4):279-283.
    125. Liitia T, Maunu S L, Hortling B. Solid state NMR studies on cellulose crystallinity in fines and bulk fibres separated from refined kraft pulp[J]. Holzforschung,2000,54 (6):618-624.
    126. Liu F K, Huang P W, Chu T C, Ko F H. Gold seed-assisted synthesis of silver nanomaterials under microwave heating[J]. Materials Letters,2005,59 (8):940-944.
    127. Liu F K, Ker C J, Chang Y C, Ko F H, Chu T C, Dai B T. Microwave heating for the preparation of nanometer gold particles [J]. Japanese Journal of Applied Physics,2003,42 (6B):4152-4158.
    128. Liu J, Son Y C, Cai J, Shen X, Suib S L, Aindow M. Size control, metal substitution, and catalytic application of cryptomelane nanomaterials prepared using cross-linking reagents[J]. Chemistry of Materials,2004,16 (2):276-285.
    129. Liu S L, Zhang L N, Zhou J P, Wu R X. Structure and properties of cellulose/Fe2O3 nanocomposite fibers spun via an effective pathway[J]. The Journal of Physical Chemistry C,2008,112 (12): 4538-4544.
    130. Liu Z W, Han Q Y, Li J G. A developed method for producing in situ TiC/Al composites by using quick preheating treatment and ultrasonic vibration[J]. Composites Part B:Engineering,2012,43 (5):2429-2433.
    131. Luo H M, Zhang F B, Yang P. Preparation and electrochemical properties of CPAC/Mn3O4 nanocomposite electrode[J]. Journal of Materials Science:Materials in Electronics,2013,24 (2): 601-606.
    132. Luo X, Liu S, Zhou J, Zhang L. In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery[J]. Journal of Materials Chemistry,2009,19 (21):3538-3545.
    133. Ma M G, Zhu J F, Jia N, Li S M, Sun R C, Cao S W, Chen F. Rapid microwave-assisted synthesis and characterization of cellulose-hydroxyapatite nanocomposites in N,N-dimethylacetamide solvent[J]. Carbohydrate Research,2010,345 (8):1046-1050.
    134. Ma M G, Zhu Y J, Xu Z L. A new route to synthesis of y-alumina nanorods[J]. Materials Letters, 2007,61 (8):1812-1815.
    135. Ma M Y, Zhu Y J, Li L, Cao S W. Nanostructured porous hollow ellipsoidal capsules of hydroxyapatite and calcium silicate:preparation and application in drug delivery[J]. Journal of Materials Chemistry,2008,18 (23):2722-2727.
    136. Ma R, Bando Y, Zhang L, Sasaki T. Layered MnO2 nanobelts:Hydrothermal synthesis and electrochemical measurements[J]. Advanced Materials,2004,16 (11):918-922.
    137. Maliyekkal S M, Antony K R, Pradeep T. High yield combustion synthesis of nanomagnesia and its application for fluoride removal[J]. Science of the Total Environment,2010,408 (10): 2273-2282.
    138. Maliyekkal S M, Lisha K P, Pradeep T. A novel cellulose-manganese oxide hybrid material by in situ soft chemical synthesis and its application for the removal of Pb (Ⅱ) from water[J]. Journal of Hazardous Materials,2010,181 (1):986-995.
    139. Maneerung T, Tokura S, Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing[J]. Carbohydrate Polymers,2008,72 (1):43-51.
    140. Manna S, Batabyal S K, Nandi A K. Preparation and characterization of silver-poly (vinylidene fluoride) nanocomposites:Formation of piezoelectric polymorph of poly (vinylidene fluoride)[J]. The Journal of Physical Chemistry B,2006,110 (25):12318-12326.
    141. Maria L C S, Santos A L C, Oliveira P C, Valle A S, Barud H S, Messaddeq Y, Ribeiro S J. Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose[J]. Polimeros,2010,20 (1):72-77.
    142. Marques P A A P, Nogueira H I S, Pinto R J B, Neto C P, Trindade T. Silver-bacterial cellulosic sponges as active SERS substrates[J]. Journal of Raman Spectroscopy,2008,39 (4):439-443.
    143. Marques P A A P, Trindade T, Neto C P. Titanium dioxide/cellulose nanocomposites prepared by a controlled hydrolysis method[J]. Composites Science and Technology,2006,66 (7):1038-1044.
    144. Matsumoto T, Tatsumi D, Tamai N, Takaki T. Solution properties of celluloses from different biological origins in LiCl-DMAc[J]. Cellulose,2002,8 (4):275-282.
    145. Matsuoka H, Akiyama H, Okada Y, Ito H, Shigeno C, Konishi J, Kokubo T, Nakamura T. In vitro analysis of the stimulation of bone formation by highly bioactive apatite- and wollastonite-containing glass-ceramic:Released calcium ions promote osteogenic differentiation in osteoblastic ROS 17/2.8 cells[J]. Journal of Biomedical Materials Research,1999,47 (2):176-188.
    146. McCormick C L, Callais P A, Hutchinson Jr B H. Solution studies of cellulose in lithium chloride and N, N-dimethylacetamide[J]. Macromolecules,1985,18 (12):2394-2401.
    147. Miranda O R, Dollahon N R, Ahmadi T S. Critical concentrations and role of ascorbic acid (vitamin C) in the crystallization of gold nanorods within hexadecyltrimethyl ammonium bromide (CTAB)/tetraoctyl ammonium bromide (TOAB) micelles[J]. Crystal Growth & Design,2006,6 (12):2747-2753.
    148. Mo Z, Zuo D, Chen H, Sun Y, Zhang P. Synthesis of graphite nanosheets/AgCl/polypyrrole composites via two-step inverse microemulsion method[J]. European Polymer Journal,2007,43 (2):300-306.
    149. Mohanty A K, Misra M, Drzal L T. Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world[J]. Journal of Polymers and the Environment,2002,10 (1):19-26.
    150. Moros J, Llorca I, Cervera M L, Pastor A, Garrigues S, De la Guardia M. Chemometric determination of arsenic and lead in untreated powdered red paprika by diffuse reflectance near-infrared spectroscopy[J]. Analytica Chimica Acta,2008,613 (2):196-206.
    151. Murakami M, Kaneko Y, Kadokawa J. Preparation of cellulose-polymerized ionic liquid composite by in-situ polymerization of polymerizable ionic liquid in cellulose-dissolving solution[J]. Carbohydrate Polymers,2007,69 (2):378-381.
    152. Nagaoka S, Arinaga K, Kubo H, Hamaoka S, Sakurai T, Takafuji M, Ihara H. Cellulose/TiO2 hybrid spherical microbeads prepared by a viscose phase separation method:Control of the distribution of TiO2 particles in a sphering system[J]. Polymer Journal,2005,37 (3):186-191.
    153. Natile M M, Boccaletti G, Glisenti A. Properties and reactivity of nanostructured CeO2 powders: Comparison among two synthesis procedures[J]. Chemistry of Materials,2005,17 (25): 6272-6286.
    154. Nelson K, Deng Y. Encapsulation of inorganic particles with nanostructured cellulose[J]. Macromolecular Materials and Engineering,2007,292 (10-11):1158-1163.
    155.Nishijo J, Oishi O, Judai K, Nishi N. Facile and mass-producible fabrication of one-dimensional Ag nanoparticle arrays[J]. Chemistry of Materials,2007,19 (19):4627-4629.
    156. Nishino T, Takano K, Nakamae K. Elastic modulus of the crystalline regions of cellulose polymorphs[J]. Journal of Polymer Science Part B:Polymer Physics,2003,33 (11):1647-1651.
    157. Nishiyama Y, Langan P, Chanzy H. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction[J]. Journal of the American Chemical Society, 2002,124 (31):9074-9082.
    158. Nishiyama Y, Sugiyama J, Chanzy H, Langan P. Crystal structure and hydrogen bonding system in cellulose la from synchrotron X-ray and neutron fiber diffraction[J]. Journal of the American Chemical Society,2003,125 (47):14300-14306.
    159. O'Donoghue M. A guide to man-made gemstones[M]. Van Nostrand Reinhold,1983.
    160. Oh S Y, Yoo D I, Shin Y, Kim H C, Kim H Y, Chung Y S, Park W H, Youk J H. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy[J]. Carbohydrate Research,2005,340 (15):2376-2391.
    161.Oksman K, Mathew A P, Bondeson D, Kvien I. Manufacturing process of cellulose whiskers/polylactic acid nanocomposites[J]. Composites Science and Technology,2006,66 (15): 2776-2784.
    162. O'Regan B, Moser J, Anderson M, Graetzel M. Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation[J]. Journal of Physical Chemistry,1990,94 (24):8720-8726.
    163. Oyane A, Kawashita M, Nakanishi K, Kokubo T, Minoda M, Miyamoto T, Nakamura T. Bonelike apatite formation on ethylene-vinyl alcohol copolymer modified with silane coupling agent and calcium silicate solutions[J]. Biomaterials,2003,24 (10):1729-1735.
    164. Palchik O, Zhu J, Gedanken A. Microwave assisted preparation of binary oxide nanoparticles[J]. Journal of Materials Chemistry,2000,10 (5):1251-1254.
    165. Pappas C, Tarantilis P A, Daliani I, Mavromoustakos T, Polissiou M. Comparison of classical and ultrasound-assisted isolation procedures of cellulose from kenaf(Hibiscus cannabinus L.) and eucalyptus(Eucalyptus rodustrus Sm.)[J]. Ultrasonics Sonochemistry,2002,9 (1):19-23.
    166. Patzke G R, Krumeich F, Nesper R. Oxidic nanotubes and nanorods-anisotropic modules for a future nanotechnology[J]. Angewandte Chemie International Edition,2002,41 (14):2446-2461.
    167. Pinto R J B, Marques P A A P, Martins M A, Neto C P, Trindade T. Electrostatic assembly and growth of gold nanoparticles in cellulosic fibres[J]. Journal of Colloid and Interface Science,2007, 312 (2):506-512.
    168. Pinto R J B, Marques P A A P, Neto C P, Trindade T, Daina S, Sadocco P. Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers[J]. Acta Biomaterialia,2009,5 (6):2279-2289.
    169. Pionteck H, Berger W, Morgenstern B, Fengel D. Changes in cellulose structure during dissolution in LiCl:N,N-dimethylacetamide and in the alkaline iron tartrate system EWNN[J]. Cellulose,1996, 3(1):127-139.
    170. Polshettiwar V, Varma R S. Microwave-assisted organic synthesis and transformations using benign reaction media[J]. Accounts of Chemical Research,2008,41 (5):629-639.
    171. Pommet M, Juntaro J, Heng J Y Y, Mantalaris A, Lee A F, Wilson K, Kalinka G, Shaffer M S P, Bismarck A. Surface modification of natural fibers using bacteria:Depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites[J]. Biomacromolecules, 2008,9(6):1643-1651.
    172. Possidonio S, Fidale L C, El Seoud O A. Microwave-assisted derivatization of cellulose in an ionic liquid:An efficient, expedient synthesis of simple and mixed carboxylic esters[J]. Journal of Polymer Science Part A:Polymer Chemistry,2010,48 (1):134-143.
    173. Qian Y, Lu S, Gao F. Synthesis of manganese dioxide/reduced graphene oxide composites with excellent electrocatalytic activity toward reduction of oxygen[J]. Materials Letters,2011,65 (1): 56-58.
    174. Ranby B G. Physico-chemical investigations on animal cellulose (Tunicin)[J]. Arkiv For Kemi, 1952,4 (3):241-248.
    175. Ranby B G, Noe R W. Crystallization of cellulose and cellulose derrivatives from dilute solution.1. growth of single crystals[J]. Journal of Polymer Science,1961,51 (155):337-347.
    176. Revol J F, Bradford H, Giasson J, Marchessault R H, Gray D G. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension[J]. International Journal of Biological Macromolecules,1992,14(3):170-172.
    177. Rhim J W, Hong S I, Park H M, Ng P K W. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity[J]. Journal of Agricultural and Food Chemistry, 2006,54 (16):5814-5822.
    178. Rhim J W, Ng P K. W. Natural biopolymer-based nanocomposite films for packaging applications[J]. Critical Reviews in Food Science and Nutrition,2007,47 (4):411-433.
    179. Ruan D, Huang Q, Zhang L. Structure and properties of CdS/regenerated cellulose nanocomposites [J]. Macromolecular Materials and Engineering,2005,290 (10):1017-1024.
    180. Ruparelia J P, Duttagupta S P, Chatterjee A K, Mukhergi S. Potential of carbon nanomaterials for removal of heavy metals from water[J]. Desalination,2008,232 (1):145-156.
    181. Rusli R, Eichhorn S J. Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy[J]. Applied Physics Letters, 2008,93(3):033111-033111-3.
    182. Sambhy V, MacBride M M, Peterson B R, Sen A. Silver bromide nanoparticle/polymer composites: Dual action tunable antimicrobial materials[J]. Journal of the American Chemical Society,2006, 128 (30):9798-9808.
    183. Sanchez C, Julian B, Belleville P, Popall M. Applications of hybrid organic-inorganic nanocomposites[J]. Journal of Materials Chemistry,2005,15 (35-36):3559-3592.
    184. Sandell A, Andersson M P, Johansson M K J, Karlsson P G, Alfredsson Y, Schnadt J, Siegbahn H, Uvdal P. Metalorganic chemical vapor deposition of anatase titanium dioxide on Si:Modifying the interface by pre-oxidation[J]. Surface Science,2003,530 (1):63-70.
    185. Sarotti A M, Spanevello R A, Suarez A G. An efficient microwave-assisted green transformation of cellulose into levoglucosenone. Advantages of the use of an experimental design approach[J]. Green Chemistry,2007,9 (10):1137-1140.
    186. Sauer D R, Kalvin D, Phelan K M. Microwave-assisted synthesis utilizing supported reagents:A rapid and efficient acylation procedure[J]. Organic Letters,2003,5 (24):4721-4724.
    187. Schaaff T G, Rodinone A J. Preparation and characterization of silver sulfide nanocrystals generated from silver (i)-thiolate polymers[J]. The Journal of Physical Chemistry B,2003,107 (38): 10416-10422.
    188. Schmidt H K, Geiter E, Mennig M, Krug H, Becker C, Winkler R P. The sol-gel process for nano-technologies:New nanocomposites with interesting optical and mechanical properties[J]. Journal of Sol-gel Science and Technology,1998,13 (1-3):397-404.
    189. Schurch D, Currao A, Sarkar S, Hodes G, Calzaferri G. The silver chloride photoanode in photoelectrochemical water splitting[J]. The Journal of Physical Chemistry B,2002,106 (49): 12764-12775.
    190. Schurz J, Lenz J, Wrentschur E. Inner surface and void system of regenerated cellulose fibers[J]. Die Angewandte Makromolekulare Chemie,2003,229 (1):175-184.
    191.Sekine Y. Oxidative decomposition of formaldehyde by metal oxides at room temperature[J]. Atmospheric Environment,2002,36 (35):5543-5547.
    192. Sharma V K, Yngard R A, Lin Y. Silver nanoparticles:Green synthesis and their antimicrobial activities[J]. Advances in Colloid and Interface Science,2009,145 (1-2):83-96.
    193. Shin Y, Bae I T, Arey B W, Exarhos G J. Facile stabilization of gold-silver alloy nanoparticles on cellulose nanocrystal[J]. The Journal of Physical Chemistry C,2008,112(13):4844-4848.
    194. Shiraishi Y, Toshima N. Oxidation of ethylene catalyzed by colloidal dispersions of poly (sodium acrylate)-protected silver nanoclusters[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2000,169 (1):59-66.
    195. Shoda M, Sugano Y. Recent advances in bacterial cellulose production[J]. Biotechnology and Bioprocess Engineering,2005,10(1):1-8.
    196. Sondi I, Goia D V, Matijevic E. Preparation of highly concentrated stable dispersions of uniform silver nanoparticles[J]. Journal of Colloid and Interface Science,2003,260 (1):75-81.
    197. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent:A case study on E. coli as a model for Gram-negative bacteria[J]. Journal of Colloid and Interface Science,2004,275 (1): 177-182.
    198. Songping W, Shuyuan M. Preparation of ultrafine silver powder using ascorbic acid as reducing agent and its application in MLCI[J]. Materials Chemistry and Physics,2005,89 (2):423-427.
    199. Spadaro J A, Webster D A, Becker R O. Silver polymethyl methacrylate antibacterial bone cement[J]. Clinical Orthopaedics and Related Research,1979,143:266-270.
    200. Sturcova A, Davies G R, Eichhorn S J. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers[J]. Biomacromolecules,2005,6 (2):1055-1061.
    201. Suflet D M, Chitanu G C, Popa V I. Phosphorylation of polysaccharides:New results on synthesis and characterisation of phosphorylated cellulose[J]. Reactive and Functional Polymers,2006,66 (11):1240-1249.
    202. Sui X, Yuan J, Yuan W, Zhou M. Preparation of cellulose nanofibers/nanoparticles via electrospray[J]. Chemistry Letters,2008,37 (1):114-115.
    203. Sun D, Yang J, Wang X. Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision[J]. Nanoscale,2009,2 (2):287-292.
    204. Sun R C, Sun X F, Liu G Q, Fowler P, Tomkinson J. Structural and physicochemical characterization of hemicelluloses isolated by alkaline peroxide from barley straw[J]. Polymer International,2002,51 (2):117-124.
    205. Sun Y, Mayers B, Herricks T, Xia Y. Polyol synthesis of uniform silver nanowires:A plausible growth mechanism and the supporting evidence[J]. Nano Letters,2003,3 (7):955-960.
    206. Sun Z, Liu Z, Han B, Wang Y, Du J M, Xie Z L, Han G J. Fabrication of ruthenium-carbon nanotube nanocomposites in supercritical water[J]. Advanced Materials,2005,17 (7):928-932.
    207. Sunada K, Kikuchi Y, Hashimoto K, Fujishima A. Bactericidal and detoxification effects of TiO2 thin film photocatalysts[J]. Environmental science & technology,1998,32 (5):726-728.
    208. Sureshkumar M, Siswanto D Y, Lee C K. Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles[J]. Journal of Materials Chemistry,2010,20 (33): 6948-6955.
    209. Swatloski R P, Spear S K, Holbrey J D, Rogers R D. Dissolution of cellulose with ionic liquidsfJ]. Journal of the American Chemical Society,2002,124 (18):4974-4975.
    210. Tajima K, Fujiwara M, Takai M. Synthesis of bacterial cellulose composite by acetobacter-xylinum.l. its mechanical strength and biodegradability[J]. Mokuzai Gakkaishi,1995, 41 (8):749-757.
    211. Terbojevich M, Cosani A, Conio G, Ciferri A, Bianchi E. Mesophase formation and chain rigidity in cellulose and derivatives.3. Aggregation of cellulose in N,N-dimethylacetamide-lithium chloride[J]. Macromolecules,1985,18 (4):640-646.
    212. Tomsic B, Simoncic B, Orel B, Zerjav M, Schroers H, Simoncic A, Samardzija Z. Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric[J]. Carbohydrate Polymers,2009,75 (4):618-626.
    213. Tsioptsias C, Panayiotou C. Preparation of cellulose-nanohydroxyapatite composite scaffolds from ionic liquid solutions[J]. Carbohydrate Polymers,2008,74 (1):99-105.
    214. Tsuji M, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T. Microwave-assisted synthesis of metallic nanostructures in solution[J]. Chemistry-A European Journal,2004,11 (2):440-452.
    215. Tsuji M, Matsumoto K, Jiang P, Matsuo R, Hikino S, Tang X L, Kamarudin K S N. The role of adsorption species in the formation of Ag nanostructures by a microwave-polyol route[J]. Bulletin of the Chemical Society of Japan,2008,81 (3):393-400.
    216. Turbak A F. Recent developments in cellulose solvent systems[J]. Tappi Journal,1984,67 (1): 94-96.
    217. Uddin M J, Cesano F, Bonino F, Bordiga S, Spoto G, Scarano D, Zecchina A. Photoactive TiO2 films on cellulose fibres:Synthesis and characterization[J]. Journal of Photochemistry and Photobiology A:Chemistry,2007,189 (2):286-294.
    218. Uddin M T, Islam M A, Mahmud S, Rukanuzzaman M. Adsorptive removal of methylene blue by tea waste[J]. Journal of Hazardous Materials,2009,164 (1):53-60.
    219. Uesu N Y, Pineda E A G, Hechenleitner A A W. Microcrystalline cellulose from soybean husk: Effects of solvent treatments on its properties as acetylsalicylic acid carrier[J]. International Journal of Pharmaceutics,2000,206 (1):85-96.
    220. Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan P M, Linhardt R J. Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids[J]. Biomacromolecules, 2006,7 (2):415-418.
    221. Wang B, Zhu L F, Yang Y H, Xu N S, Yang G W. Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen[J]. The Journal of Physical Chemistry C,2008,112 (17): 6643-6647.
    222. Wang C C, Hu C C. The capacitive performance of activated carbon-ruthenium oxide composites for supercapacitors:effects of ultrasonic treatment in NaOH and annealing in air[J]. Materials Chemistry and Physics,2004,83 (2):289-297.
    223. Wang P, Huang B, Qin X, Zhang X, Dai Y, Wei J, Whangbo M H. Ag@ AgCl:A highly efficient and stable photocatalyst active under visible light[J]. Angewandte Chemie International Edition, 2008,47 (41):7931-7933.
    224. Wang X, Li Y. Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: Synthesis, characterization, and properties[J]. Chemistry-A European Journal,2003,9 (22): 5627-5635.
    225. Wang X, Li Y. Solution-based synthetic strategies for 1-D nanostructures[J]. Inorganic Chemistry, 2006,45 (19):7522-7534.
    226. Wang X, Li Y. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires[J]. Angewandte Chemie International Edition,2002,41 (24):4790-4793.
    227. Wang X, Wang X, Huang W, Sebastian P J, Gamboa S. Sol-gel template synthesis of highly ordered MnO2 nanowire arrays[J]. Journal of Power Sources,2005,140 (1):211-215.
    228. Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis[J]. Chemical Reviews,1999,99:2071-2084.
    229. Weng L, Zhang L, Ruan D, Shi L, Xu J. Thermal gelation of cellulose in a NaOH/thiourea aqueous solution[J]. Langmuir,2004,20 (6):2086-2093.
    230. Wizel S, Prozorov R, Cohen Y, Aurbach D, Margel S, Gedanken A. The preparation of metal-polymer composite materials using ultrasound radiation[J]. Journal of Materials Research, 1998,13 (01):211-216.
    231. Woodings C. Regenerated cellulose fibres[M]. Woodhead Publishing,2001.
    232. Wu M S, Chiang P C J, Lee J T, Lin J C. Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries[J]. The Journal of Physical Chemistry B,2005,109 (49):23279-23284.
    233. Wu Q, Henriksson M, Liu X, Berglund L A. A high strength nanocomposite based on microcrystalline cellulose and polyurethane[J]. Biomacromolecules,2007,8 (12):3687-3692.
    234. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. One- dimensional nanostructures:Synthesis, characterization, and applications[J]. Advanced Materials,2003,15 (5): 353-389.
    235. Xu X, Yang W, Liu J, Lin L. Synthesis of a high-permeance NaA zeolite membrane by microwave heating[J]. Advanced Materials,2000,12 (3):195-198.
    236. Yan W, Feng X, Chen X, Li X, Zhu J J. A selective dopamine biosensor based on AgCl@ polyaniline core-shell nanocomposites[J]. Bioelectrochemistry,2008,72 (1):21-27.
    237. Yan W, Feng X, Chen X, Hou W, Zhu J J. A super highly sensitive glucose biosensor based on Au nanoparticles-AgCl@ polyaniline hybrid material[J]. Biosensors and Bioelectronics,2008,23 (7): 925-931.
    238. Yanagisawa M, Isogai A. SEC-MALS-QELS study on the molecular conformation of cellulose in LiCl/amide solutions[J]. Biomacromolecules,2005,6 (3):1258-1265.
    239. Yang H, Yan R, Chen H, Lee D H, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel,2007,86 (12):1781-1788.
    240. Yang K, Wang X, Wang Y. Progress in nanocomposite of biodegradable polymer[J]. Journal of Industrial and Engineering Chemistry-SEOUL-,2007,13 (4):485-500.
    241. Yang L X, Zhu Y J, Tong H, Wang W W, Cheng G F. Low temperature synthesis of Mn3O4 polyhedral nanocrystals and magnetic study[J]. Journal of Solid State Chemistry,2006,179 (4): 1225-1229.
    242. Yang L X, Zhu Y J, Tong H, Wang W W. Submicrocubes and highly oriented assemblies of MnCO3 synthesized by ultrasound agitation method and their thermal transformation to nanoporous Mn2O3[J]. Ultrasonics Sonochemistry,2007,14 (2):259-265.
    243. Yano H, Sugiyama J, Nakagaito A N, Nogi M, Matsuura T, Hikita M, Handa K. Optically transparent composites reinforced with networks of bacterial nanofibers[J]. Advanced Materials, 2005,17 (2):153-155.
    244. Yee N, Benning L G, Phoenix V R, Ferris F G. Characterization of metal-cyanobacteria sorption reactions:A combined macroscopic and infrared spectroscopic investigation[J]. Environmental Science & Technology,2004,38 (3):775-782.
    245. Yin J, Gao F, Wu Y, Wang J, Lu Q. Synthesis of Mn3O4 octahedrons and other manganese-based nanostructures through a simple and green route[J]. CrystEngComm,2010,12 (11):3401-3403.
    246. Zawadzki J, Wisniewski M. 13C NMR study of cellulose thermal treatment[J]. Journal of Analytical and Applied Pyrolysis,2002,62 (1):111-121.
    247. Zeng H, Li J, Liu J P, Wang Z L, Sun S. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly[J]. Nature,2002,420 (6914):395-398.
    248. Zeng J, Liu S L, Cai J, Zhang L N. TiO2 immobilized in cellulose matrix for photocatalytic degradation of phenol under weak UV light irradiation[J]. The Journal of Physical Chemistry C, 2010,114 (17):7806-7811.
    249. Zhang H, Wang Z G, Zhang Z N, Wu J, Zhang J, He J S. Regenerated cellulose/multi-walled carbon nanotube (MWCNT) composite fibers with enhanced mechanical properties prepared with an ionic liquid 1-ally1-3-methylimidazolium chloride (AmimCl)[J]. Advanced Materials,2007,19: 698-704.
    250. Zhang T J, Wang W, Zhang D Y, Zhang X X, Ma Y Y, Zhou Y L. Biotemplated synthesis of gold nanoparticles-bacteria cellulose nanofibers nanocomposites and their application in biosensing[J]. Advanced Functional Materials,2010,20 (7):1152-1160.
    251. Zhang Y, Fang Y, Xia H, Xie Y, Wang R, Li X. Preparation of AgCl-polyacrylamide composite microspheres via combination of a polymer microgel template method and a reverse micelle technique[J]. Journal of Colloid and Interface Science,2006,300 (1):210-218.
    252. Zhao L, Lu T, Yosef M, Steinhart M, Zacharias M, Gosele U, Schlecht S. Single-crystalline CdSe nanostructures:From primary grains to oriented nanowires[J]. Chemistry of Materials,2006,18 (26):6094-6096.
    253. Zhou D, Liu Q, Cheng Q Y, Zhao Y C, Cui Y, Wang T, Han B H. Graphene-manganese oxide hybrid porous material and its application in carbon dioxide adsorption[J]. Chinese Science Bulletin,2012:1-6.
    254. Zhou J P, Li R, Liu S L, Li Q, Zhang L Z, Zhang L N, Guan J G. Structure and magnetic properties of regenerated cellulose/Fe3O4 nanocomposite films[J]. Journal of Applied Polymer Science,2009, 111 (5):2477-2484.
    255. Zhou J P, Liu S L, Qi J N, Zhang L N. Structure and properties of composite films prepared from cellulose and nanocrystalline titanium dioxide particles[J]. Journal of Applied Polymer Science, 2006,101 (6):3600-3608.
    256. Zhou L, He J H, Zhang J, He Z C, Hu Y C, Zhang C B, He H. Facile in-situ synthesis of manganese dioxide nanosheets on cellulose fibers and their application in oxidative decomposition of formaldehyde[J]. The Journal of Physical Chemistry C,2011,115 (34):16873-16878.
    257. Zhu C, Xue J, He J. Controlled in-situ synthesis of silver nanoparticles in natural cellulose fibers toward highly efficient antimicrobial materials[J]. Journal of Nanoscience and Nanotechnology, 2009,9 (5):3067-3074.
    258. Zhu J F, Zhu Y J. Microwave-assisted one-step synthesis of polyacrylamide-metal (M= Ag, Pt, Cu) nanocomposites in ethylene glycol[J]. The Journal of Physical Chemistry B,2006,110 (17): 8593-8597.
    259. Zhu J F, Zhu Y J, Ma M G, Yang L X, Gao L. Simultaneous and rapid microwave synthesis of polyacrylamide-metal sulfide (Ag2S, Cu2S, HgS) nanocomposites[J]. The Journal of Physical Chemistry C,2007,111 (10):3920-3926.
    260. Zhu S D, Wu Y X, Chen Q M, Yu Z N, Wang C W, Jin S W, Ding Y G,Wu G. Dissolution of cellulose with ionic liquids and its application:A mini-review[J]. Green Chemistry,2006,8 (4): 325-327.
    261. Zhu Y J, Hu X L. Microwave-assisted polythiol reduction method:A new solid-liquid route to fast preparation of silver nanowires[J]. Materials Letters,2004,58 (9):1517-1519.
    262. Zhu Y J, Wang W W, Qi R J, Hu X L. Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids[J]. Angewandte Chemie,2004,116 (11): 1434-1438.
    263. Zhuang J L, Liang L F, Sung H H Y, Yang X F, Wu M M, Williams I D, Feng S H, Su Q. Controlled hydrothermal growth and up-conversion emission of NaLnF4 (Ln= Y, Dy-Yb)[J]. Inorganic Chemistry,2007,46 (13):5404-5410.
    264. Zou G F, Li H, Zhang Y G, Xiong K, Qian Y T. Solvothermal/hydrothermal route to semiconductor nanowires[J]. Nanotechnology,2006,17 (11):S313-S32O.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700