铯原子钟驱动源——852nm可调谐光纤激光器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原子钟频标在导弹精确制导、空间精确定位导航等方面起着至关重要的作用。自从1948年世界上第一台原子钟诞生以后,原子钟在国防军事领域,空间探索领域等具有非常重要的应用,故现在有科学家认为原子钟比原子弹更重要。原子钟频标的准确性与精确性引起广泛的关注和研究,随着空间技术的发展,各国对频标和时间基准的准确度要求是越来越高。铯(Cs)原子钟是现有的原子钟中准确度最高,稳定性最好的原子钟之一,它主要由驱动源,铯束管,探测源三个部分组成,其中驱动源采用波长为852nm的激光源,现有的852nm激光源都是半导体激光器,它们的稳定性很难得到保证,而光纤激光器具有结构紧凑、可调谐、稳定性好等优点,原子钟对此类光源有着迫切需求。从上个世纪八十年代开始,我国科学家开始进行自主时间频标铯原子钟的研制,到目前为止,国产铯(Cs)原子钟系统大部分器件都已研制成功, 852nm激光驱动源是目前唯一没有实现国产化的关键器件。
     本文《铯原子钟驱动源—852nm可调谐光纤激光器研究》是在国家相关项目支持下开展工作的,通过较为系统深入的研究,获得了较好的研究成果,并已通过了总装备部专家组的鉴定。
     本文主要的研究成果有:
     1.研制成功850nm波段光纤耦合器。采用光纤熔融拉锥方法,分别制作出50:50,60:40等分束比的耦合器;研制出了800nm/850nm波分复用器,其损耗低于0.5dB,隔离度高于40dB。这些器件的研制成功为后续实验搭建光路提供了必备条件。
     2.研制了850nm波段单模布拉格光纤光栅,中心波长在851nm附近,所刻写的光栅反射率分布在13%到95%,反射带宽<0.2nm,其为激光器提供了重要的选频元件。
     3.研究了光栅应力调谐原理和特性,理论计算出有机玻璃作为应力调谐材料,并制作了等强度悬臂梁应力调谐装置。研制出的应力调谐装置稳定性好,调谐范围完全满足实验要求。
     4.研究了基于硅基掺铒光纤上转换特性,首次提出双波长泵浦普通硅基掺铒光纤以获得852nm激光输出方案。我们采用了双向泵浦方式,双波长(800nm和792nm)泵浦方式,取得了一些初步的结论和结果,为后续的实验工作奠定了坚实的基础。
     5.成功研究出了利用半导体光放大器(SOA)作为增益介质、工作波长在852nm光纤激光器。激光器输出功率>20mW,光谱宽度<0.05nm,信噪比>30dB,激光器可在851nm—853nm范围内连续可调。激光器结构紧凑,稳定性好。此项成果已通过总装备部专家组验收,并获得一致好评。
     本文创新性研究工作主要有:
     1.研制了850nm波段光纤耦合器,波分复用器,研究了光纤光栅原理,并自行刻写了850nm波段单模布拉格光纤光栅。光纤光栅中心波长851nm,反射率最高95%。
     2.研究了硅基掺铒光纤上转换特性,首次提出用双波长泵浦普通硅基掺铒光纤方案。我们采用双向泵浦方式,双波长(800nm和792nm)泵浦等方式,取得了一些初步的结论和结果,这些结论对后续实验研究有着积极意义。
     3.首次研究成功了852nm光纤激光器。激光器具有性能稳定,结构紧凑,可调谐等特点。激光器功率达到20mW,信噪比>30dB,激光器可在851nm—853nm范围内连续可调。
Atomic clock plays a significant role in the accurate guided missile、space positioning systems and flight navigation systems. Since the first atomic clock was developed in 1948, the atomic clock has very important applications in many areas such as national defense、military and space technology, so some scientists think that atomic clock will be more important than atomic bomb. The precision and the accurateness of the atomic clock frequency standard have attracted a lot of interests and studies, with the development of space technology, the demands for the precision of frequency and clock standard will be higher. In the present atomic clocks, Cs atomic clock has the highest precision and the best stability. The Cs atomic clock system is composed of pump source, Cs tube and light detector, where the laser source with the wavelength of 852 nm is used as pump source. Presently, almost all the 852nm lasers are semiconductor lasers, unfortunately, the stability of this kind of laser is poor, while, the fiber laser with the advantages of high stability, high plug in efficiency, high beam quality, as well as compactness, tenability, and flexibility, are the best choice for the atomic clock system. From the 80’s of last century, scientists in our country have been trying to develop the Cs atomic clock system of ourselves, up to now, all the key components of the self-determination Cs atomic clock system have been developed except the 852nm laser source.
     This thesis“Research On 852nm Tunable Fiber Laser for Cs atomic clock pumping source”is under the support of the corresponding national project. With the systematic researches, we gain fruitful results, and the laser system has passed through the appraisement by the experts of General Armaments Department.
     The major results in the dissertation are obtained as the following:
     1. The invention of 850nm band fiber couplers is successfully made, in which the fusing taper method is adopted, and 50:50, 60:40 fiber couplers are developed. The 800nm/850nm WDM is successfully developed of which the loss is less than 0.5dB and the isolation degree is more than 40dB. These fiber devices will meet the need of the experiment setup.
     2. The invention of 850nm single mode fiber Bragg grating is successfully made, of which the center wavelength is near 851nm, the reflectivities range from 30% to 95%, 3dB bandwidth of reflectivity is less than 0.2dB. The FBG provides the frequency selective part for the fiber laser.
     3. The principle and characteristics of the stress tuning of FBG are investigated. We calculated in theory and selected the organic material for the tuning finally. A beam of uniform strength tuning device is successfully made, of which the stability is good and the tuning range meets the need of experiment.
     4. The characteristics of the up-conversion of Erbium doped fiber (Si based) is investigated. We proposed that the Er doped fiber is pumped with the bi-wavelength pumping to get 852nm up-conversion laser output for the first time. With bi-direction pumping and bi-wavelength (800nm and 792nm) pumping, some results and conclusions are obtained which will instruct the next experiment.
     5. By using the semiconductor optical amplifier a fiber laser operating at 852nm is successfully developed. The output power of the fiber laser is higher than 20mW, 3dB bandwidth is less than 0.05nm, side mode suppression is better than 30dB. The fiber laser is compact and stable of which the working wavelength can be tuned from 851nm to 854nm continually. This achievement is passed through the identification and appreciated by the experts of General Armaments Department.
     The innovative results in this dissertation are as following:
     1. The 850nm band fiber couplers and WDM are developed. The theory of bragg fiber grating is investigated and the FBG is made by ourselves of which the center wavelength is about 851nm, the highest reflectivity is 95%.
     2. For the first time we proposed that the Er doped fiber is pumped with the bi-wavelength pumping to get 852nm up-conversion laser output. The characteristics of the up-conversion of Erbium doped fiber (Si based) is investigated. With bi-direction pumping and bi-wavelength (800nm and 792nm) pumping, some results and conclusions are obtained which will instruct the next experiment.
     3. For the first time we have successfully made out a fiber laser working at 852nm. The fiber laser is compact, stable, easily tunable, of which the output power is higher than 20mW, the side mode suppression is better than 30dB. The fiber laser can be tuned from 851nm to 854nm continually.
引文
1. A.Bauch, 2002 Cesium atomic clock:function,performance and applications, Measurement Science and Technology, 14 1159-1173
    2. T.P.Heavner, L.W.Hollberg, N.Ashby, W.M.Klipstein, E.M.Mattison, et al, 2002, Parcs a laser-cooled atomic clock in space, Proceedings of the 6th Symposium on Frequency Standards and Metrology, 253-260
    3. W.Markowitz,R.G.Hall, L.Essen,J.V.L.Parry,1958, Frequency of Cesium in Terms of Ephemeris Time, Physics Review Letters,1(3),105-107
    4. M.Arditi, I.Hirano, P.Tougne, 1977, Optical Pumping of a Caesium Beam and Detection of the 0-0 'Clock' Transition,J.Phys.D:Appl.Phys.11,2465-2475
    5. C. Audion, 1992 Caesium Beam Frequency Standards Classical and Optically Pumped, Metrologia, 29, 113-134
    6. S. Leschiutta, 2005 The definition of the 'atomic' second, Metrologia 42 S10-S19
    7.王义遒, 2003,原子钟及其进展,物理教学,25 (4),2-4
    8. N.F.Ramsey , 1990, Experiments with separated oscillatory fields and hydrogen masers, Reviews of Modern Physics, 62(3),541-553
    9. N.F.Ramsey, 2005, History of early atomic clock, Metrologia, 42, S1-S3
    10.翟造成,王庆华,2000,发展我国的空间用高准确度原子钟,宇航计测技术,20(5),17-20
    11.王义遒, 2004,建设我国独立自主时间频率系统的思考,宇航计测技术,24(1),1-10
    12.魏荣,2003,小型喷泉铷原子钟的设计与前期工作,博士学位论文,中国科学院上海光机所
    13.李滚,蔡成林,袁海波,2003,原子钟、原子弹哪个更重要,现代物理知识,15(3),49-51
    14.黄秉英,2004,新一代时间频率基准——激光冷却、操控的铯原子喷泉钟,中国计量,2,47-48
    15. T.Kinoshita, 1995, New Value of theα3 Electron Anomalous Magnetic Moment, Physical Review Letters 75(26),4728-4731
    16. J.Vanier, C.Audion, H.Philadelphia, 1989 The Quantum Physics of Atomic Frequency Standards, Science,249,685-686
    17. C.Audion, B.Guinot,1993, The measurement of Time,Time,Frequency and Atomic Clock, France, Translated by S.Lyle
    18.王义遒,王庆吉,傅济时,董太乾, 1986,量子频标原理,科学出版社
    19. J.C.Maxwell ,1873,Treatise
    20. A.Russell, 1912,Lord Kelvin, His life and Work. London: T.C. and E.C.Jack
    21. W.F.Snyder,1973, Lord Kelvin on Atoms as Fundamental Natural Standards (for Base Units)[J], Transactions on Instrument and Measurement 99
    22. N.F.Ramsey, 2002, fifty years of atomic frequency standards, Proceedings of the 6th Symposium on Frequency Standards and Metrology, 8-16
    23. I.I.Rabi, 1937, Space quantization in a gyrating magnetic field, Physics Review, 51,652-654
    24. H.Lyons, 1949, The atomic clock, Instrument, 22,133-135
    25. H.Lyons, 1952, Special lines as frequency standards, Annals of the New York Academy of Sciences, 55, 831-871
    26. D.B.Sullivan, J.C.Bergquist, J.J.Bollinger, R.E.Drullinger, et al, 2001,Primary atomic frequency standards at NIST, J.Res.Natl.Inst.Stand.Technol. 106,47-63
    27. N.F.Ramsey, 1980, The method of successive oscillatory fields, Phys.Today, 33(7), 25
    28. N.F.Ramsey, 1983, History of atomic clocks,J.Res.NBS,88,301
    29. N.F.Ramsey,1968,The atomic hydrogen mser,Am.Sci.56,420
    30. T.H.Maiman,1960,Stimulated optical radiation in ruby, Nature, 187, 493-494
    31. T.Hansch,A.Schawlow,1975,Cooling of gases by laser radiation, Opt. Commun,13,68-69
    32. W.M.Itano,J.C.Bergquist,D.J.Wineland, 1987, Laser spectroscopy of trapped atomic ions,Science,237,612-619
    33. D.J.Wineland,W.M.Itano,1987, Laser,cooling, Physics Today,40(6),34
    34. A.Clairon,1995,A cesium fountain frequency standard :preliminary results, Transactions on Instrumentation and Measurement, 44(2),128-131
    35. Y.Sortais,S.Bize,C.Nicolas,A.Clairon,2000,Cold collision frequency shifts in a 87Rb atomic fountain, Physics Review Letters,85(15),3117-3120
    36. F.Levi,L.Lorini,D.Calonico,A.Godone,2003, Systematic shift uncertainty evaluation of IEN CSF1 primary frequency standard, Transactions on Instrumentation and Measurement, 52(2), 267-271
    37. C.Vian,P.Rosenbusch, et al, 2005, BNM-SYRTE fountains:rencent results, Transactions on Instrumentation and Measurement, 52(2), 833-836
    38. P.Lemonde, et al,2001,Cold-atom clock on earth and in space,Frequency Measurement and Control, editor by A.N.Luiten,Springer-Verlag:Berlin Heidelberg 131
    39. M.Arditi, 1982, A caesium beam atomic clock with laser optical pumping, as a potential frequency standard, Metrologia, 18,59-66
    40. S.R.Jefferts,J.Shirley, et al, 2002, Accuracy evaluation of NIST-F1, Metrologia, 39, 321-336
    41. S.Weyers, U.Hubner, et al, 2001, Uncertainty evaluation of the atomic caesium fountain CSF1 of the PTB, Metrologia, 38,343-352
    42. R.E.Drullinger, J.Shirley, D.J.G;aze, L.W.Hollberg, 1986, Progress Toward Optically Pumped Cesium Beam Frequency Standard, 40th Annual Frequency Control Symposium, 428-431
    43. Y.Sortais, S.Bize, M.Abgrall, S.Zhang, et al, 2001, Cold atom clocks, Physica Scripta, T95, 50-57
    44. G.Aila, V.Giordano, V.Candelier, et al, 1987, State selection in a cesium beam by laser-diode optical pumping, Physcial Review A, 36(8), 3719-3728
    45. B.Cocquelin,G.Lucas-Leclin,et al, 2007, Compact diode-pumped single-frequency VECSEL for cesium atomic clocks, Lasers and Electro-optics, 2007 and the International Quantum Electronics Conference(European)
    46. B.Cocquelin,G.Lucas-Leclin,et al,2007,Design of a low-threshold VECSEL emitting at 852nm for cesium atomic clocks, Opt Quant Electron,DOI 10.1007/s11082-007-9170-9
    47. F.J.Vermersch, M.Lecomte, et al, 2005, High power Al-free active region(λ= 852nm) laser diodes for atomic clocks and interferometry applications, Proc of SPIE Photonics West, 5738-5746 session 13
    48. V.Ligeret, S.Bansropun, et al, 2007, Narrow spectral linewidth of Al-free active region DFB laser diodes operating at 852nm, Lasers and Electro-optics CLEO 2007
    49. V.Ligeret, D.Holleville, et al, 2008, High power Al-free DFB laser diode for atomic clocks: narrow line-width and demonstration of saturation spectra of the Cesium D2 line, Proc. of SPIE, 6997, 69971T-1—10
    50.李忠辉,王玉霞等,2002,850nm有源区无铝高功率SCH-SQW激光器,中国激光,A29(1),5-6
    51. Y.A..Wen, W.Zhang, et al, 2003, High slope efficiency and high power 850nm oxide-confined vertical cavity surface emitting lasers,半导体学报,24(7),693-696
    52.许兴胜,王春霞等,2007,光子晶体垂直腔面反射850nm波长激光器研究,研究快讯,36(1),17-19
    53. E.Snitzer, 1961, Optical Maser action of Nd3+ in a barium crown glass, Phys. Rev. Lett. 7, 444
    54. C.J.Koester, E.Snitzer, 1964, Amplification in a fiber laser, Appl. Opt. 3, 1182
    55. J.Stone, and C.A.Burros, 1973, Neodymium-doped silica lasers in end-pumped fiber geometry, Appl. Phys. Lett. 23,388
    56. J.Stone, and C.A.Burros, 1974, Neodymium-doped fiber lasers: room temperature cw operation with an injection laser pump, Appl. Opt. 13, 1256
    57.顾春, 2008,新型光纤激光器的实验研究,博士学位论文,中国科学技术大学
    58. S.B.Poole, D.N.Payne and M.E.Fermann, 1985, Fabrication of low-loss optical fibers containing rare-earth ions, Electronics Letters,21,737
    59. R.J.Mears, L.Reekie, S.B.Poole and D.N.Payne, 1985, Neodymium-doped silica single-mode fiber lasers, Electron.Letters, 21, 738-740
    60. R.J.Mears, L.Reekie, S.B.Poole and D.N.Payne, 1986, Low-threshold tunable cw and Q-switched fiber laser operating at 1.55μm, Electronics Letters, 22, 159
    61. C.A.Millar, I.D.Miller, B.J.Ainslie, S.P.Craig, and J.R.Armitage, 1987, Low-threshold cw operation of an erbium-doped fiber laser pumped at 807nm wavelength, Electronics Letters, 30,865
    62. M.Zurn, J.Voigt, E.Brinkmeyer, R.Ulrich, and S.B.Poole, 1987, Line narrowing and spectral hole burning in single-mode Nd3+ fiber laser, Opt.Lett. 12,316
    63. M.Shimizu, H.Suda, and M.Horiguchi, 1987, High-efficiency Nd-doped fiber lasers using direct-coated dielectric mirrors, Electron.Lett. 23,768
    64. K.Liu, M.Digonnet, H.J.Show, B.J.Ainslie, and S.P.Craig, 1987, 10mW superfluorescent single-mode fiber source at 1060nm, Electron.Lett. 23,1320
    65. I.P.Alcock, A.I.Ferguson, D.C.Hanna, and A.C.Tropper, 1986, Tunable, continuous-wave neodymium-doped monomode-fiber laser operating at 0.900-0.945μm and 1.070-1.135μm, Opt.Lett. 11,709
    66. L.Reekie, I.M.Jauncey, S.B.Poole, and D.N.Payne, 1987, Diode-laser-pumped operation of an Er3+-doped single-mode fiber laser, Electron.Lett.23,1076
    67. L.Reekie, R.J.Mears, S.B.Poole, and D.N.Payne, 1986, Tuanble single-mode fiber lasers, IEEE J.Lightwave. Technol. 4,956
    68. I.M.Jauncey, L.Reekie, R.J.Mears, D.N.Payne, C.J.Rowe, D.C.Reid, L.Bennion, and C.Edge, 1986, Narrow-linewidth fiber lasers with integral fiber grating, Electron.Lett.22,987
    69. W.J.Miniscalco, L.J.Andrews, B.A.Thompson, and R.S.Quimby, 1988, 1.3μm fluoride fiber laser, Electron.Lett. 24,28
    70. I.M.Jauncey, L.Reekie, J.E.Townsend, and D.N.Payne, 1988, Single-longitudinal-mode operation of an Nd3+-doped fiber laser, Electron.Lett. 24,24
    71. L.Esterowitz, R.Allen, and I.Aggarwal, 1988, Pulsed laser emission at 2.3μm in a thulium-doped fluorozirconate fiber, Electron. Lett. 24,1104
    72. M.C.Farries, P.R.Morkel, and J.E.Townsend, 1988, Tunable multi-wavelength semiconductor laser with single fiber output, Electron.Lett. 24,709
    73. D.C.Hanna, R.M.Percival, I.R.Perry, R.G.Smart, P.J.Suni, J.E.Townsend, and A.C. Tropper, 1988, Continuous-wave oscillation of a monomode thulium-doped fiber laser, Electron.Lett.24,1111
    74. M.C.Brierley, P.W.France, and C.A. Miller, 1988, Continuous wave lasing at 2.7μm in an erbium-doped fuorozirconate fiber, Electron.Lett. 24,539
    75. G.P.Agrawal, Non-linear Optical Fibers, Academic Press, New York, 1987
    76. M.C.Farries, P.R.Morkel, et al, 1988, Sanarium3+-doped glass laser operating at 651nm, Electron.Lett, 24, 709-711
    77. C.Ghisler, W.Luthy, et al, 1994, A Tm3+ sensitized Ho3+ silica fiber laser at 2.04μm, Opt.Commun, 109, 279-281
    78. P.Urquhart, 1988, Review of rare earth doped fiber lasers and amplifiers, IEE Proc.J.Optoelectronics, 135(6), 385-407
    79. V.Mizan, V.Nazabal, et al, 2007, Mid-infrared fiber laser application: Er3+-doped chalcogenide glasses, Proc. Of SPIE, 6469, 64690E-1-11
    80.明海,张国平,谢建平,1997,光电子技术,中国科学技术大学出版社
    81.聂秋华,1997,光纤激光器和放大器技术,电子工业出版社
    82. M.Zhou, G.Stewart, G.Whitenet. 2006, Stable single-mode operation of a narrow-linewidth, linearly Polarized, erbium-fiber ring laser using a saturable absorber, Journal of Lightwave Technology, 24(5):2179-2183
    83. P.Barnsley, P.Urquhart, C.Millar, and M.Brierley, J.Opt.Soc.Am.A.5,1339(1988)
    84. J.Canning, 2006, Fiber lasers and related technologies, Optics and Lasers in Engineering, 44, 647-676
    85. H.R.Muller, J.Kirchhhof, V.Reichel, S.Unger, 2006, Fibers for high-power lasers and amplifiers, C.R.Physique,7,154-162
    86.白燕,2007,可调谐掺铒光纤激光器的研究,硕士毕业论文,西安电子科技大学
    87.卢卫民,张立永,冯高锋,吴金东,2008,光纤激光器的研究进展及趋势,光通信,34-36
    88. V.Ligeret, S.Bansropun, M.Lecomte, et al, 2008, Narrow spectral linewidth between 10。C and
    90。C for high-power Al-free active region DFB operating at 852nm for atomic clocks applications, Lasers and Electro-optics, 2007 and the International Quantum Electronics Conference, CLEOE-IQEC 2007
    89. A.W.Mantz, 1995, A review of spectroscopic applications of tunable semiconductor lasers, Spectrochinmica Acta Part A, 51, 2211-2236
    90. L.A.Goldern, G.A.Fish, Y.Akulova, J.S.Barton, L.Johansson, C.W.Coldern, 2004, Tunable semiconductor lasers: a tutorial, Journal of LightWave Techology, 22(1), 193-202
    91. G.A.Ball, W.W.Morey, 1992, Continuously tunable single-mode erbium fiber laser, Optics Letters, 17(6), 420-422
    92. M.Auerbach, D.Wandt, C.Fallnich, H.Welling, S.Unger, 2001, High-power tunable narrow line width ytterbium-doped double-clad fiber laser, Optics Communications, 195, 437-441
    1. K.O.Hill, Y.Fujii, D.C.Johnson, B.S.Kawasaki, 1978, Photosensitivity in optical fiber waveguides: application to reflection filter fabrication, Applied Physics Letters, 32(10), 647-649
    2. B.S.Kawasaki, K.O.Hill, D.C.Johnson, Y.Fujii, 1978, Narrow-band bragg reflectors in optical fibers, Optics Letters, 3(2), 66-68
    3.李川,张以谟,赵永贵,李立京,2005,光纤光栅:原理、技术、与传感应用,科学出版社,北京
    4. V.Mizrahi, J.E.Sipe, 1993, Optical Properties of photosensitive fiber phase gratings, IEEE, Journal of Lightwave Technology, 11, 1513-1517
    5.王安廷,2004,光纤激光器和放大器的理论分析和实验研究,博士学位论文,中国科学技术大学,合肥
    6. J.M.Lerner, J.Flammand, J.P.Laude, et al, 1980, Diffraction gratings ruled and holographic-a review, SPIE, 240, 82-88
    7. G.Meltz, W.W.Morey, W.H.Glenn, 1989, Formation of bragg gratings in optical fibers by a transverse holographic method, Optics Letters, 14(15), 823-825
    8. K.O.Hill, B.Malo, K.A.Vineberg, et al, 1990, Efficient mode conversion in telecommunication fiber using external written gratings, Electronics Letters, 26(16), 1270-1272
    9. K.O.Hill, B.Malo, F.Bilodeau, et al, 1993, Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure thorough a phase mask, Applied Physics Letters, 62, 1035-1037
    10.韦乐平,张成良,2006,光网络——系统、器件与联网技术,人民邮电出版社,北京
    11.胡台光,2000,波分复用器见现状,光通信技术,24(2),79-84
    12.张伟刚,赵启大,开桂云,刘志国,董孝义,2001,基于弹性梁的光纤光栅波长调谐原理及技术,半导体光电,22(5),299-303
    13. M.Ibsen, B.J.Eggleton, M.G.Sceats, F.Ouellette, 1995, Broadly tunable DBR fiber laser using sampled fiber bragg gratings, Electronics Letters, 31(1), 37-38
    14. M.R.Mokhtar, C.S.Goh, S.A.Butler, et al, 2003, Fiber bragg grating compression-tuned over 110nm, Electronics Letters, 39(6), 509-601
    15. N.Mohammad, W.Szyszkowski, W.J.Zhang, et al, 2004, Analysis and development of a tunable fiber bragg grating filter based on axial tension/compression, Journal of Lightwave Technology, 22(8), 2001-2013
    16. J.L.Gruz, A.Diez, M.V.Andres, et al, 1997, Fiber bragg gratings tuned and chirped using magnetic field, Electronics Letters, 33(3), 235-236
    17. J.Lauzon, S.Thibault, J.Martin, et al ,1994, Implementation and characterization of fiber bragg gratings linearly chirped by a temperature gradient, Optics Letters, 19(23), 2027-2029
    18. T.Komukai, Y.Miyajima, M.Nakazawa, 1995, In-line fiber grating-type optical bandpass filter tuned by applying lateral stress, Journal of Applied Physics, 34(3A), 306-308
    19.余有龙,刘志国,董孝义,1999,基于悬臂梁的光线光栅线性调谐,光学学报,19(5),621-625
    20. W.Zhang, X.Dong, D.Feng, et al, 2000, Linearly fiber grating-type sensing tuning by applying torsion stress, Electronics Letters, 36(20), 1686-1688
    21.彭伟鸿,王英,梅林,王振佳,2006,基于悬臂梁的光纤光栅线性调谐器研究,光学与光电技术,4(4),36-39
    22.秦子雄,曾庆科,项阳,冯德军,袁树忠,开桂云,2001,大调谐范围的等强度梁光纤光栅波长调节器,光学学报,21(12),1421-1425
    1. D.R.Gamelin, H.U.Gudel, 2001, Upconversion processes in transition metal and rare earth metal systems, Topics in Current Chemistry, 214,1-22
    2. N.Bloembergen, 1959, Solid state infrared quantum counters, Physics Review Letters, 2, 84-85
    3. L.Esterowitz, A.Schnitzler, J.Noonan, J.Bahler, 1968, Rare earth infrared quantum counter, Applied Optics, 7, 2053-2070
    4. A.Brenier, A.M.Jurdyc, H.Verweij, M.T.Cohen-Adad, G.Boulon, 1996, Up-conversion dynamics in GdAlO3:Er3+ single crystal fiber, Optical Materials, 5, 233-238
    5. A.Rapaport, J.Milliez, M.Bass, A.Cassanho, H.Jenssen, 2006, Review of the properties of up-conversion phosphors for new emissive displays, Journal of Display Technology, 2(1), 68-78
    6. F.Bitter, 1949, The Optical detection of radio frequency resonance, Physical Review, Technical Report.98, 1-7
    7. L.F.Johson, H.J.Guggenheim, 1971, Infrared-pumped visible laser, Applied Physics Letters, 19, 44-47
    8. J.Y.Allain, M.Monerie, H.Poigant, 1990, Blue upconversion fluorozirconate fiber laser, IEEE, Electronics Letters, 26(3), 166-168
    9. J.Y.Allain, M.Monerie, H.Poigant, 1990, Room temperature CW tunable green upconversion holmium fiber laser, IEEE, Electronics Letters, 26, 261-263
    10. T.J.Whitley, C.A.Millar, R.Wyatt, M.C.Brierley, et al, 1991, Upconversion pumped green lasing in erbium doped fluorozirconate fiber, IEEE, Electronics Letters, 27, 1785-1786
    11. T.Komukai, T.Yamamoto, T.Sugawa, Y.Miyajima, 1995, Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47μm, IEEE, Journal of Quantum Electronics, 31(11),1880-1889
    12. J.Y.Allain, M.Monerie, H.Poigant, 1991, Red upconversion Yb-sensitised Pr fluoride fiber laser pumped in 0.8μm region, IEEE, Electronics Letters, 27(13), 1156-1157
    13.宋峰,陈晓波,张光寅,1997,掺稀土离子的上转换光纤激光器,激光与光电子学进展,5,1-5
    14.杨建虎,戴世勋,姜中宏,2003,稀土离子的上转换发光及研究进展,物理学进展,23(3),284-298
    15. P.Xie, T.R.Gosnell, Room-temperature upconversion fiber laser tunable in the red, orange, green, and blue spectral regions, Optics Letters, 20(9), 1014-1016
    16.程干超,1994,上转换激光器研究进展,光电子技术与信息,5,2-8
    17. T.J.Whitley, C.A.Millar, R.Wyatt, M.C.Brierley, D.Szebesta, 1991, Upconversion pumped green lasing in erbium doped fluorozirconate fiber, IEEE, Electronics Letters, 27(20),1785-1786
    18. R.Balda, A.J.Garcia-Adeva, J.Fernandez, 2004, Infrared-to-visible upconversion of Er3+ ions in GeO2-PbO-Nb2O5 glasses, J.Opt.Soc.Am.B, 21(4), 744-752
    19. R.S.Quimby, M.G.Drexhage, M.J.Suscavage, 1987, Efficient frequency up-conversion via energy transfer in fluoride glasses, IEEE, Electronics Letters, 23(1), 32-34
    20. M.E.Koch, A.W.Kueny, W.E.Case, 1990, Photon avalanche upconversion laser at 644nm, Applied Physics Letters, 56(12), 1083-1085
    21. N.Bloembergen, 1959, Solid state infrared quantum counters, Physics Review Letters, 2(3), 84-85
    22. J.S.Chivian, W.E.Case, D.D.Eden, 1979, The photon avalanche: A new phenomenon in Pr3+-based infrared quantum counters, Applied Physics Letters, 35, 124-126
    23. A.J.Silversmith, W.Lenth, R.M.Macfarlane, 1987, Green infrared-pumped erbium upconversion laser, Applied Physics Letters, 51(24), 1977-1979
    24. S.R.Bullock, B.R.Reddy, P.Venkateswarlu, S.K.Nash-Stevenson, J.C.Fajardo, 1997, Energy upconversion and spectroscopic studies of ZBLAN: Er3+, Optical and Quantum Electronics, 29, 83-92
    25. V.K.Bogdanov, D.J.Booth, W.E.K.Gobbs, 2003, Energy transfer processes and the green fluorescence in heavily doped Er3+: fluoride glasses, Journal of Non-Crystalline Solids, 321, 20-28
    26. J.Y.Allain, M.Monerie, H.Poignant, 1992, Tunable green upconversion erbium fiber laser, IEEE, Electronics Letters, 28(2), 111-113
    27. M.J.Weber, 1967, Selective excitation and decay of Er3+ fluorescence in LaF3, Physical Review A, 156(2), 231-242
    28. P.Blixt, J.Nilsson, T.Carlnas, B.Jaskorzynska, 1991, Concentration-dependent upconversion in Er3+-doped fiber amplifiers: experiments and modeling, IEEE, Transactions Photonics Technology Letters, 3(11), 996-998
    29. M.Takahashi, R.Kanno, 1994, Compositional dependence of Er3+ upconversion luminescence in MF-LiF-ZrF4 glasses (M:alkalimetals), Journal of Non-Crystalline Solids,168, 137-143
    30. H.Lin, E.Y.B.Pun, X.R.Liu, 2001, Er3+-doped Na2OCd3Al2Si3O12 glass for infrared and upconversion applications, Journal of Non-Crystalline Solids, 283, 27-33
    31.杨建虎,戴世勋,李顺光,胡丽丽,姜中宏,2002,掺铒碲酸盐玻璃的光谱性质和能量传递,发光学报,23(5), 485-490
    32. S.Arahira, K.Watanabe, K.Shinozaki, Y.Ogawa, 1992, Successive exited-state absorption through a multistep process in highly Er3+-doped fiber pumped by a 1.48μm laser diode, Optics Letters, 17(23), 1679-1681
    33. F.E.Auzel, 1973, Materials and devices using double-pumped-phosphors with energy transfer, Proceedings of the IEEE, 6, 758-786
    34. P.J.Deren, R.Mahiou, W.Strek, A.Bednarkiewicz, G.Bertrand, 2002, Up-conversion in KYb(WO4)2:Pr3+ crystal, Optical Materials 19(1), 145-148
    35. R.Balda, J.Fernandez, A.Mendioroz, M.Voda, M.A.Saleh, 2003, Infrared-to-visible upconversion processes in Pr3+/Yb3+-codoped KPb2Cl5, Phys.Rev.B, 68(16), 165101-165107
    36. I.R.Martin, A.C.Yanes, J.M.Ramos, M.E.Torres, et al, 2001, Cooperative energy transfer in Yb3+-Tb3+ co-doped silica sol-gel glasses, Journal of Applied Physics, 89(5), 2520-2524
    37. A.S.Oliveira, M.T.Araujo, A.S.Gouveia-Neto, et al , 1998, Frequency upconversion in Er3+/Yb3+-codoped chalcogenide glass, Applied Physics Letters, 72(7), 753-755
    38.徐东勇,臧竞存,2001,上转换激光和上转换发光材料的研究进展,人工晶体学报,30(2),203-210
    39. C.A.Millar, M.C.Brierley, M.H.Hunt, S.F.Carter, Efficient up-conversion pumping at 800nm of an erbium-doped fluoride fiber laser operating at 850nm, IEEE, Electronics Letters, 26(22), 1871-1873
    40. 23dB gain upconversion pumped erbium doped fiber amplifier operating at 850nm, IEEE, Electronics Letters, 27(2), 184-186
    1. S.Shimada, H.Ishio, Eds, 1992, Optical amplifier and their applications, John Wiley
    2. H.Ghafouri-Shiraz, 1995, Fundamentals of laser diode amplifiers, John Wiley
    3. E.Desurvire, 1994, Erbium-doped fiber amplifiers: principles and applications, John Wiley, New York
    4. M.J.O’Mahony, 1988, Semiconductor laser optical amplifier for use in future fiber systems, Journal of Lighwave Technology, 6(4), 531-544
    5. N.A.Olsson, 1992, Semiconductor optical amplifiers, IEEE Proc., 80, 375-382
    6. M.J.Connelly, 2002, Semiconductor optical amplifiers, Kluwer Academic Press
    7. Y.Yamamoto, 1980, Characteristics of AlGaAs fabry-perot cavity type laser amplifier, J.Quantum Electron., 16, 1047-1052
    8. T.Mukai, Y.Yamamoto, T.Kimura, 1982, S/N and error rate performance in AlGaAs semiconductor laser preamplifier and linear repeater systems, Trans.Microwave Theory and Tech., 30, 1548-1556
    9. J.C.Simon, 1987, GaInAdP semiconductor laser amplifiers for single-mode fiber communications, J.Lightwave Technol., 5, 1286-1295
    10.李保海,吴重庆,付松年,张勇,2004,半导体光放大器的研究进展与新应用,光通信技术,4,18-21
    11. T.Akiyama, M.Ekawa, M.Sugawara, K.Kawaguchi, et al, 2005, An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots, IEEE Photonics Technology Letters, 17(8), 1614-1616
    12. M.J.Connelly, 2001, Wideband semiconductor optical amplifier steady-state numerical model, IEEE, Journal of Quantum Electronics, 37(3), 439-447
    13.赵书安,2005,半导体光放大器的原理及应用分析,金陵科技学院学报,21(3),22-26
    14.黄德修,刘雪峰,2001,半导体激光器及其应用,北京,国防工业出版社
    15. G..Jacobsen, K.Bertilsson, Z.Xiaopin, 1998, WDM transmission system performance: influence of non-Gaussian detected ASE noise and periodic DEMUX characteristic, Joournal of Lightwave Technology, 16(10), 1804-1811
    16. Lun Xiujun, Huang Yongqing, Ren Xiaomin, 2003, Device design and characteristics for SOA-based all optical signal 2R regeneration, Semiconductor Photonics and Technology, 9(2), 66-70
    17. G.Eisenstein, 1989, Semiconductor optical amplifiers, IEEE, Circuit and Device Magazine, 5(4), 25-30
    18. G.Eisenstein, G.Raybon, L.W.Stulz, 1988, Deposition and measurement of electron beam evaporated SiO2 antireflection coatings on InGaAsP laser facet, J.Lightwave Technology, 6(1), 12
    19. C.E.Zah, C.Caneau, F.K.Shokoohi, S.G.Menocal, et al, 1988, 1.3μm near-traveling wave laser amplifiers made by combination of angled facets and antireflection coatings, Electon.Lett., 24(20), 1275
    20. I.Cha, M.Kitamura, I.Mito, 1989, 1.5μm band traveling-wave semiconductor optical amplifiers with window facet structure, Electron.Lett., 25(3), 242
    21.崔迎超,张书练,冯金垣,2005,半导体光放大器的增益特性和偏振特性,激光技术,29(5),462-464
    22. M.Connelly, I.Limerick, 1998, Semiconductor optical amplifiers and their applications, Design of Circuit and Integrated Systems Conf.
    23. P.Brosson, 1994, Analytical model of a semiconductor optical amplifier, Journal of Lightwave Technology, 12(1), 49-54
    24. K.Morito, M.Ekawa, T.Watanabe, Y.Kotaki, 2003, High-output-power polarization-insensitive semiconductor optical amplifier, Journal of Lightwave Technology, 21(1), 176-181
    25. K.Morito, S.Tanaka, S.Tomabechi, A.Kuramata, 2005, A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure, Journal of Lightwave Technology, 17(5), 974-976
    26. N.A.Olsson, 1988, Polarization-independent configuration optical amplifier, Electronics Letters, 24(17), 1075-1076
    27.刘雪峰,孙军强,刘德明,黄德修,1995,行波半导体光放大器的偏振特性研究,光学学报,15(10),1306-1310
    28. A.Godefroy, A.L.Corre, F.Clerot, et al, 1.55μm polarization-insensitive optical amplifier with strain-balanced superlattice active layer, 1995, Photonics Technology Letters, 7(5), 473-475
    29. D.Tishinin, K.Uppal, I.Kim, P.D.Dapkus, 1997. 1.3μm polarization insensitive amplifiers with integrated-mode transformers, Photonics Technology Letters, 9(10), 1337-1339
    30. A.D.Carlo, A.Reale, L.Tocca, P.Lugli, 1998, Polarization-independentδ-strained semiconductor optical amplifiers: a tight-binding study, Journal of Quantum Electronics, 34(9), 1730-1739
    31.吴重庆,2007,半导体光放大器的光-光互作用及其应用,物理学和高新技术,36(8), 631-636
    32. K.Obermann, S.Kindt, D.Breuer, K.Petermann, 1998, Performance analysis of wavelength converters based on cross-gain modulation in semiconductor-optical amplifiers, Journal of Lightwave Technology, 16(1), 78-85
    33. M.Asqhari, I.H.White, R.V.Penty, 1997, Wavelength conversion using semiconductor optical amplifiers, Journal of Lightwave Technology, 15(7), 1181-1190
    34. A.D’Ottavi, F.Girardin, L.Graziani, F.Martelli, et al, 1997, Four-wave mixing in semiconductor optical amplifiers: a practical tool for wavelength conversion, Journal of Selected Topics in Quantum Electronics, 3(2), 522-528
    35. S.Diez, C.Schmidt, R.Ludwig, et al, 1997, Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching, Journal of Selected Topics in Quantum Electronics, 3(5), 1131-1145
    36. S.Diez, R.Ludwig, H.G.Weber, 1999, Gain-transparent SOA-switch for high-bitrate OTDM add/dropmultiplexing, Photonics Technology Letters, 11(11), 1402
    37. K.L.Lee, C.Shu, 2003, Switching-wavelength pulse source constructed from a dispersion-managed SOA fiber ring laser, Photonics Technology Letters, 15(4), 513-514
    38. C.L.Zhao, Z.Li, M.S.Demokan, X.Yang, W.Jin, 2005, Switchable multiwavelength SOA-fiber ring laser based on a slanted multimode fiber bragg grating, Optics Communications, 252, 52-57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700