自主动态膜生物反应器膜污染控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,一种新型的污水处理工艺,自生动态膜生物反应器越来越受到关注。它是通过在粗孔材料上(无纺布、尼龙、工业滤布等)自发形成的污泥层(孔径大约为10-100μm)来实现近似于微滤膜的高效的泥水分离。由于使用廉价的粗孔材料代替昂贵的微滤膜,并且能耗大大降低,从而使得自生动态膜生物反应器的运行费用大大降低。因此为其在发展中国家的推广应用打下了良好的基础。但是与传统膜生物反应器一样,膜污染问题仍然是限制其发展的重要瓶颈。
     基材对于自生动态膜的污染速率影响巨大,因此选择合适的基材显得尤为重要。本文选取三维滤布和普通单滑面无纺布两种基材做对比,试验结果显示,选用三维滤布作为基材时,由于其特殊的三维结构和憎水表面,可以有效控制自生动态膜的污染速率,明显延长自生动态膜生物反应器稳定运行时间。
     更重要的是,研究表明,在次临界通量条件下运行反应器可以有效控制膜污染。但是在自生动态膜生物反应器领域,临界通量方面的研究并不多,由于自生动态膜具有高度的可压缩性,使得至今还没有合适的测试临界通量方法。本研究中提出一种间歇式压力步长法,能够最大程度的减少自生动态膜可压缩性对临界通量测量的影响。同时试验表明,当使用传统压力步长法测量临界通量时,阶梯式上升的过膜压力使得自生动态膜不断被压缩,过膜阻力不断上升,加剧污染,导致临界通量测定不准确;而我们所提出的间歇式压力步长法可以有效去除自生动态膜可压缩性的影响,使得测量结果相对准确。在本文中,为了使试验结果更准确我们同样给出了间歇式压力步长法测量临界通量各个参数的建议值。
     试验结果表明,曝气强度和污泥浓度对临界通量影响很明显。当曝气量小于240 L·h-1时,临界通量随着曝气量的增大而增大;而当污泥浓度小于9 g·L-1时,临界通量随着污泥浓度的上升而下降。同时污泥性质,如EPS含量、粘度、电负性和憎水性等都会对自生动态膜临界通量产生相应影响。
In recent years, an innovative and promising wastewater treatment technology, termed self-forming dynamic membrane bioreactor (SFDMBR) system, has attracted increasing attention worldwide. The idea is to utilize the membrane, sludge layer essentially, self-formed on certain coarse materials (e.g. non-woven fabric, nylon mesh, industrial filter-cloth) with pore size ranging from 10-100μm for effective solid-liquid separation. It has been widely reported that self-forming membrane (SFM) can be quickly shaped up and function similarly as commercial microfiltration (MF) membranes, evidenced by the comparable effluent quality free of suspended solids.
     The costs of SFMBR systems are significantly lower than MBR systems due partly to the replacement of MF membranes by cheap coarse materials, and partly to the less energy consumptions of SFM operation. This makes SFDMBR systems highly potential alternatives of MBR systems especially in developing countries where MBR systems are usually unaffordable. However, as with MBR systems, membrane fouling indicated by the undesirable increase of filtration resistance remains the most serious problem greatly impairing the performance of SFDMBR systems.
     The filter material is the key factor of dynamic membrane fouling. In this study, we chose three-dimensional filter-cloth and nonwoven material to build dynamic membrane bioreactors (DMBR) for wastewater treatment. Three-dimensional filter-cloth have three-dimensional structure, hydrophobic surface and little pore size, which made foulants difficult to adhere to filter-cloth surface, and decreased the probability of membrane fouling. In a word, three-dimensional filter-cloth is a better material for DMBR, resisting membrane fouling efficiently.
     Moreover, for better controlling membrane fouling and identification of appropriate operating conditions, the concept of critical flux was proposed. It was found that fouling nearly did not occur under sub-critical flux for MBR. However, in sharp contrast to the numerous investigations in MBR systems, critical flux has not been seriously studied in SFMBR systems. This is partly because of the relative novelty of SFMBR systems, and partly because of the lack of appropriate measurement methods. The critical flux in MBR systems is commonly obtained from short-term flux-transmembrane pressure (TMP) profiles by either TMP or flux stepping methods. These methods, however, cannot be directly applied in SFMBR systems because of the distinctive compressible nature of SFM. Unlike commercial MF membranes having rigid configuration, SFM is indeed a sludge layer with relatively loose structure and thus expected to be considerably compressed as TMP or flux rapidly increases during short-time critical flux determination tests. In other words, the properties of SFM would significantly change during the course of measurement when applying traditional TMP/flux-step methods, resulting in inaccurate critical flux values.
     In this study, a new method (i.e. intermittent TMP-step method) was developed for more accurate determination of critical flux in SFMBR systems. Relaxation phases are incorporated in the new method to minimize the variation of SFM properties mainly resulted from the continuous compression during the stepwise increase of TMP. A series of comparative tests were carried out in the specially designed lab-scale SFMBR system for more systematic and rigorous evaluations of the intermittent TMP-step method. The results reported here may contribute to a better understanding of SFM properties, and consequently the establishment of the proper method for critical flux determination in SFMBR systems.
引文
1. Marrot B., Barrios-Martinez A, Moulin P, Roche N. Industrialwastewater treatment in a membrane bioreactor:a review, Environ. Prog.2004,23,59-68.
    2. Ben Aim R M, Semmers M J, Membrane bioreactor for wastewater treatment and reuse:a success story, Water Sci. Technol.2002,47,1-5.
    3.樊耀波,徐慧芳,郭海明.气升循环分体式膜生物反应器污水处理与回用技术.环境污染治理技术与设备,2004,5(7):70-75.
    4.黄霞等.膜生物反应器废水处理工艺的研究进展.环境科学研究,1998,11(1):40-44.
    5.范彬,黄霞,文湘华,于妍.动态膜-生物反应器对城市污水的处理.环境科学,2002,23(6),51-56.
    6. Howell J A., Chua H C, et al. In situ manipulation of critical flux in a submerged membrane bioreactor using variable aeration rates, and effects of membrane history. J. Membr. Sci.2004, 242(1-2):13-19.
    7. Le-Clech P, Jefferson B and Judd S J. Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor. J. Membr. Sci.2003, 218(1-2):117.
    8.樊耀波,王菊思.水与废水处理中的膜生物反应器技术.环境科学,1995,16(5):79-81.
    9.顾国维,何义亮.膜生物反应器—在污水处理中的研究与应用.北京:化学工业出版社(第一版)。2002.
    10. Lesjean B, Gnirss R and Adam C. Process configurations adapted to membrane bioreactors for enhanced biological phosphorous and nitrogen removal. Desalination,2002,149(1-3): 217-224.
    11.刘锐.一体式膜生物反应器的微生物代谢特性及膜污染控制:[博士学位论文].北京:清华人学.2000.
    12. Scott C, Olier C, Lamande A et al. Structural evolution of co-deposited Zn-Cr coatings produced by vacuum evaporation. Thin Solid Films,2003,436(2):232-237.
    13.刘锦霞,顾平.膜生物反应器脱氮除磷工艺的研究进展.城市环境与城市生态,2001,14(2):27-29.
    14. Comerton A M, Andrews R C and Bagley D M. Evaluation of an MBR-RO system to produce high quality reuse water:Microbial control, DBP formation and nitrate. Water Res., 2005,39(16):3982.
    15.郭红霞,王平,陈翠仙等.超高分子量聚乙烯微孔膜的亲水改性研究(Ⅱ)改性UHMWPE微孔滤膜的性质及其过滤性能.膜科学与技术,2003,10:76-83.
    16. Yoon S H. Important operational parameters of membrane bioreactor-sludge disintegration (MBR-SD) system for zero excess sludge production. Water Res.,2003,37(8):1921-1931
    17. Field, R.W. WU, D.,Howell, J.A.,Gupta, B.B. (1995) Critical flux concept for microfiltration fouling.1995,100:259-272.
    18. Defrance L and Jaffrin M Y. Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux:Application to a membrane bioreactor used for wastewater treatment. J. Membr. Sci.1999,152(2):203-210.
    19. Harada K, Kushida M, Miyakawa S, et al. Control of photo and thermal decomposition of diazo/PVA and diazo/PVAc resist with inclusion compounds. J. Photopolym. Sci. Technol., 2005,18(2):187-192.
    20.黄霞,桂萍,范晓军等.膜生物反应器废水处理工艺的研究进展.环境科学研究,1998,11(1):40-44.
    21.孟凡刚.膜生物反应器膜污染行为的识别与表征:(博士学位论文)辽宁:大连理工大学,2007:102-109.
    22. Liang Z, Feng Y, Meng S, et al. Preparation of glutaraldehyde cross-linked chitosan beads under microwave irradiation and properties of urease immobilized onto the beads. Transactions of Tianjin University,2005,11(2):79-84.
    23.刘燕,王越兴,莫华娟等.有机底物对活性污泥胞外聚合物的影响.环境化学,2004,(03):23-28.
    24.周健,柴宏祥,龙腾锐.活性污泥曝外聚合物EPS的影响因素研究.给水排水,2005,31(8):19-23.
    25. Zhang S, Yang F, Liu Y et al. Performance of a metallic membrane bioreactor treating simulated distillery wastewater at temperatures of 30 to 45[deg]C. Desalination,2006, 194(1-3):146-155.
    26. Marcinkowsky A E, Kraus K A, Philips H O, Johnson Jr J S and Shor A J. Hyperfiltration studies. IV. Salt rejection by dynamically formed hydrous oxide membranes. J. Am. Chem. Soc.,1966,88:5744
    27. Spencer G and Thomas R. Fouling, cleaning, rejuvenation of formed-in-place membrnae. Food Technol.,1991,45:98-99.
    28. Jiraratananon R., Uttapap D., et al. Self-forming dynamics membrane for ultrafiltration of pineapple juice. J. Mem. Sci.,1997,129(10):135-143.
    29.张捍民,乔森等.预涂动态膜-生物反应器处理生活污水试验研究.环境科学学报,2005,25(2):249-253
    30. Tanny G B. Dynamic membranes in ultrafilarttion and reverse osmosis. Journal SeParation & Purification Methothod,1978,7:183-220.
    31. Sungpet A, Jiraratananon R and Luangsowan P. Treatment of effluents from textile-rinsing operations by thermally stable nanofiltration membranes. Desalination,2004,160(1):75.
    32. Ohtani T and A. W. Rejection ProPerties of dynamic membrane of ultrafiltration.1987,27: 295-305.
    33. Kishihara S, Tamaki H, Fujii S, et al. Clarification of technical sugar solutions through a dynamic membrane formed on a porous ceramic tube. J. Mem. Sci.,1989,41:103-114.
    34. Lagashetty A, Havanoor V, Basavaraja S, et al. Synthesis of MoO3 and its polyvinyl alcohol nanostructured film. Bull. Mater. Sci.,2005,28(5):477-481.
    35. Kryvoruchko A P, Atamanenko I D and Yurlova L Y. Concentration/purification of Co(II) ions by reverse osmosis and ultrafiltration combined with sorption on clay mineral montmorillonite and cation-exchange resin KU-2-8n. J. Mem. Sci.,2004,228(1):77-81.
    36. Kryvoruchko A, Atamanenko I and Kornilovich B. A role of the clay minerals in the membrane purification process of water from Co(Ⅱ)-ions. Sep. Purif. Technol.,2001,25(1-3): 487-492.
    37.张捍民,乔森,叶茂盛,张兴文,杨凤林.预涂动态膜-生物反应器处理生活污水试验研究.环境科学学报,2005,25(2):249-253.
    38. Kiso Y, Jung Y-J, Ichinari T, et al. Wastewater treatment performance of a filtration bio-reactor equipped with a mesh as a filter material. Water Res.,2000,34(17):4143.
    39.范彬,黄霞等.动态膜—生物反应器对城市污水的处理.环境科学,2002,23(6):51-56.
    40.范彬,黄霞等.出水水头对自生生物动态膜过滤性能的影响.环境科学,2003,24(5):65-69.
    41. Fuchs W, Resch C, Kernstock M, et al. Influence of operational conditions on the performance of a mesh filter activated sludge process. Water Res.,2005,39(5):803.
    42.吴季勇,华敏洁,高运川.自生生物动态膜反应器处理市政污水的特性.上海师范大学学报(自然科学版),2004,(04):23-29.
    43. Seo G T, Moon B H, et al. Non-woven fabric filter separation activated sludge reactor for domestic waste water reclamation. Water Sci. Technol.,2003,47(1):133-138.
    44. Seo G T, Moon B H, Lee T S, et al. Non-woven fabric filter separation activated sludge reactor for domestic wastewater reclamation. Water Sci. Technol.,2003,47(1):133-138.
    45. Alavi Moghaddam M R, Satoh H and Mino T. Performance of coarse pore filtration activated sludge system. Water Sci. Technol.,2002,46(11-12):71.
    46. Alavi Moghaddam M R, Guan Y, et al. Performance and microbial dynamics in the coarse pore filtration activated sludge process at different SRTs (solids retention times). Water Sci. Technol,2003,47(12):73-80.
    47. Alavi Moghaddam M R, et al. Effect of important operational parameters on performance of coarse pore filtration activated sludge process. Water Sci. Technol.,2002,46(9):229-266.
    48.高松,周增炎,高廷耀.自组生物动态膜在污泥截留中的应用研究.净水技术,2005,24(01):14-17.
    49.卢进登,李海波.膜生物反应器对污染物的去除效果及运行条件的研究现状.湖北大学学报(自然科学版),2003,25(01):77-80.
    50.熊丽,濮文虹,杨昌柱等.动态膜生物反应器处理生活污水的特性.化学与生物工程,2005,(01):31-33.
    51.吴盈禧,陈福泰,黄霞.高通量自生动态膜生物反应器的运行特性.中国给水排水,2004,(02):17-20.
    52.周小红,施汉昌等.基于硝酸盐液膜微电极的动态膜反硝化特性研究.环境科学,2006,27(9):1781-1785.
    53. Field R W, Wu D, Howell J A, Gupta B B, Critical flux concept for microfiltration fouling, J. Membr. Sci.1995,100:259-272.
    54. Howell J A, Subcritical flux operation of microfiltration, J. Membr. Sci.1995,107:165-171.
    55. Kwon D Y, Vigneswaran S, Influence of particle size and surface charge on critical flux of crossflow microfiltration, Water Sci. Technol.38 (1998) 481-488.
    56. Green G, Belfort G, Fouling of ultrafiltration membranes:lateral migration and the particle trajectory model, Desalination 35 (1980) 129-147.
    57. Kwon D Y, Vigneswaran S, Fane A G, Ben Aim R, Experimental determination of critical flux in cross-flow microfiltration, Sep. Purif. Technol.19 (2000) 169-181.
    58. Shirato M, Sambuichi M, Murase T, Aragaki T, Kobayashi K, Irtani E, Theoretical and Experimental Studies in Cake Filtration, Memoirs of the Faculty of Engineering, Nagoya University,1985,37:38-91.
    59. Bouhabila E H, Ben Aim R, Buisson H, Microfiltration of activated sludge using submerged membrane with air bubbling (application to wastewater treatment), Desalination 118 (1998) 315-322.
    60. Cho B D, Fane A G, Fouling transients in nominally sub-critical flux operation of a membrane bioreactor, J. Membr. Sci.209 (2002) 391-403.
    61. Chen V, Fane A G, Madaeni S S, Wenten I G, Particle deposition during membrane filtration of colloids:transition between concentration polarization and cake formation, J. Membr. Sci. 125 (1997) 109-122.
    62. Defrance L, Jaffrin M Y, Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux:application to a membrane bioreactor used for wastewater treatment, J. Membr. Sci.152 (1999) 203-210.
    63. Defrance L, Jaffrin M Y, Reversibility of fouling formed in activated sludge filtration, J. Membr. Sci.157 (1999) 73-84.
    64.吴盈嬉,陈福泰等.高通量自生生物动态膜反应器的运行特性.中国给水排水,2004,20(2):5-7.
    65.邱宪峰.动态膜生物反应器的研究与应用:(硕士学位论文)济南:山东大学,2007.
    66.国家环保总局.水和废水环境监测分析方法(第四版).北京:中国环境科学出版社,2002.
    67.傅金祥,由昆,琚冉,等.磁力搅拌/阳离子交换树脂法提取胞外聚合物.中国给水排水.2006,22(20),84-86.
    68.陈钧辉主编.生物化学实验(第三版).北京:科学出版社,2003.
    69.鹿道强,范彬,曲丹,等.自生动态膜生物反应器结构优化的研究.环境科学,2007,28(1),137-141.
    70.王丽萍,张传义,蒋波.膜生物反应器膜污染的水力学控制实验研究.能源环境保护,2005,19(2),27-30.
    71.梁娅,董滨,周增炎,屈计宁.自生动态膜生物反应器曝气方式的影响.水处理技术,2007,33(3),36-38.
    72.范彬,黄霞,文湘华,于妍.微网生物动态膜过滤性能的研究.环境科学,2003,24(1),91-97.
    73. Wang X M, Li X Y. Accumulation of biopolymer clusters in a submerged membrane bioreactor and its effect on membrane fouling. Water Res.2008,42,855-862.
    74. Ognier S, Wisniewski C, Grasmick A. Influence of macromolecule adsorption during filtration of a membrane bioreactor mixed liquor suspension. J. Membr. Sci.2002,209, 27-37.
    75. Ye M S, Zhang H M, Wei Q F, et al.Study on the suitable thickness of a PAC-precoated dynamic membrane coupled with a bioreactor for municipal wastewater treatment. Desalination.2006,194,108-120.
    76. McCarthy A A,. O'Shea D G, Murray N T, Walsh P K, Foley G. The effect of cell morphology on the filtration characteristics of the dimorphic yeast Kluyveromyces marxianus var. marxianus NRRLy2415, Biotechnol. Progr.14 (1998) 279-285.
    77. Shimuzu Y, Shimodera K.-I, Watanabe A., Cross-flow microfiltration of bacterial cells, J. Ferment. Bioeng.76 (1993) 493-500.
    78. Nakanishi K, Tadokoro T, Matsuno R, On the specific resistance of cakes of microorganisms, Chem. Eng. Commun.62 (1987) 187-201.
    79. Tanaka T, Abe K.-I., Asakawa A, Yoshida. H, Nakanishi K, Filtration characteristics and structure of cakes in crossflow filtration of bacterial suspensions, J. Ferment. Bioeng.78 (1994)455-461.
    80. Tanaka T, Usui K, Kouda K, Nakanishi K, Filtration behaviours of rod shape bacterial broths in unsteady-state phase of crossflow filtration, J. Chem. Eng. Jpn.29 (1996) 973-981.
    81. Hamachi M, Mietton-Peuchot M, Experimental investigations of cake characteristics in cross-flow microfiltration, Chem. Eng. Sci.54 (1999) 4023-4030.
    82. Tarabara V V, Koyuncu I, Wiesner M R, Effect of hydrodynamics and solution ionic strength on permeate flux in cross-flow filtration:direct experimental observation of filter cake cross-sections, J. Membr. Sci.241 (2004) 65-78.
    83. Marel P, Zwijnenburg A, Kemperman A.Wesslinga M. An improved flux-step method to determine the critical flux and the critical flux for irreversibility in a membrane bioreactor, J. Membr. Sci.332 (2009) 24-29.
    84. Madaeni S S, Fane A Q Wiley D E, Factors influencing critical flux in membrane filtration of activated sludge, J. Chem. Technol. Biotechnol.74 (1999) 539-543.
    85. Tardieu E, Grasmick A, Geaugey V, Manem J, Hydrodynamic control of bioparticle deposition in a MBR applied to wastewater treatment, J. Membr. Sci.147 (1998) 1-12.
    86. Wu Z C, Wang Z W, Huang S S, Mai S H. Effects of various factors on critical flux in submerged membrane bioreactors for municipal wastewater treatment, Sep. Purif. Technol. 62 (2008) 56-63.
    87. Chen V, Fane A G, Madaeni S S, Wenten I G, Particle deposition during membrane filtration of colloids:transition between concentration polarization and cake formation, J. Membr. Sci. 125(1997) 109-122.
    88. Lu W M and Ju S C. Selective particle deposition in crossflow filtration. Sep. Sci. Technol. 1989,24:512-540.
    89. O'Neill M E. A sphere in contact with a plane wall in slow linear shear flow. Chem. Eng. Sci., 1968,23:1293-1297.
    90. Zydney A L and Colton C K. A concentration polarization model for the filtrate flux in cross-flow microfiltration of particulate suspensions. Chem. Eng. Commun.,1986,47:1-21.
    91. A.ould-Dris Jaffrin M Y, Si-hassen D, Neggaz Y. Effect of cake thickness and particle polydispersity on prediction of permeate flux in microfiltration of particulate suspensions by a hydrodynamic diffusion model. J. Membr. Sci.,2000,164:211-227.
    92. Porter M C. Concentration polarization with membrane ultrafiltration. Ind. Eng Chem.Prod. Res.Dev.,1972,11:234-245
    93. Green G and Belfort G. Fouling ultrafiltration membranes:lateral migration and patrticle trajectoty model. Desalination,1980,35:129-147
    94. Drew D A, Schonberg J A and Belfort G. Lateral inertial migration of a small sphere in fast laminnar flow through a membrane duct. Chem. Eng. Sci.1991,46:3219-3224
    95. Altena F W and Belfort G Lateral migration of spherical particles in porous channels: application to membrane filtration, Chem. Eng. Sci.1984,39:343-355
    96. Ye Y, Le Clech E, Chen V. Fouling mechanisms of alginate solutions as model extra cellular polymeric substances, Desalination 2005,175:7-20.
    97. Hermia J. Constant pressure blocking filtration laws-application to power-law non-Newtonian fluids, Trans. IchemE.1982,60:183-187.
    98. Defrance L, Jaffrin M Y. Reversibility of fouling formed in activated sludge filtration, J. Membr. Sci.1999,157:73-84.
    99. Ng H Y, Hermanowicz S W, Membrane bioreactor operation at short solids retention times: performance and biomass characteristics. Water Res.2005,39:981-992.
    100. Djamila A H, Jacqueline T, Sven L, et al. Correlation of EPS content in activated sludge at different sludge retention times with membrane fouling phenomena, Water Res.2008, 42:1475-1488.
    101. Chalor J and Gary A.. Role of Soluble Microbial Products (SMP) in Membrane Fouling and Flux Decline, Environ. Sci. Technol.2006,40:969-974.
    102. Laspidou C S and Rittmann B E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass, Water Res.2002,36:2711-2720.
    103. Nagaoka H, Ueda. and Miya A. Influence of bacterial extracellular polymers on the membrane separation activated sludge process, Water Sci. Technol.1996,34:165-172.
    104. Liao B Q, Allen D G, Droppo I G, Leppard GG and Liss S N Q. Surface properties of sludge and their pole in bioflocculation and settleability, Water Res.2001,35(2):339-350.LIAO1M, B. Q. ALLEN 1, D. G. DROPP O, I. G. LEPPARD, G. G. and LISS, S. N. () SURFACE PROPERTIES OF SLUDGE AND THEIR ROLE IN BIOFLOCCULATION AND SETTLEABILITY, Water Res.2001,35(2):339-350.
    105. Liew M K H, Fane A G and Rogers P. Hydraulic resistance and fouling of microfilters by Candida utilis in fermentation broth, Bioeng. Biotechnol.1995,48:108-117.
    106. Nagaoka H. Nitrogen removal by submerged membrane separation activated sludge process, Water Sci. Technol.1999,39:107-114.
    107. Le Clech P, et al. Critical flux determination by the flux-step method in a submerged membrane bioreactor, Journal of Membrane Science.2003,227 (1-2):81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700