铜锰基堇青石催化剂的制备及其选择性催化还原NO_X性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以堇青石蜂窝陶瓷为载体,采用铝、硅铝(SA)、钛铝(TA)复合溶胶对载体进行表面改性后,以铜锰复合金属氧化物(Cu-Mn-O)为活性组分制备催化剂。实验选择尿素作为还原剂,采用程序升温法,利用固定床流动化反应评价系统评价各催化剂选择催化还原NOx的催化活性。结果表明,复合溶胶改性有助于载体比表面积的提高。TA和SA复合溶胶改性后载体比表面积分别可达到54.64m2/g和70.25m2/g,与改性前相比,比表面积分别提高了67和86倍,催化剂在中低温的活性明显提高。
     实验对不同溶胶改性后催化剂的活性进行比较。研究发现,复合溶胶改性可以有效的提高催化剂对NOx的催化活性。TA复合溶胶改性后的催化剂对NOx的催化活性比A12O3、SA复合溶胶改性的催化剂活性要好。以催化剂活性为基础,实验确定Cu-Mn-O/TA2/CC为课题深入研究的方向。
     采用浸渍法制备了Cu-Mn-O/TA2/CC催化剂,考察了负载量、活性组分不同配比和焙烧温度对催化剂活性的影响。结果表明当Cu-Mn-O总负载量为9wt%,活性组分的配比为Cu:Mn=1:1,焙烧温度为500℃时,催化剂活性最高:在200℃时NOx的转化率达到最高为85%,并在150-350℃温度范围内均可以保持80%左右。运用X射线衍射技术(XRD)、比表面测定仪(BET)和扫描电子显微镜(SEM)、X射线光电子能谱分析(XPS)等方法对所制备的催化剂进行晶相结构、比表面积、表面形貌、表面元素价态的测试,结果发现:Cu-Mn-O/TA2/CC催化剂的比表面积在20-30m2/g之间,活性组分Cu物种以CuO和Cu2O两种形式存在,Mn以MnO2和Mn2O3形式存在,并且催化剂表面有CuMn2O4尖晶石生成,有利于活性组分Cu和Mn之间的电子传递,促进了NOx转化率的提高。
In this thesis, a series of ceramic cordierite honeycomb modified by Al2O3, SiO2-Al2O3(SA) and TiO2-Al2O3(TA) composite sols, catalysts supported Cu-Mn-0 were studied for the SCR of NOx with CO(NH2)2. Catalytic activity tests were performed in a fixed-bed fluxion reactor with programmed temperature. The results showed that composite sols used in the process of catalysts modification are benefit to the surface areas. After modifying by TA and SA composite sols, the surface area of carrier was 54.64 and 70.25m2/g about 67 and 86 times lager than the former blank cordierite, respectively. The activity test indicated that modified by composite sols is benefit to extend the temperature range of catalyst in reduction NOx,.and the catalytic activity is improved due to the increasing of surface area of the carriers.
     Experiments of activity appraisal suggested that Cu-M-0 catalysts which modified by composite sols have good activity of DeNOx, and the activities of Cu-Mn-O/TA/CC were better than Cu-Mn-O/SA/CC and Cu-Mn-O/Al2O3/CC catalysts. Considering the activities of DeNOx, Cu-Mn-O/TA/CC were chosed for deep study.
     Cu-Mn-O/TA2/CC catalysts were prepared by impregnation method and applied for the removal of NOx by SCR. Effects of Cu-Mn-0 mixed oxides loading, Cu/Mn molar ratio and calcined temperature on NOx conversions were investigated. It is found that with the loading of 9wt%, Cu5-Mn5-O/TA2/CC calcined at 500℃is much more active than the catalysts:the highest activity is 85% at 200℃, and the NOx conversion holding about 80% during 150 to 350℃. The catalysts have been characterized by XRD、BET、SEM and XPS. The analysis revealed that the surface areas of Cu-Mn-0 catalysts modified by TA2 were between 20 and 30m2/g. The XPS of Cu5-Mn5-O/TA2/CC shows Cu species exist in the form of CuO and Cu2O, Mn species exist in the form of MnO2、Mn2O3 and CuMn2O4. The higher activity of Cu5-Mn5-O/TA2/CC catalyst has been ascribed to the formation of the copper manganese spinel CuMn2O4, precisely to an electronic transfer between copper and manganese cations within the spinel lattice.
引文
[1]周玉明.内燃机废气排放及控制技术[M].人民交通出版社.2001,7-15页
    [2]蒋晓原,周仁贤,毛建新等.CeO2对CuO/Al2O3分散状态及催化性能的影响[J].分子催化.1999,13(3):176-180页
    [3]姜培顺,徐斌.浅析汽车的排放污染控制与实施[J].城市公共交通.2007,(1):22-24页
    [4]曾汉才.大型锅炉高效低NOx燃烧技术的研究[J].锅炉制造.2003,3(1):1-11页
    [5]任建兴,翟晓敏,傅坚刚.火电厂氮氧化物的生成和控制[J].上海电力学院学报.2002,(18):19-24页
    [6]刘美英,何天荣.氮氧化物对大气环境的污染与控制[J].环境保护科学.2004,30(5):1-3页
    [7]叶代启等.环境催化技术在大气污染治理中的应用[J].环境保护.1999,7:48-51页
    [8]叶代启等.大气污染治理中的催化技术[J].工业催化,1999,4:123-126页
    [9]王志轩.大气污染控制防治法队电力工业发展的宏观影响分析[J].中国电力.2001,34(2):234-238页
    [10]贺克斌,黎维彬,郝吉明.我国汽车排放净化技术发展现状[J].中国国际环保专题报告会论文集.1999,6:57-64页
    [11]苏亚欣,毛玉如,徐璋.燃煤氮氧化物排放控制技术[M].化学工业出版社.2005,54-72页
    [12]刘志明,郝吉明,傅立新等.稀燃条件下NOx净化催化剂的研究进展[J].科学通报.2004,49(20):2029-2039页
    [13]张琳,张秀玲.催化脱除大气污染物NOx研究进展[J].低温与特气.2000,8(4):7-9页
    [14]Iwamoto M, Hidenori Yahiro, Seiji Shundo, et al. Influence of sulfur dioxide on catalytic removal of nitric oxide over copper ion-exchanged ZSM-5 zeolite[J]. Applied Catalysis.1991,69(1):15-19P
    [15]陈亚芍,董涛.汽车尾气净化催化剂技术面临的问题及发展[J].陕西师范大学学报(自然科学版).2005,4:111-114页
    [16]Erol S, Nail Y, Erdogan G, et al. NOx reduction by urea under lean conditions over single sol-gel Pt/alumina catalyst[J]. Applied Catalysis B: Environmental.2002,37(1):27-35P
    [17]Resini C, Montanari T, Nappi L, et al. Selective catalytic reduction of NOx by methane over Co-H-MFI and Co-H-FER zeolite catalysts:characterisation and catalytic activity[J]. Journal of Catalysis.2003,214(2):179-190P
    [18]刘奉生,史文方,龚卫国.汽车尾气催化净化技术进展[J].稀有金属材料与工程.1999,28(5):326-329页
    [19]An W Z, Zhang Q L, Chuang K T, et al. A hydrophobic Pt-Fluorinated carbon catalyst for reaction of NO with NH3[J]. Industrial and Engineering Chemistry Research.2002,41:27-31P
    [20]Costa C. N, Stathopoulos V. N, Belessi V. C, et al. An investigation of the NO/H2/O2 (Lean-deNOx) reaction on a highly active and selective Pt/La0.5Ce0.5MnO3 catalyst[J]. Journal of Catalysis.2001,197:350-364P
    [21]Qi G S, Yang R T, Thompson L T. Catalytic reduction of nitric oxide with hydrogen and carbon monoxide in the presence of excess oxygen by Pd supported on pillared clays[J]. Applied Catalysis A:General.2004,259: 261-267P
    [22]Blanco J, Avila P, Suarez S, et al. CuO/NiO monolithic catalysts for NOX removal from nitric acid plant flue gas[J]. Chemical Engineering Journal. 2004,97(2):1-9P
    [23]Centi G., Perathoner S, Biglino D, et al. Adsorption and Reactivity of NO on Copper-on-Alumina Catalysts:I. Formation of Nitrate Species and Their Influence on Reactivity in NO and NH3 Conversion[J]. Journal of Catalysis. 1995,152:75-92P
    [24]Ramis G, Yi L, Busca G, et al. Adsorption, Activation, and Oxidation of Ammonia over SCR Catalysts[J]. Journal of Catalysis.1995,157:523-535P
    [25]Broclawik E, Datka J, Gil B, et al. Cu+ in ZSM-5 framework is active in DeNOx reaction-quantum chemical calculations and IR studies[J]. Catalysis Today.2002,75:353-357P
    [26]Xu L F, McCabe R W, Robert H.Hammerle. NOX self-inhibition in selective catalytic reduction with urea (ammonia) over a Cu-Zeolite catalyst in diesel exhaust[J]. Applied Catalysis B:Environmental.2002,39:51-63P
    [27]Pietrogiacomi D, Sannino D, Magliano A, et al. The catalytic activity of CuSO4/ZrO2 for the selective catalytic reduction of NOX with NH3 in the presence of excess O2[J]. Applied Catalysis B:Environmental.2002,36: 217-230P
    [28]Kapteijn F, Singoredjo L, Andreini A, et al. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis B:Environmental.1994,3(2-3):173-189P
    [29]Tae S P, Soon K J, Sung H H, et al. Selective Catalytic Reduction of Nitrogen Oxides with NH3 over Natural Man ganese Ore at Low Temperature [J]. Industrial & Engineering Chemistry Research.2001,40: 4491-4495P
    [30]Sjoerd Kijlstra W, Danny S. B, Eduard K, et al. Mechanism of the selective catalytic reduction of NO with NH3 over MnOx/Al2O3[J]. Journal of Catalysis.1997,171(1):219-230P.
    [31]伍斌,童志权,黄妍.MnO2/NaY催化剂上NH3低温选择催化还原NOX[J].石油化工.2006,35(2):178-182页
    [32]Marban G, Fuertes A B. Low-temperature SCR of NOx with NH3 over Nomex rejects-based activated carbon fibre composite-supported manganese oxides:Part Ⅱ. Effect of procedures for impregnation and active phase formation[J]. Applied Catalysis B:Environmental.2001,34(12):55-71P
    [33]Garcia-Bordeje E, Kapteijn F, Moulijn J.A. Preparation and characterisation of carbon-coated monoliths for catalyst supports[J]. Carbon.2002,40(8): 1079-1088P
    [34]Qi G G, Yang R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst[J]. Journal of Catalysis.2003, 217(18):434-441P
    [35]Qi G G, Yang R T. Asuperior catalyst for low-temperature NO reduction with NH3[J]. Chemical Communication.2003,7(2):848-850P
    [36]Qi G G, Yang R T, Ramsay Chang. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis Environmental.2004,51(6):93-106P
    [37]Tang X L, Hao J M, Xu W G, et al. Low temperature selective catalytic reduction of NO with NH3 over amorphous MnOx catalysts prepared by three methods[J]. Catalysis Communications.2007,8(5):329-334P
    [38]唐晓龙,郝吉明,徐文国等.新型MnOx催化剂用于低温NH3选择性催化还原NOX[J].催化学报.2006,10:843-848页
    [39]邱运仁,张启修,汽车排气精华催化剂及其载体的研究[J].现代催化.2001,21(3):19-22页
    [40]王亚军,曾庆轩,冯长根.汽车尾气净化催化剂载体[J].工业催化.1996,6:3-7页
    [41]肖霞,何新秀.我国汽车尾气污染的催化净化[J].环境科学研究.1998,11(5):26-28页
    [42]郭建军,罗来涛,李松军.汽车尾气催化剂的研究进展[J].江西化 工.2001,2:3-7页
    [43]曾佩兰,黄可龙.汽车尾气净化催化剂的研究现状及其进展[J].材料导报.2003,17(3):48-51页
    [44]魏伟,史庆南.汽车催化净化器载体材料的研究进展[J].云南冶金.2002,31(1):46-48页
    [45]Chen J P, Yang R T. Selective catalytic reduction of NO with NH3 on SO42-/ TiO2 superacid catalyst[J]. Journal of Catalysis.1993,139(8):277-284P
    [46]A.Santos, F.Garcia-Ochoa, P.Avila, et al. Measurement of the effective diffusivity for avanadia-tungsta-titania/sepiolite catalyst for SCR of NOx[J]. Applied Catalysis B:Environmental.1996,8(12):299-314P
    [47]C.U.O.Ingemar, J.Blanco, P.Avila. Lean NOx reduction in real diesel exhaust with copper and platinum titania based monolithic catalysts[J]. Applied Catalysis B:Environmental.1999,23(6):37-44P
    [48]O.V Komova, A.V.Simakov, V.A.Rogov. Investigation of the state of copper in supported copper-titanium oxide catalysts[J]. Journal of Molecular Catalysis A:Chemical.2000,161(16):191-204P
    [49]Xu B, Dong L, Chen Y. Influence of CuO loading on dispersion and reduction behavior of CUO/TiO2 (anatase) system[J]. Journal of Chemistry Society, Faraday Transactions.1998,94(13):1905-1909P
    [50]P.O.Larsson, A.Allderson. Complete oxidation of CO, ethanol, and ethyl acetate over copper oxide supported on titania and ceria modified titania[J]. Journal of Catalysis.1998,179(14):72-89P
    [51]G. Cordoba, M.Viniegra, J.L.GFierro. TPR, ESR and XPS study of Cu2+ ions in sol-gel derived TiO2[J]. Journal of Solid Chemistry.1998,138(2):1-6P.
    [52]童东绅,陈彤,姚洁等.钒-铜复合氧化物催化碳酸二甲酯和苯酚酯交换合成碳酸二苯酯[J].催化学报.2007,28(3):190-192页
    [53]Zhen C M, Zhao Z Q, He Z Q, et al. Low dielectric constant nanoporous SiO2
    films formed by twice-modification processing[J]. Materials Letters.2005, 59(12):1470-1473P
    [54]Jing C B, ZHAO X J, HAN J J, et al. A new method of fabricating internally sol-gel coated capillary tubes[J]. Surface and Coating Technology.2003,162 (2-3):228-233P
    [55]Okubo T, Watanabe, Kusakabe K, et al. Preparation of y-alumina thin membrane by so-gel processing and its characterizationby gas permeation[J]. Journal of Material Science.1990,25(4):4822-4827P
    [56]沈美庆,王军,翁瑞等.堇青石蜂窝陶瓷载体涂层热稳定性及改性机制研究[J].中国稀土学报,2004,4(22):527-531页
    [57]Niwa M, Katada N, Murakami Y. Thin Silica Layer on Alumina:Evidence of the Acidity in the Monolayer[J]. Journal of Physical Chemistry. 1990,94(16):6441-6445P
    [58]Johnson M F L. Surface Area Stability of Aluminas [J]. Journal of Catalysis. 1990,123(1):245-259P
    [59]Beguin B, Garbowski E, Primet. M. Stabilization of alumina toward thermal sintering by silicon addition[J]. Journal of Catalysis.1991,127(2):595-604P.
    [60]Ahlstrom-Silversand A. F. Combustion of Methane over a Pd-Al2O3/SiO2 Catalyst[J], Catalyst Activity and Stability. Applied. Catalysis A.1997, 153(1-2):157-175P
    [61]刘勇,牛国兴等.胶凝对氧化钡改性的氧化铝热稳定性的作用催化学报[J].1999,20(6):664-664页
    [62]Vargas A, Montoya J A, Maldonado C, Hernandez-perez I, Acosta D. R, Morales. Micron-pore-sized metallic filter tube membranes for filtration of particulates and water purification[J]. Journal of Microbiological Methods. 2008,74(1):10-16P
    [63]Gutierrez-Alejandre A, Gonzalez-Cruz M, Trombetta M, et al. Characterization of alumina-titania mixed oxide supports:Part II: Al2O3-based supports[J]. Microporous Mesoporous Materials.1998,23(5-6): 265-275P
    [64]Macleod N, Cropley R, Keel J, Lambert M, et al. Kinetic studies of carbohydrate oxidation catalyzed by novel isatin-Schiff base copper(II) complexes[J]. Journal of Catalysis.2004,221(1-2):29-39P
    [65]Huang H.Y, Long R.Q, Yang R.T. A highly sulfur resistant Pt-Rh/TiO2/Al2O3 storage catalyst for NOx reduction under lean-rich cycles[J]. Applied Catalysis B.2001,33(4):127P
    [66]Jiang X.Y, Ding G.H, Lou L.P, et al. Catalytic activities of CuO/TiO2 and CuO-ZrO2/TiO2 in NO+CO reaction[J]. Journal of Molecular Catalysis A: Chemical.2004,218(2):187-195P
    [67]Jiang X.Y, Ding G.H, Lou L.P. et al. Effect of ZrO2 addition on CuO/TiO2 activity in the NO+CO reaction[J]. Catalysis Today.2004,93-95(12): 811-818P
    [68]Trimm D.L, Stanislaus A. The control of pore size in alumina catalyst supports:A review[J]. Applied Catalysis,1986,21(5):215-238P
    [69]高正中.实用催化[M].北京:化学工业出版社,1996,135-178页
    [70]梁健,黄惠忠.共沉淀法制备ZrO2-Al2O3纳米复合氧化物的物相表征[J].物理化学学报.2003,19(1):30-34页
    [71]蔡舒,彭珍珍,冯杰等.无压烧结制备Al2O3/SiC纳米复合陶瓷陶瓷[J].科学与艺术.2003,37(5):23-27页
    [72]南军,谢海峰,柴永明.一种TiO2修饰的Pd/Al2O3选择性加氢用催化剂的研究[J].催化学报.2005,26(8):672-676页
    [73]罗胜成,桂琳琳,唐有祺.TiO2-Al2O3复合载体的比较研究[J].物理化学学报.1996,12(1):7-11页
    [74]Richter M, Trunschke A, Bentrup U, et al. Selective catalytic reduction of nitric oxide by ammonia over egg-shell MnOx/NaY composite catalysts[J]. Journal of Catalysis.2002,206(1):98-113P
    [75]Qi G S, Yang R T, Chang R. Low-temperature SCR of NO with NH3 over USY-supported manganese oxide-based catalysts[J]. Catalysis Letters.2003, 87(1-2):67-71P
    [76]Kijlstra W S, Brands D S, Poels E K, et al. Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3. Adsorption and desorption of the single reaction components[J]. Journal of Catalysis.1997, 171(1):208-218P
    [77]Kijlstra W S, Brands D S, Smit H I, et al. Reactivity of adsorbed NH3 and NO complexes[J]. Journal of Catalysis.1997,171(1):219-230P
    [78]Qi G S, Yang R T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania[J]. Applied Catalysis B:Environmental.2003,44(3):217-225P
    [79]Pena D A, Uphade B S, Reddy E P, et al. Identification of surface species on titania-supported manganese, chromium, and copper oxide low-temperature SCR catalysts[J]. Journal of Physical Chemistry B,2004,108(28): 9927-9936P
    [80]黄可龙,桂客,王红霞等.Cu-Mn-Ce/γ-Al2O3汽车尾气净化催化材料的合成及性能的研究[J].中国稀土学报.2003,21(6):639-642页
    [81]Kaspar J, Fornasiero P, Hickey N. Automotive catalytic converters:current status and some perspectives [J]. Catalysis Today.2003,77(4):419-449P
    [82]李兴林,张瑞峰.铜的价态光电子能谱和X光引发的Auger谱分析[M].光谱学与光谱分析.1996,(3):119-122页
    [83]Pena D A, Uphade B S, Smirniotis P G.. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3 I.Evaluation and characterization of first row transition metals[J]. Journal of Catalysis,2004,221(2):421-431 P
    [84]Ivanka S, Mariana K, Dimitar P, et al.Coprecipitated CuO-MnOx Catalysts for Low-Temperature CO-NO and CO-NO-O2 Reactions[J]. Journal of Catalysis.1999,185(1):43-57P
    [85]Min K, Eun D P, Ji M K, et al.Cu-Mn mixed oxides for low temperature NO reduction with NH3[J]. Catalysis Today,2006,111 (3-4):236-241P
    [86]Qi G S, Yang R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2catalyst[J]. Journal of Catalysis.2003, 217(2):434P-441
    [87]Koebel M, Elsener M, Kleemann M. Urea-SCR:A Promising Technique to Reduce NOx Emissions from Automotive Diesel engines[J]. Catalysis Today. 2000,59(3-4):335-345P
    [88]Lin T, Zhang Q L, Li W, et al. Monolith Manganese-Based Catalyst Supported on ZrO2-TiO2 for NH3-SCR Reaction at Low Temperature[J]. Acta Physico-Chimica Sinica.2008,24(7):1127-1131P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700