松材线虫乙酰胆碱酯酶基因Bx-ace-2克隆和序列分析及RNAi研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松材线虫是松树萎蔫病(Pine wilt disease)的病原,通过介体天牛传播病害,自1982年在江苏南京首次发现后,目前松材线虫已经蔓延至我国14个省(自治区、直辖市)的192个县级行政区,使我国松林资源与生态平衡遭到严重破坏,经济损失巨大。目前对松材线虫的研究主要集中在松材线虫的生物学、分类鉴定、松材线虫病发生条件和防治方法等方面,而关于松材线虫致病性的分子机理知之甚少。
     乙酰胆碱酯酶(acetylcholinesterase, AChE)是生物神经传导中的一种关键性酶,除了神经学功能外,还可能涉及细胞凋亡和寄生线虫细胞发育、行为调控及侵染致病等多个生理进程。松材线虫AChE基因克隆的相关研究尚未见报道,本论文通过反转录PCR (RT-PCR)和cDNA末端快速扩增(RACE)技术获得了松材线虫AChE基因Bx-ace-2的cDNA全长,研究了该基因的内含子及外显子的排列结构;通过Southern杂交技术检测了该基因在基因组中的拷贝数;通过氨基酸序列比对分析,构建了乙酰胆碱酯酶基因的进化树;利用RNAi技术对克隆的Bx-ace-2进行了松材线虫体外干涉的初步研究。研究结果为今后进一步开展对松材线虫乙酰胆碱酯酶基因功能分析,从而推进对松材线虫致病分子机制的理解打下基础。
     1松材线虫乙酰胆碱酯酶基因Bx-ace-2克隆和分析
     克隆的Bx-ace-2 cDNA全长为2010 bp,有1878 bp的开放阅读框(ORF),推测其编码的蛋白有625个氨基酸;Bx-ace-2基因组克隆长为2192bp,含有7个内含子,Southern杂交实验表明该基因在松材线虫基因组中以单拷贝存在。氨基酸序列比对和同源性分析显示,Bx-ace-2编码的乙酰胆碱酯酶与已报道的秀丽小杆线虫ACE-1、ACE-3和ACE-4型乙酰胆碱酯酶的相似性在28%-31%之间,而与秀丽小杆线虫ACE-2及甘薯茎线虫、南方根结线虫、大豆胞囊线虫、马铃薯白线虫和胎生网尾线虫的ACE-2型乙酰胆碱酯酶的氨基酸序列相似性在44%-52%之间;构建的系统进化树也显示了松材线虫乙酰胆碱酯酶与其它线虫的ACE-2型乙酰胆碱酯酶具有相对更近的遗传距离,因此推测该松材线虫乙酰胆碱酯酶也属于ACE-2型。
     2松材线虫乙酰胆碱酯酶基因Bx-ace-2的RNAi研究
     研究了松材线虫吞咽FITC过程,浸泡10 h后松材线虫吞咽明显,24 h后线虫全身荧光信号最强。以Bx-ace-2 cDNA为模板,体外转录合成dsRNA,对经过不同dsRNA浸泡液处理24小时后的松材线虫进行RT-PCR检测显示,ace dsRNA浸泡处理后的松材线虫Bx-ace-2的转录水平明显降低,而经gfp dsRNA浸泡处理后的松材线虫没有检测到Bx-ace-2的转录水平变化。对处理后线虫的表型观察显示,ace dsRNA浸泡处理对松材线虫的活力没有明显影响,同时未发现线虫的贲门收缩的差异;浸泡液中加入脂质体对RNA干涉作用的影响不明显;松材线虫的灰葡萄孢接种实验显示经ace处理的松材线虫繁殖力明显低于对照。
Pinewood nematode (PWN), Bursaphelenchus xylophilus, and its vector insects, cerambycid beetles belonging to the genus Monochamus have been found associated with pine wilt disease. B. xylophilus represents a great threat to forestry industry. Since 1982 the first discovery of PWN was reported on Pinus thunbergii in Nanjing, more than 20 years continuous spread of PWN has crossed 192 countries of 14 provinces of China. Millions of trees were killed and the forest landscape and ecology were faced with a devastating threat.
     Despite the damage caused by B. xylophilus throughout the world, little is clearly known about the molecular mechanisms underlying nematode pathogenicity. The major studies that have been carried out to date have focused on the biology, morphology, disease occurring condition and control strategies rather than examining mechanisms of pathogenicity. Understanding the interaction between B. xylophilus and it host plants is essential for designing disease control programs that are based on the structure and function of proteins encoded by nematode parasitism genes. Therefore, identifying candidate genes related to pathogenicity or parasitism of the nematode will provide breeding strategies to develop pine varieties with broad and durable resistance and contribute greatly to the efficient management of the pine wilt disease.
     Acetylcholinesterase (AChE) plays a key role in neurotransmission. AChE terminates the cholinergic synapses to assure the neuro signal transmission, consequently regulate the muscle movement. AChE is also found may having other functions, such as apoptosis potential markers and regulators or secretions involving in cell development, behavior regulation and pathogenesis. AChE has been extensively studied in C. elegans in which four molecular classes have been found and encoded by four different genes ace-1 to ace-4. No AChE gene was reported from B. xylophilus, therefore the following works was carried out:
     1. Molecular cloning and characterization of a new acetylcholinesterase gene Bx-ace-2 from B. xylophilus
     A new gene, Bx-ace-2, encoding an acetylcholinesterase (AChE), was cloned from B. xylophilus by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The full length cDNA is 2010 bp with an open reading frame (ORF) of 1878bp which was deduced encoding a protein with 625 amino acids. The length of genomic clone of Bx-ace-2 is 2192 bp which contained seven introns. Southern blot analysis demonstrated Bx-ace-2 is probably a signal copy gene. The deduced protein sequence encoded by Bx-ace-2 from B. xylophilus shares 28%~31% similarities with those of ACE-1, ACE-3 and ACE-4 from Caenorhabditis elegans. However, it shares 44%~52% similarities with ACE-2 from C. elegans, Ditylenchus destructor, Meloidogyne incognita, Heterodera glycines, Globodera pallida and Dictyocaulus viviparous. The phylogenetic analysis of AChEs demonstrated that the protein encoded by Bx-ace-2 was clustered into a same group with ACE-2 type of acetylcholinesterases from the aforementioned nematodes. Therefore, it was deduced that the protein encoded by Bx-ace-2 is belonged to ACE-2 type of acetylcholinesterase. ace-2 is the only AChE expressed in the C. elegans pharyngeo-intestinal valve which could be implicated involving into the action of feeding for nematode. More works need to be carried out for the gene expression and function analysis of Bx-ace-2.
     2. RNAi of Bx-ace-2 in B. xylophilus
     The uptake of Fluorescein isothiocyanate (FITC) by B. xylophilus was observed in soaking solution. After 10 h soaking, the FITC uptake by nematodes was clearly viewed under light microscopy. Fluorescent signals were appeared in full body with strong light after 24 h soaking. dsRNA was synthsized by in vitro transcription from cDNA of Bx-ace-2 which was a template. Reverse Transcription PCR (RT-PCR) analyses were conducted after B. xylophilus was soaked in different dsRNA solutions. The result relvealed that the transcription levels of Bx-ace-2 were reduced obviously when nematodes were exposed to ace dsRNA, no changes was observed when exposed to gfp dsRNA and blank control. No difference was showed in mortality of nematodes after soaked in different dsRNA solutions. Treatment of nematodes uptaking ace dsRNA resulted in reduction in ability to propagation. Adding lipofectin to the dsRNA-nematode mixture did not produce clear promotion to RNAi.for Bx-ace-2 in B. xylophilus.
引文
曹艳红.苹果多酚氧化酶双链RNA干扰[D].南京:南京农业大学,2004.
    曹越,沈博葵.人工培养条件下松材线虫提取物的毒性研究.[J].南京林业大学学报,1996,20(40):13-16
    程瑚瑞,林茂松,黎伟强.南京黑松上发生的萎蔫线虫病[J].森林病虫通讯,1983(4):1-5
    池树友,韩正敏,何月秋.无菌松材线虫对10年生黑松致病性的研究[J].林业科学,2006,42(10):71-73
    丁中,彭德良,高必达,等.甘薯茎线虫乙酰胆碱酯酶基因ace-3全长cDNA的克隆和序列分析[J].农业生物技术学报,2008c,16(2):326-331
    丁中,彭德良,高必达.线虫乙酰胆碱酯酶研究进展[J].植物保护,2008a,34(3):18-21.
    丁中,彭德良,黄文坤,等.甘薯茎线虫乙酰胆碱酯酶基因Dd-ace-2全长cDNA的克隆和序列分析[J].生物工程学报,2008b,24(2):239-244
    冯志新.植物线虫学(植保专业用)[M].北京:中国农业出版社.2001:163
    郭晶,高菊芳,唐振华.乙酰胆碱酯酶的动力学机制及其应用[J].农药,2007,46(1):18-21
    蒋丽雅,王晓芸.松材线虫提取液和分泌液中纤维素酶定性检测[J].森林病虫通讯,1995,3:9-11.
    来燕学,孙世渊.松墨天牛在松树枯萎中的作用[J].浙江林学院学报,1996,13(1):75-81.
    牛宝龙,翁宏飚,孟智启,等.RNA干涉与基因功能研究进展[J].浙江农业学报,2003,15(4):263-268.
    王明旭.松材线虫发病条件的研究概况[J].湖南林业科技,2007,34(5):4-10
    王守先,牛宝龙,沈卫锋,等.松材线虫RNA聚合酶基因的RNA干扰研究[J].浙江农业科学,2007,6:690-694.
    徐恩斌,张忠兵,谢渭芬.乙酰胆碱酯酶的研究进展[J].国外医学-生理、病理科学与临床分册,2003,23(1):73-75.
    严东辉,杨宝君.松材线虫体外酶组成分析[J].林业科学研究,1997,10(3):265-269.
    杨宝君.松材线虫病致病机理的研究进展[J].松材线虫病致病机理的研究进展.2002,21(1):27-31.
    杨磊.乙酰胆碱酯酶与细胞凋亡的相关性的研究[D].上海:中国科学院研究生院(上海生命科学研究院),2003.
    杨谦,赵惠贤.RNA干扰技术及其应用研究进展[J].西北农业学报,2005,14(2):13-17.
    张明,李顿,陈仪本,等.乙酰胆碱酯酶分子生物学研究进展[J].农药.2006,45(1):8-11
    张千,乙酰胆碱酯酶生物功能的研究进展及其应用[J].国外医学卫生学分册,2008,35(3):143-147.
    张友军,张吉文.乙酰胆碱酯酶分子生物学研究[J].昆虫知识,1997,34(4):243-246.
    赵博光,高蓉.抗生素对松材线虫病的影响[J].南京林业大学学报,2000,24(4):75-77.
    Ariel N, Ordentlich A, Barak D, et al., The 'aromatic patch' of three proximal residues in the human acetylcholinesterase active centre allows for versatile interactions modes with inhibitors [J]. Biochem. J.1998,335:95-102.
    Ashani Y., Grunwald J., Kronman C.et al., Role of tyrosine 337 in the binding of huperzine A to the active site of human acetylcholinesterase. Mol. Pharmacol. [J].1994,45:555-560.
    Bakhetia M, Charlton W, Atkinson H, et al. RNA interference of dual oxidase in the plant nematode Meloidogyne incognita [J]. Molecular Plant-Microbe Interaction.2005,18:1099-1106.
    Basham HG.Wilt of loblolly pine inoculated with blue-stain fungi of the Genus Ceratocystis [J]. Phytopathology,1970,60:750-754.
    Bigbee J, Sharma K. The adhesive role of acetylcholinesterase (AChE):detection of AChE binding proteins in developing rat spinal cord [J]. Neurochem Res,2004,29(11):2043-2050.
    Bolla R I et al. A nonpathogenic isolate of Bursaphelenchus xylophilus produces ethanol as a metabolic and product [J]. J. Nematol,1986a,18 (4):601.
    Bolla R I, Boschert M. Pinewood nematode species complex:interbreeding potential and chromosome number [J]. Journal of Nematology.1993,25:227-238
    Bolla R I, Jordan W. Cultivation of the pine wilt nematode, Bursaphelenchus xylophilus in axenic culture media [J]. Journal of Nematology,1982,14(3):377-381.
    Bolla R I, Shaheen R E., Winter.Phytotoxins production in Bursaphelenchus xylophilus infected Pinus sylvestris[J]. J. Nematol.,1984,16(1):57-61.
    Bolla R I, Winter R E K, Fitzsimmons K, et al. Pathotypes of the pinewood nematode Bursaphelenchus xylophilus [J]. Journal of Nematology,1986b,18:230-238.
    Bonen L. Trans-splicing of pre-mRNA in plant, animals, and protists [J]. The FASEB Journal,1993,7: 40-46
    Bravo S, Henley J, Rodriguez-Ithurrable D et al., Acetylcholinesterase effects on glutamate receptors [J]. Chem. Biol. Interact,2005,157-158:410-411.
    Chang S, Opperman C. Characterization of acetylcholinesterase molecular forms of the root-knot nematode, Meloidogyne[J]. Molecular and Biochemical Parasitology,1991,49:205-214.
    Chen Q, Rehman S, Smant G, et al.,Functional analysis of pathogenicity proteins of the potato cyst nematoded Globodera rostochiensis using RNAi [J]. Mol. Plant Microbe Interact,2005,18:621-625.
    Combes D, Fedon Y, Grauso M, et al. Four genes encode acetylcholinesterases in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. cDNA sequences, genomic structures, mutations and in vivo expression [J]. Journal of Molecular Biology,2000,300:727-742.
    Culetto E, Combes D, Fedon Y, et al. Structure and promoter activity of the 5'flanking region of ace-1. the gene encoding acetylcholinesterase of class A in Caenorhabditis elegans [J]. Journal of Molecular Biology,1999,290:951-966.
    Culotti J, von Ehrenstein G, Culotti M, et al. A second class of acetylcholinesterase-deficient mutants of the nematode Caenorhabditis elegans [J]. Genetics,1981,97:281-305.
    Dale H,1914. The action of certain esters of choline and their relation to muscarine. J. Pharmacol. Exp. Ther.,6:147-190.
    Dong H, Xiang Y, Farchi N et al., Excessive expression of acetylcholinesterase impairs glutamatergic synaptogenesis in hippocampal neurons [J]. J Neurosci.,2004,24 (41):8950-8960
    Dropkin V H, Foudin A S. Reports of the Occurdance of Bursaphelenchus lignicolus induced pine wilt disease in Missouri [J]. Plant Disease Reporter,1979,63 (11):904-905.
    Dwinell L D. The pinewood nematode:regulation and mitigation [J]. Annals Review of Phytopathology, 1997,35:153-156.
    Fanelli E, Di M, Jones J, et al., Analysis of chitin synthase function in a plant parasitic nematode Meloidogyne artiellia, using RNAi [J], Gene,2005,349:87-95
    Feinberg E and Hunter C. Transport of dsRNA into cells by the transmembrane protein SID-1[J]. Science,1997,275(5317):1415-1418.
    Fieldind N,& Evan H. The pine wood nematode Bursaphelenchus xylophilus (Steiner & Buhrer) Nickle (=B. lignicolus Mamiya & Kiyohara):an asseement of the current position. Forestry (Oxford), 1996,69,35-46.
    Fire A, Xu S Q, Montgomery M K, et al. Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans [J]. Nature,1998,391:806-811.
    Fournier D, Karch F, Bride J, Drosophila melanogaster acetylcholinesterase gene:structure, evolution and mutations [J]. J. Mol. Biol.,1989,210:15-22
    Fraser A, Kanath R, Zipperlen P, et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference [J]. Nature 2000,408:325-330
    Fukushige H. Effect of fungi coexisting with Ceratocystis sp. on propagation of Bursaphelenchus xylophilus (Nematoda:Aphelenchoididae) [J]. Appl. Ent. Zool.,1991,26(3):377-380
    Hammond S, Kobayashi R, Hannon G, et al. Agronaute2, a link between genetic and biochemical analysis of RNAi. Science,2001; 293(5532):1146-1150
    Hasegawa K, Mota M, Futai K et al., Developmental Biology and Cytogenetics of Bursaphelenchus xylophilus[C]//Mota M, Vieira P. Pine Wilt Disease:A worldwide threat to forest ecosystems: Springer,2008:91-100.
    Huang G, Allen R, Davis E., et al., Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene [J]. Proc. Natl. Acad. Sci. USA,2006,103:14302-14306
    Huang X, Lee B, Johnson G, et al., Novel assay utilizing fluorochrome-tagged physostigmine(Ph-F) to in situ detect active acetylcholinesterase (AChE) induced during apoptosis [J]. Cell Cycle,2005,4 (1):140-147.
    Jin Q, H. He H, Shi Y, et al. Overexpression of acetylcholinesterase inhibited cell proliferation and promoted apoptosis in NRK cells [J]. Acta. Pharmacol. Sin.,2004,25 (8):1013-1021.
    Johnson C, Duckett J, Culotti J, et al. An acetylcholinesterase deficient mutant of the nematode Caenorhabditis elegans [J]. Genetics,1981,97:261-279
    Johnson C, Rand J, Herman R, et al. The acetylcholinesterase genes of Caenorhabditis elegans: identification of a third gene (ace-3) and mosaic mapping of a synthetic lethal phenotype [J]. Neuron,1988,1:165-173.
    Johnson C, Russell R. Multiple molecular forms of acetylcholinesterase in the nematode Caenorhabditis elegans [J]. Journal of Neurochemistry,1983,41:30-46.
    Kamath R, Ahringer J. Genome-wide RNAi Screening in Caenorhabditis elegans [J]. Method,2003,30: 313-321
    Kaplan D, Ordentlich A, Barak D. et al., Does butyrylization of acetylcholinesterase through substitution of the six divergent aromatic amino acids in the active center gorge generate an enzyme mimic of butyrylcholinesterase? Biochem.2001,40:7433-7445.
    Kawazu K, Kaneko N, Hiraoka K. Reisolation of the pathogens from wilted red pine seedlings inoculated with the bacterium-carrying nematode, and the cause of difference in pathogenicity among pine wood nematode isolates[J]. Scientific Reports of the Faculty of Agriculture, Okayama University,1999,88:1-5.
    Kawazu K, Kaneko N. Asepsis of the pinewood nematode isolate OkD-3 causes it to lose its pathogenicity [J]. Jpn. J. Nematol.,1997,27(2):76-80.
    Kawazu K, Yamashita H, Kanzaki H. Isolation of pine wilting bacteria accompanying pine wood nematode, Bursaphelenchus xylophilus, and their toxic metabolites[J]. Scientific Reports of the Faculty of Agriculture, Okayama University,1998,87:1-7.
    Kawazu K, Zhang H, Yamashita H. Accumulation of benzoic acid in suspension cultured cells of Pinus thunbergii Parl. in response to phenylacetic acid administration [J]. Bioscience, Biotechnology and Biochemistry.1996,60(9):1410-1412.
    Kawazu K, Zhang H, Yamashita H. et al., Relationship between the pathogenicity of the pine wood nematode, Bursaphelenchus xylophilus and phenylacetic acid production [J]. Bioscience, Biotechnology and Biochemistry,1996,60(9):1413-1415.
    Kikuchi T, John J, Takuya A et al. A family of glycosyl hydrolase family 45 cellulase from the pine wood nematode Bursaphelenchus xylophilus. FEBS Letters,2004,572:201-205
    Kikuchi T, Li H, Karim N, Identification of putative expansin-like genes from the pine wood nematode, Bursaphelenchus xylophilus, and evolution of the expansin gene family within the Nematoda [J]. Nematology,2009,11(3):355-364.
    Kikuchi T, Shibuya H, John J. Molecular and biochemical characterization of an endo-β-1,3-glucanase from the pinewood nematode Bursaphelenchus xylophilus acquired by horizontal gene transfer from bacteria.J.Biochem.,2005,389:117-125
    Kikuchi T, Shibuya H, Takuya A et al. Cloning and characterization of pectate lyases expressed in the esophageal gland of the pine wood nematode Bursaphelenchus xylophilus. Mol. Plant-Microbe Interact.2006,19:280-287
    Kikuchi T, Takuya A, Kosaka H et al. Expressed sequence tag analysis of the pine wood nematode Bursaphelenchus xylophilus and B. mucronatus. Molecular and Biochemical Parasitology,2007, 155:9-17
    Kiyohara T, Tokushige Y. Inoculation experiments of a nematode, Bursaphelenchus sp., onto pine trees [J]. Journal of Japanese Forest Society.1971,53:210-218.
    Knowles C, Casida J. Mode of action of organophosphate anthelminthics:Cholinesterase inhibition in Ascaris lumbricoides [J]. Journal of Agricultural and Food Chemistry [J],1966,14:566-572.
    Kojima K, Kamijyo A, Masumori M, et al. Cellulase activities of pine-wood nematode isolates with different virulences [J]. J. Jpn. For. Foc.,1994,76(3):258-262.
    Kuroda K, S Ito. Migration speed of pine wood nematodes and activities of other microbes during the development of pine-wilt disease in Pinus thunbergi [J]. J. Jpn. For. Soc.,1992,74(5):383-389.
    Kuroda K. Mechanism of pine wilt following infection ofBursaphelenchus xylophilus [J]. Plant Protection,1990,44(12):539-542.
    Kuroda K. Terpenoids causing tracheid-cavitation in Pinus thunbergii infected by the pine wood nematode(Bursaphelenchus xylophilus) [J]. Ann. Phytophath. Soc. Japan,1989,55(2):170-178.
    Laffaire J B, Jaubert S, Abad P, et al. Molecular cloning and life stage expression pattern of a new acetylcholinesterase gene from the plant-parasitic nematode Meloidogyne incognita [J]. Nematology,2003,5(2):213-217
    Lee D. Why do some nematode parasites of the alimentary tract secrete acetylcholinesterase? [J]. International Journal for Parasitology,1996,26:499-508
    Lee R, Hodsden M. Cholinesterase activity in Haemonchus contortus and its inhibition by organophosphorus anthelmintics [J]. Biochemical Pharmacology,1963,12:1241-1252.
    Li H. Identification and pathogenicity of Bursaphelenchus species (Nematoda:Parasitaphelenchidae) [D]. Ghent, Belgium:Ghent University,2008
    Ma Y. Gao H. The discovery of Bursaphelenchus xylophilus in timbers from Taiwan on Tianjin Port [J]. Pant Quarantine Shanghai,1997,11:41.
    Mohamed A, Mark S, John T, et al. Characterisation of the cellulose-binding protein Mj-cbp-1 of the root knot nematode, Meloidogyne javanica [J]. Physiological and Molecular Plant Pathology,2008, 72:21-28
    Mota M, Braasch H, Bravo M, et al. First report of Bursaphelenchus xylophilus in Portugal and in Europe [J]. Nematology,1999,1:727-734.
    Myers R, Cambium destruction in conifers caused by pine wood nematode [J]. J. Nematol,1986,18(3): 398-402.
    Nishikura K. A short primer on RNAi:RNA-directed RNA polymerase acts as a key catalyst [J]. Cell, 2001,107(4):415-418
    Odani K, Sakaki S, Nishiyama Y et al. Early symptom development of the pine wilt disease by hydrolytic enzymes produced by the pinewood nematode-cellulase as a possible candidate of the pathogen J].J. Jpn. For. Soc.,1985,67(9):366-372.
    Oku H, Shiraishi T, Ouchi S. Pine wilt toxin, the metabolite of a bacterium associated with a nematode [J]. Naturwissenschaften,1980,67:198
    Oku H. Phytotoxins in pine (Pinus) wilt disease Bursaphelenchus xylophilus [J]. Nippon Nogeikagaku Kaishi,1990,64(7):1254-1257.
    Ordentilch A, Barak D, Kronman C. Dissection of the human acetylcholinesterase active center determinant of substrate specificity. J. Biol. Chem.1993,268(23):17083-17095.
    Ordentlich A., Barak, D., Kronman C, et al., Contribution of aromatic moieties of tyrosine 133 and of the anionic subsite tryptophan 86 to catalytic efficiency and allosteric modulation of acetylcholinesterase [J]. J. Biol. Chem.1995,270:2082-2091.
    Park J, Lee K, Lee S et al., The Efficiency of RNA Interference in Bursaphelenchus xylophilus [J].Mol.Cells 2008,26:81-86
    Piotte C, Arthaud L, Abad P, et al. Molecular cloning of an acetylcholinesterase gene from the plant parasitic nematodes, Meloidogyne incognita and Meloidogyne javanica [J]. Molecular and Biochemical Parasitology,1999,99(2):247-256
    Radic Z, Pickering N, Vellom D, et al., Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors [J]. Biochem.1993,32:12074-12084.
    Rees T, Hammond P, Soreq H, et al., Acetylcholinesterase promotes beta-amyloid plaques in cerebral cortex [J]. Neurobiol Aging,2003,24 (6):777-787.
    Rosso M, Dubrana M, Cimbolini N, et al., Application of RNA interference to root-knot nematode genes encoding esophageal gland proteins. Mol. Plant Microbe Interact.2005,18:615-620.
    Russo M, Favery B, Piotte C. et al. Isolation of a cDNA encoding a beta-1,4-en-doglucanase in the root-knot nematode and expression analysis during plant parasitism [J]. Molecular Plant-Microbe Interaction,1999,12:585-591
    Saleh M. van Rij R, Hekele A, et al. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing [J]. Nature Cell Biol.,2006,8(8):793.
    Shafferman A, Kronman C, Flashner Y, et al., Mutagenesis of human acetylcholinesterase identification of residues involved in catalytic activity and in polypeptide folding [J]. Journal of biological chemistry.1992,267,25:17640-17648
    Sontheimer E. Assembly and function of RNA silencing complex [J]. Nature Rev. Mol, Cell Bio.,2005, 6(2):127-138
    Steiner G, Buhrer E M. Aphelenchoides xylophilus, n. sp. a nematode associated with blue-stain and other fungi in timber [J]. Journal Agriculture Research,1934,48:949-951.
    Sussman J L, Harel M, Frolow F, et al., Atomic structure of acetylcholinesterase from Torpedo californica:a prototypic acetylcholine-binding protein [J]. Science,1991,253:872-879
    Tabara H, Grishok A and Mello C. RNAi in C.eleans:soaking in the genome sequence [J]. Science, 1998,282:430-431.
    Tares S, Abad P, Bruguie N, et al. Identification and evidence of relationship among geographical isolates of Bursaphelenchus spp. (pinewood nematode) using homologous DNA probes [J]. Heredity.1992,68:157-164.
    Taylor T, Radie Z, The cholinesterases:from genes to proteins [J]. Annu. Rev. Pharmacol. Toxicol., 1994,34:281-320.
    Tijisterman M, May R, Simmer F, et al. Genes required for systemic RNA interference in C. elegans [J]. Curr. Biol.,2004,14:111-116
    Timmons L, and Fire A Z. Specific interference by ingested dsRNA [J]. Nature,1998,385:854.
    Urwin P, Lilley C, Atkinson H. Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference [J]. Molecular Plant-Microbe Interaction.2002,15:747-752.
    Vastenhouw N, Brunschwig K, Okihara K, et al. Long-term gene silencing by RNAi [J] Nature,2006, 442 (7105):882.
    Webster J, Anderson R, Baillie D, et.al. DNA probes of differentiating isolates of the pinewood nematode species complex [J]. Revue de Nematoloie,1990,13:255-263
    Winston W, Molodowitch C and Hunter C P. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1[J]. Science,2002,295(5564):2456-2559
    Yin K, Fang Y, Tarjan A C. A key to species in the genus Bursaphelenchus with a description of Bursaphelenchus hunanensis sp.n. (Nematoda. Aphelenchoididae) found in pine wood in Hunan province [J], China. Proc. Helminthol. Soc. Wash,1988,55(1):1-11.
    Zeng W L, Alarcon C M, Donelson J E. Many transcribed regions of the Onchocerca volvulus genome contain the spliced leader sequence of Caenorhabditis elegans [J]. Molecular and Cellular Biology, 1990,10(6):2765-2773
    Zhang X J, Yang L, Zhao Q, et al. Induction of acetylcholinesterase expression during apoptosis in various cell types [J]. Cell Death and Differentiation,2002,9:790-800
    Zhuang Y, Briminioin S, Tang X. Apoptosis induced by beta-amyloid 25-35 in acetylcholinesterase overexpressing neuroblastoma cells[J]. Acta Pharmacol Sin,2003,24 (9):853-858

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700