牛源性重组金黄色葡萄球菌β-溶血素亚单位疫苗对金黄色葡萄球菌诱导的乳腺内感染小鼠的保护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验通过采用金葡菌Newbould305建立了小鼠泌乳期乳腺内感染的乳腺炎动物模型,并在此基础上探讨牛源性重组金葡菌β-溶血素(P-hemolysin,β-HL)亚单位疫苗对小鼠乳腺局部、整体的防御体系及炎症相关因子的影响,为乳腺炎的生物防治提供新思路。
     1.牛源性金葡菌攻击下小鼠泌乳期感染模型的建立
     选择48只未孕雌鼠随机分为6组(n=8),产后7-10d分别在小鼠的第四对乳腺内灌注经过毒力活化的细菌悬液5.0×10~2CFU/50μL (E1)、1.0×10~3CFU/50μL (E2)、5.0×10~3CFU/50μL (E3)、1.0×10~4CFU/50μL (E4)和1.0×10~5CFU/50μL (E5),对照组小鼠乳腺内注入同剂量的无菌的PBS,48h处死。观察小鼠乳腺组织中细菌数量、TNF-α、IL-2和IL-6含量的变化及乳腺组织形态学观察。结果表明实验组乳腺组织中分离到细菌数呈现先升高后下降的趋势,E3达到最高。组织形态学上对照组腺泡结构完整, E1组和E2组腺泡内主要以浆液性渗出为主,E3组腺泡壁增厚,腺泡腔内嗜中性粒细胞(PMN)增多,随着剂量的增大E4和E5组腺泡壁破裂,甚至个别样品出现坏死灶。与对照组相比,E3组小鼠乳腺组织中TNF-α、IL-2和IL-6含量极显著升高(P<0.01),整体来看呈先升高后下降的趋势。由结果可知5.0×10~3CFU/50μl(E3)剂量下的金葡菌攻击下的小鼠乳腺炎性反应与炎症的免疫病理过程一致,故选择此剂量作为小鼠乳腺内感染的病理模型的造模剂量。
     2.重组金葡菌p-溶血素亚单位疫苗对小鼠金葡菌性乳腺炎的保护效果研究
     48只雌鼠随机分成对照组、造模组、pET-32a(+)质粒蛋白免疫不攻毒组、pET-32a(+)质粒蛋白免疫攻毒组、β-HL免疫不攻毒组、β-HL免疫攻毒组(n=8),用Ni-NTA Agarose纯化目的蛋白,Bradfrod法对目的蛋白进行蛋白含量测定,无菌将蛋白制作成疫苗免疫小鼠。产后7-10天分别在小鼠的第四对乳腺内灌注经过毒力活化的细菌悬液5.0×10~3CFU/50μL,用ELISA方法测定抗体效价,并分离攻毒后小鼠乳腺中细菌、观察乳腺匀浆中细胞因子的含量变化及通过琼脂糖免疫双向扩散试验观察pET-32a(+)载体对金葡菌重组β-溶血素的影响。结果表明纯化的β-HL和pET-32a (+)质粒蛋白分别在57kD和20.5kD处显示单一条带,蛋白含量分别为950μg/ml和1.45mg/ml;β-HL重组蛋白和pET-32a(+)质粒蛋白免疫小鼠都能产生相应的抗体,随着免疫次数的增加,产生的相应抗体滴度也逐渐增加;pET-32a(+)免疫攻毒组和β-HL免疫攻毒组乳腺匀浆中的TNF-α和IL-2的含量与空白攻毒组相比有所变化,但差异不显著(P>0.05),之间不存在统计学意义,但与各自相应对照组之间存在统计学意义。而pET-32a(+)免疫攻毒组乳腺匀浆中的IL-6含量与空白攻毒组之间,二者存在统计学意义(P<0.05),而p-HL免疫攻毒组则变化不大;通过琼脂糖免疫双向扩散试验,抗重组β-HL抗体和抗pET-32a(+)载体蛋白的抗体都与金葡菌Newbould305超声波破碎液形成沉淀线。
     由结果可知纯化的目的蛋白达到电泳级纯度;蛋白疫苗作用机体能够产生较高的抗体水平;pET-32a(+)质粒蛋白可以增加β-HL蛋白的抗原性。总之,金葡菌重组β-溶血素亚单位疫苗对由金葡菌菌株Newbould305诱导的乳腺炎并不能减轻小鼠乳腺的炎症状态,但一定程度上能够减少小鼠乳腺内细菌的数量。
The mastitis model induced by Staphylococcus aureus (S.aureus) Newbould305 via the base of the mammary glands in mice was established successfully in this study. Therefore the protective effect of recombinant Staphylococcal Beta-hemolysin vaccine on immune defensive system and the inflammation-associated factors of mammary gland and systematic level by using this mastitis model were investigated. The result of this study provided a new for the biotherapy of mastitis.
     1. Establishment of lactation period mammary gland attacked by Staphylococcus aureus isolated from cows in mice
     48 mice were randomly divided into 6 groups(n=8),5.0×10~2CFU/50μL(E1)、1.0×10~3CFU/50μL(E2)、5.0×10~3CFU/50μL(E3).1.0×10~4CFU/50μL(E4) 1.0×10~5CFU/50μL(E5) and control group were inoculated into the base of the mammary glands 7-10 days after parturition. All the mice were sacrificed at 48h after infection. The content changes of mouse-interleukin 2(IL-2)、mouse-interleukin 6(IL-6)、mouse-tumor necrosis factor a(TNF-α)、histopathologic observations and the amount of bacteria from mammary glands of mice. Breast tissue in the experimental groups, the number of isolated bacteria showed a downward trend after the first rise, E3 highest. Histopathologic examination of mammary gland revealed that the acinar structural of the control group were present integrity. The El and E2 groups were present primarily within the acinus serous effusion-based, histopathologic examination of the E3 group showed that numbers of polymorphonuclear neutrophils (PMN) were increased and acinus wall thickening were thickend. As the dose increase, the acinus wall of the E4 and E5 groups ruptured, and even individual samples appeared necrotic foci. In comparison with the control group, TNF-α、IL-2 and IL-6 concentration of the mammary gland tissue of the E3 group were significantly (P< 0.01) higher and overall tend showed increased at the beginning,and then decreased. The results demonstrated that 5.0×10~3CFU/50μL (E3) under the attack of doses of the Staphylococcus aureus was the same as inflammatory response and immunopathology, so choose this dose as the mice with mammary gland infection in the pathological model of modeling dose.
     2. The Protective Effect of recombinant Staphylococcal Beta-hemolysin vaccine on Mice with experimental Mastitis Induced by Staphylococcus aureus Infection
     48 mice were randomly divided into blank control group and blank control challenged group and pET-32a (+) vaccinated without challenged group and pET-32a (+) vaccinated challenged group and P-HL vaccinated without challenged group andβ-HL vaccinated challenged group (n=8), Ni-NTA Agarose was used to purify purpose fusion protein and protein content were determined with Bradfrod method, then, the purpose protein purified were aseptically made into vaccine. All the mice of all the challenged groups were inoculated into the base of the mammary glands 7-10 days after parturition with 5.0×10~3CFU/50μL of bacterial suspension. The mammary glands were harvested and ground for calculating colony for units and viewing the content changes of the inflammation-associated factors of mammary gland. Agarose immune-double diffusion test was reviewed if pET-32a (+) has an impact against recombinant Staphylococcal Beta-hemolysin.The results showed that there were expected protein bands with molecular mass of 57kD (purifiedβ-HL) and 20.5kD (purified pET-32a (+) in SDS-PAGE, and the concentration were 950μg/ml and 1.45mg/ml in differences. The blood sera of all vaccinated mice were detected specific antibodies. Moreover, the antibody titers were present to step up with increased number of times of vaccination. The concentrations of mouse-tumor necrosis factor a(TNF-α) and mouse-interleukin 2(IL-2) in mammary gland from pET-32a (+)vaccinated challenged group and P-HL vaccinated challenged group were a degree to change for comparison with the blank control challenged group (P> 0.05), however, in comparison with corresponding to control groups, there were present in statistical significance (P< 0.05). However, The content of mouse-interleukin 6(IL-6) fromβ-HL vaccinated challenged group were only present in statistical significance (P< 0.05) for comparison with the blank control challenged group. Agarose immune-double diffusion test revealed that the holes of theantibody of purifiedβ-HL fusion protein and the antibody of purified pET-2a (+) carrier protein emerge sediment lines with that of disintegration suspension of Staphylococcus aureus (S.aureus) Newbould305.
     Based on these results, we investigated that the purified fusion proteins had good fineness and injected vaccine to mice can produce a higher antibody titer and the pET-32a (+) carrier can increase the antigenicity of the purifiedβ-HL fusion protein. In conclusion, the preventive efficacy of the recombinantβ-HL vaccine against infection in lactating mice inoculated with Staphylococcus aureus (S.aureus) Newbould305 couldn't lessen inflammation symptom of mice, however, which could decrease degreely bacterial numbers in mammary gland.
引文
[1]Schwerin M.The bovine lactoferrin gene (LTF) maps to chromosome 22 and syntenic group U12 [J].Mammalian Genome 1994,5,486-489.
    [2]方振华,高腾云,丁利.奶牛乳腺炎的研究进展[J].上海畜牧兽医通讯,2007,2:13.
    [3]李宏胜.我国部分地区个体奶牛场乳房炎流行病学调查[D].甘肃农业大学硕士论文,2004,1-50.
    [4]储明星,石万海,邝霞等.浅谈奶牛乳房炎[J].中国奶牛,2001,3:39-40.
    [5]蒋启荣.奶牛乳腺炎疫苗的病因及综合防治措施[J].广东畜牧兽医科技,2003,02:49-50.
    [6]Harmon R.Symposium:mastitis and genetic evalution for somatic cell count [J]. J Dairy Sci,1994,77:2103-2122.
    [7]Nagle K B, et al.Etiology of Bovine Mastitis in and around Palampur in Himachal Pradesh[J].Indian Journal of Animal Science,1999,69(3):150-152.
    [8]刘纯传,陈初茂,霍杏桃等.乳炎清治疗奶牛临床型乳腺炎疗效舰察[J].中国兽医科技,1997,27(2):35-38.
    [9]叶秀娟,杜爱芳,胡松华.金华地区奶牛乳房炎病原茵的分离鉴定及药敏试验[J].黑龙江畜牧兽医,2004,(8):41.
    [10]肖传斌,张玲,程会昌.动物解剖学与组织胚胎学,[M].中国科技技术出版社,2001,58-59.
    [11]Bishop J G, Schanbanbacher F L, Ferguson L C, et al. In vitro growth inhibition of mastitis causing coliform bacteria by bovine apo-lactoferrin and reversal of inhibition by citrate and high concentration of apo-lactoferrin. Infect Immune,1976,14(4):911-918.
    [12]Outterdge P M, Lee C S.The defense menchanisms of the mammary gland of domestic ruminants.Prog Vet Microbiol Immun,1988,4:165-196.
    [13]Persson K, Larson I, Hallen Sandgren C, et al. Effects of certain inflammatory mediators on bovine neutrphil migration in vivo and vitro [J]. Vet Immunol Immunopathol,1993,37 (2):99-112.
    [14]Musoke A J. The ruminant immune system in health and disease [M]. Cambridge Univ Press,393. mucosa-associated tissues[J]. J Immunol,1999,162:821.
    [15]Sordillo L M, Nickerson S C, Akers R M, et al. Secretion composition during bovine mammary involution and the relationship with mastitis. Int J Biocchem,1987,19(12):1165-1172.
    [16]Guiguen F, Greenland T, Pordo E, et al. Flow cytometric analysis of goat milk lymphocytes subpopulations and adhesion molecule expression. Vet Immunol Immunopathol,1996,53(1-2):173-178.
    [17]Leitner, G, Yadlin B, Glickman A, et al. Systemic and local immune response of cows to intramammary infection with staphylococcus aureus [J].Res. Vet.Sci.2000,69,181-184.
    [18]Sutra L, Poutrel B. Virulence factors involved in the pathogenesis of bovine intramammary infections due to Staphylococcus aureus. J Med Microbiol,1994,40(2):79-89.
    [19]Finch J, Hill A,et al. Local vaccination with killed Streptococcus uberis protects the bovine mammary gland against experimental intramammary challenge with the homologous strain [J].Infection and Immunity,1994,62(9):3599-3603.
    [20]Giraudo J, Calzolari A, et al. Field trials of a vaccine against bovine mastitis.1.Evaluation in heifers [J].J Dairy Sci,1997,80:845-853.
    [21]林锋强,潘杭君,胡松华.奶牛乳房炎疫苗研究进展[J].中国奶牛,2002,(1):40-42.
    [22]Gabriel L, Nathan Y, Evgenia L, et al. Development of a Staphylococcus aureus vaccine against mastitis in dairy cows. II. Field trial [J]. Veterinary Immunology and Immunopathology 2003, (93): 153-158.
    [23]李殷.葡萄球菌疫苗研制的进展与挑战[J].国外医学免疫学分册,2003,26(4):179-183.
    [24]Ruegg P. Evaluating the effectiveness of Mastitis Vaccines [M].2001.
    [25]Watson DL, McColl ML, Davies HI. Field trial of a staphylococcal mastitis vaccine in dairy: clinical, subclincal and microbiolical assessments [J].Aust Vet,1996,74(6):447-450.
    [26]Park H M, Yoo H S, et al. Immunogenicity of alpha-toxin, capsular polysaccharide (CPS) and recombinant fibronectin-binding protein (r-FnBP) of Staphylococcus aureus in rabbit [J]. J Vet Med Sci, 1999,61(9):995-1000.
    [27]Byoung Sun Chang, Jin San Moon,et al.Protective effects of recombinant staphylococcal enterotoxin type C mutant vaccine against experimental bovine infection by a strain of staphylococcus aureus isolated from subclinical mastitis in dairy cattle [J]. Vaccine,2008,26,2081-2091.
    [28]罗金印,郁杰,等.奶牛乳房炎多联苗(B)的临床免疫试验[J].中兽医医药杂志,2003,4,16-18.
    [29]林树乾.奶牛金葡菌性乳腺炎新型疫苗的研制[D].山东农业大学硕士论文,2006.
    [30]Brouillette B,Lacasse P,Shkreta L et al.DNA immunization against the clumping factor A(ClfA) of Staphylococcus aureus[J].Vaccine,2002,20(17-18):2348.
    [31]Shkreta L, Talbot BG, et al.Immune responses to a DNA/protein vaccination strategy against Staphylococcus aureus induced mastitis in dairy cows [J]. Vaccine,2004,23(1):114-126.
    [32]Carter E W, Kerr D E. Optimization of DNA-based vaccination in cows using green fluorescent protein and protein a as a prelude to immunization against Staphylococcal Mastitis [J] J.Dairy Sci.2003, 86:1177-1186.
    [33]Nour E A, Shkreta L, et al. DNA immunization of dairy cows with the clumping factor A of Staphylococcus aureus [J]. Vaccine,2005,24(12):1997-2006.
    [34]Perez-Casal J, Prysliak T, et al.Immune responses to a Staphylococcus aureus GapC/B chimera and its potential use as a component of a vaccine for S.aureus mastitis [J]. Vet Immunol Immunopathol, 2006,109(1-2):85-97.
    [35]陆承平.兽医微生物学[M].中国农业出版社,2006,200-204.
    [36]Renee Riffon, Khampoune Sayasith, et al.Development of a rapid and sensitive test for identification of major pathogens in bovine mastitis by PCR [J]. Journal of Clinical Microbiology,2001, 39:2584-2589.
    [37]Tollersrud T, Zernichow L, Rune S. Staphylococcus aureus capsular polysaccharide type 5 conjugate and whole cell vaccines stimulate antibody responses in cattle Vaccine,2001,19:3896-3900.
    [38]陈怀青.金葡菌的粘附素[J].中国人兽共患病杂志,1996,12(6):43-44.
    [39]Westerlund B, Korhonen TK. Bacterial proteins binding to the mammalian extracellular matrix [J]. Mol Microbiol,1993,9:87-94.
    [40]Dickinson RB, Nagel JA, McDevitt D. Quantitative comparison of clumping factor-and coagulase-mediated Staphylococcus aureus adhesion to surfacebound fibrinogen under flow[J]. Infect Immun,1995 63:3143-50.
    [41]Bhakdi S, Tranum-Jensen J. Alpha-toxin of Staphylococcus awreus[J].Microbiologyical Reviews, 1991,55:733-751.
    [42]Glenny AT, Tevens N F.Staphylococcal toxins and antitoxins [J]. Ahol Bacteriol,1935,40:201-210.
    [43]Aarestrup F M, Larsen H D, Eriksen N H, et al. Frequency of alpha-and beta-haemolysin in staphylococcus aureus of bovine and human origin. A comparison between pheno-and genotype and variation in phenotypic expression [J]. APMIS,1999,107:425-430.
    [44]Eleck S D, Levy E. Distribution of haemolysins in pathogenic and non-pathogenic Staphylococci [J]. Pathol Bact,1950,62,541-554.
    [45]Martin M, Dinges, Paul M.Orwin, Patridk M.Schlievert.Exotoxins of Staphylococcus aureus. [J]American Soiety for Microbiology reus,2000,13 (1):16-34.
    [46]Freer J H, Arbuthnott J P.Toxins of Staphylococcus aureus.Pharmacol Ther,1983,19:55-106.
    [47]Haque R, Baldwin J N. Purification and properties of staphylococcal beta-hemolysin. Ⅰ.Prodution of beta-hemolysin. [J]Bacteriol,1964,88:1304-1309.
    [48]Wiseman G M.Microbial toxins,a comprehensive treatise[M].New york Academic Press Inc,1970.
    [49]Maheswaran S K, Lindorfer R K.Physicochemical and biological properties of purifed staphylococcal beta hemolysin. [J]Bacteriol Proc,1971:80
    [50]Chesbro W R, Kucic V. Beta hemolysin:apersistent impurity in preparations of staphylococcal nuclease and enterotoxin [J].Appl Microbiol.1971,22:233-241.
    [51]Robinson J, Thatcher F S, and Gagnon J.Studies with staphylococcal toxins.Ⅳ.The purification and metallic requirements of specific hemolysins [J].Can J Microbiol.1958,4:345-361.
    [52]Coleman D C, Arbuthnott J P, Pomeroy H M,et al.Cloning and expression in Escherichia coli and Staphylococcus aureus of the beta-lysin determinant from Staphylococcus aureus:evidence that bacteriophage conversion of beta-lysin activity is caused by insertional inactivation of the beta-lysin determinant[J]. Microb Pathog,1986,1:549-564.
    [53]Projan S J, Kornblum J, Kreiswirth B, et al.Nucleotide sequence:the β-hemolysin gene of Staphylococcus aureus [J].Nucleic Acids Res,1989,17:3305.
    [54]杨钦,王长法,杨宏军等.奶牛乳腺炎源性金葡菌山东分离株β-溶血素基因的克隆及原核表达[J].中国兽医学报,2009,29(5):572-575.
    [55]Maheswaran S.K,Smith K.L,Robert,.Lindorfer K.Staphylococcal β-hemolysin. Ⅰ.Purification of P-hemolysin[J].Bacteriol,1967,94(2):300-305.
    [56]Haque R and Baldwin J.N. Purification and properties of staphylococcal beta hemolysin II. Purification of beta hemolysin [J]. Bact,1969,100,751-759.
    [57]Gow J A and Robinson J. Properties of purified staphylococcal β hemolysin. Bact,1969,97, 1026-1032.
    [58]Wadstrom T and Mollby R.Studies on extracellular proteins from Staphylococcus aureus IV. Production and purification of β haemolysin in large scale. Biochin Biophys,1971,242,288-307.
    [59]Herbelin C, Poutrel B. Purification of the Staphlococcus aureus β-haemolysin by a simple efficient method [J]. Journal of microbiological methods,1995,21,163-171.
    [60]Doery H M, Magnusson B J, Cheney I M, et al. A phospholipase in staphylococcal toxin which hydrolyzes sphingomyelin [J].Nature,1963,198:1091-1092.
    [61]Doery H M,Magnuson B J,Galasekharam J,et al.The properties of phospholipase enzymes in staphylococcal toxins[J].Gen Microbiol,1965,40:283-296.
    [62]Maheswaran S K, Robert K, Lindorfer. Staphylococcal P-Hemolysin II.Phospholipase C Activity of Purified P-Hemolysin[J].Bacteriol,1967,94(5):1313-1319.
    [63]Bramley A J,Patel A H,O'Reilly M,et al.Roles of alpha-toxin and beta-toxin in virulence of Staphylococcus aureus for the mouse mammary gland[J].Infect Immun.1989,57(8):2489-2494.
    [64]Zavizion B, Bramley A J, Politis I.Effects of Staphylococcus aureus products on growth and function of bovine mammary myoepithelial cells in vitro[J]J Dairy Res.1995,62(4):577-586.
    [65]Cifrian E,Guidry A J,Bramley A J,et al.Effect of staphylococcal beta toxin on the cytotoxicity,proliferation and adherence of Staphylococcus aureus to bovine mammary epithelial cells[J].Vet Microbiol.1996,48(3-4):187-189.
    [66]Cenci-Goga B T,Karama M,Rossitto P V,et al.Enterotoxin production by Staphylococcus aureus isolated from mastitic cows[J].J Food Prot,2003,66(9):1308-1311.
    [67]Wilkinson P C.Inhibition of leukocyte locomotion and chemotaxis by lipid-specific bacterial toxins [J].Nature.1975,255:485-491.
    [68]Russell R J,Wilkinson P C,Mclnroy R J,et al.Effects of staphylococcal products on locomotion and chemotaxis of human blood neutrophils and monocytes[J].Med Microbiol.1975,8:433-449.
    [69]Wadstrom T, R Mollby.Some biological properties of purified staphylococcal hemolysins [J].Toxicon,1972,10:511-519.
    [70]Thelestam M, Wadstron T.Effects of staphylococcal alpha-, beta-,delta-,and gamma-hemolysins on human diploid fibroblasts and Hela cells:evalution of a nes quantitative assay for measuring cell damage[J].Infect Immun,1973,8:938-946.
    [71]Gladstoe, Yoshida.The cytopathic action of purified staphylococcal delta hemolysin [J].Br J Exp Pathol,1967,48:11-19.
    [72]Hallander H O,S Bengtsson.Studies on the cell toxincity and species specificity of purified staphylococcal toxins. [J]Acta Pathol Microbilot Scand,1967,70:107-119.
    [73]Wiseman G M.Factors affecting the sensitization of sheep erythrocytes to staphylococcal beta lysine [J].Can J Microbiol.1965,11:463-471.
    [74]Bernheimer A W. Interactions between membranes and cytolutic bacterial toxins [J].Biophys Acta, 1970,344:27-50.
    [75]Meduski, Hochstein.Hot-cold hemolysin:the role of positively charged membrane phospholipids [J]. Experientia,1972,15:565-566.
    [76]Low D K R, Freer J H.The purification of β-lysin (sphingomyelinase C) from Staphylococcus aureus[J].FEMS Lett,1977,2:139-143.
    [77]Smyth C J, Mollby R and Wadstrom T.Phenomenon of hot-cold hemolysis:chelator-induced lysis of sphingomyelinase-treated erythrocyte s [J].Infect Immun.1975,12(5):1104-1111.
    [78]Christie R, Atkins N E, and Munch-Petersen E. A note on a lytic phenomenon shown by group B streptococci [J]. JExp Mol Biol,1944,22:197-200.
    [79]Bernheimer A W, Linder R, and Avigad L S. Nature and mechanism of action of the CAMP protein of group B streptococci [J]. Infect Immun,1979,23(3):838-844.
    [80]Darling C L. Standardization and evaluation of the CAMP reaction for the prompt, presumptive identification of Streptococcus agalactiae (Lancefield group B) in clinical material [J] J Clin Microbiol, 1975,1(2):171-174.
    [81]Phillips E A, Tapsall J W, and Smith D D. Rapid tube CAMP test for identification of Streptococcus agalactiae (Lancefield group B) [J]. J Clin Microbiol,1980,12(2):135-137.
    [82]Brown J, Farnsworth R, Wannamaker L W, and Johnson D W. CAMP factor of group B Streptococci:production, assay, and neutralization by sera from immunized rabbits and experimentally infected Cows [J]. Infect Immun,1974,9(2):377-383.
    [83]Heydrick F P, Chesbro W R. Purification and properties of staphylococcal beta toxin [J]. Bacteriol Proc,1962:63.
    [84]Korem M, Gov Y, Shirron N,et al.Alcohol increases hemolysis by staphylococci [J].FEMS Microbiol Lett.2007,269 (1):153-159.
    [85]Gow J A, Robinson.J.Properties of purified staphylococcal beta hemolysin [J].Bacteriol,1969, 97:1026-1032.
    [86]Wiseman G M.Factors affecting the sensitization of sheep erythrocytes to staphylococcal beta lysine [J].Can J Microbiol.1965,11:463-471.
    [87]Haraldsson I, Jonsson P. Histopathology and pathogenesis of mouse mastitis induced with staphlocococus aureus mutants [J].Comp Path,1984,94:183-196.
    [88]Brouillette E, Grondin G, Shkreta L, et al. In vivo and in vitro demonstation that staphlocococus aureus is an intracellular pathogen in the presence or absence of fibronectin-binding proteins [J]. Microbial Pathogenesis,2003,35:159-168.
    [89]Leitner G, Krifucks O, et al. Staphylococcus aureus strains isolated from bovine mastitis:virulence, antibody production and protection from challenge in a mouse model [J].FEMS Immunology and Medical Microbiology,2003,35,99-106.
    [90]Chandler R L. Experimental bacterial mastitis in the mouse [J]. J Med Microbiol,1970, 3(2):273-282.
    [91]Chaffer M, Leitner G, Winkler M,et al. Coagulase negative Staphylococci and mammary gland infection in cows.Zentralbl Veterinarmed B,1999,46(10):707-712.
    [92]刘萍,赫满良,叶宝娜.金葡菌诱发小鼠实验性乳腺炎研究.河北农业大学学报.2008,31(2):96-100.
    [93]Rambeaud M, Almeida R A, Pighetti G M, Oliver S P. Dynamics of leukocytes and cytokines during experimentally induced Streptococcus uberis mastitis. Veterinary Immunology and Immunopathology,2003,96-204.
    [94]Biffl, W L, Moore E E, Moore F A. Interleukin-6 in the injured patient. Marker of injury or mediator of inflammation? Ann. Surg.1996; 224-647.
    [95]Aslam H, Zheng CL, Akiko K, Osamu K. Balance of Thl/Th2 cytokines associated with the preventive effect of Incomplete Freund's adjuvant on the development of adjuvant arthritis in LEW rats. J Autoimmun 2001; 17:289-295.
    [96]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein-dye binding [J]. Analytical Biochemistry,1976,72:248-254.
    [97]Bernheimer A W. Interactions between membranes and cytolutic bacterial toxins [J].Biophys Acta, 1970,344:27-50.
    [98]Wiseman G M.Factors affecting the sensitization of sheep erythrocytes to staphylococcal beta lysine [J].Can J Microbiol.1965,11:463-471.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700