转ICE1基因提高水稻抗寒性的生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以实验室获得的阳性转ICE1基因水稻再生植株的T2代植株为试验材料,利用分子生物学方法检测了外源基因ICE1在转基因水稻后代的遗传情况;利用离体叶片检测水稻植株潮霉素抗性,同时用PCR方法检测转基因水稻的HPT基因,比较两种检测结果的一致性,探讨了离体叶片法的可靠性和可行性。本试验研究了低温环境下外源基因ICE1对T2代植株抗氧化系统酶(SOD、CAT、POD、APX和GR)活性变化的影响,并利用蛋白双向电泳技术研究低温处理后非转基因和转基因水稻植株蛋白质组的变化情况,在蛋白质组水平上分析ICE1基因对转基因水稻植株的影响。本试验对转ICE1基因水稻T2代植株抗寒性的研究结论如下:
     1.本试验检测了转基因水稻T2代的15个株系,共439个单株。比对了三个生育时期中,HPT基因的PCR检测和离体叶片潮霉素检测结果的一致性。在水稻不同生育期两种检测方法的一致性有所不同,苗期和孕穗期符合率为分别为96.19%和94.94%,但乳熟期的符合率仅为75.11%。试验结果说明,利用离体叶片检测筛选标记基因在苗期和孕穗期具有可行性和可靠性。
     2.常温下,四周龄的非转基因和转基因水稻在表型上没有明显差异,低温(0℃)处理2d,非转基因水稻表现冷害症状,转基因水稻表型没有变化;低温处理10d,非转基因水稻叶片几乎全部发黄枯萎,转基因水稻叶片卷缩,但仍保持绿色。说明转ICE1基因水稻抗寒性高于非转基因水稻。
     低温处理前,非转基因和转基因水稻的抗氧化酶活性水平相似。0℃胁迫后,水稻抗氧化酶活性升高。非转基因水稻的SOD、CAT、APX和GR酶活性在低温处理0.5d达到最大值,随后开始下降,POD在2d达到最大值,随后下降。转基因水稻的SOD、CAT、APX和GR分别在低温处理2d、4d、4d和6d达到最大值。在酶活性水平上,除POD外转基因水稻植株要高于非转基因植株,在低温处理后期表现更为突出。说明转ICE1基因水稻抗氧胁迫能力高于非转基因水稻。
     3.以非转基因和转ICE1基因水稻为材料,提取0℃处理0d及2d的水稻总蛋白,利用蛋白双向电泳技术分析低温处理前后两种水稻蛋白质组的变化。本试验利用质谱鉴定了35个差异表达的蛋白。这些蛋白参与植株体内的多个生理过程,包括信号转导、蛋白翻译后修饰及加工、光合作用、氧化还原平衡等各种生理代谢。它们共同作用,使水稻在低温条件下建立了新的代谢平衡。转基因水稻的Rubisco大亚基的降解速率低于非转基因,烯醇化酶、新的低温响应蛋白(hypothetical protein OsJ_28200)等的含量高于非转基因水稻,这些试验结果暗示低温胁迫下转ICE1基因水稻的生理生化代谢水平优于非转基因植株。
In this research, the positive T2 generation of transfering ICE1 rice and the rice (Oryza sativa L. cv Kenjiandao No.10) were used as the materials. We used molecular biology methods to test the hereditable character of exogenous gene ICE1 in transgenic rice. By the methods of leaf in vitro and PCR the T2 transfer ICE1 rice which has hygromycin tolerance was sifted, and we discussed the feasibility and reliability of the method in vitro leaf due to the statistics of the test. In addition, this test researched the influence of low temperature conditions on the activity of antioxidant system (SOD, CAT, POD, APX, GR) of T2 generation transgenic ICE1 rice through the physiological and biochemical experiments. Then, we used the method of protein two-dimensional electrophoresis to study rice proteomics of T2 transgenic rice and non-transgenic rice which had been treated with low temperature, and analysised the effect of ICE1 upon the transgenic rice at the proteomics level. The experiment results of the study on the cold tolerance of T2 transgenic rice show as follows:
     1. 15 lines of T2 transgenic rice, a total of 439 plants were put to the test in the first experiment section. The results of PCR detection of HPT gene and leaves HPT tolerance test during three different stages of rice were compared. The consistency of two detection methods was different at different growth stages of rice. Seedling and booting stage were consistent with the rate of 94.94% and 96.19%, but the consistent was 75.11% in Milky stage. The test results showed that using the method of leaf in vitro detection in the seedling stage and booting stage possessed the feasibility and reliability.
     2. In the normal condition, there is no significant phenotype difference in the four-week age non-transgenic and transgenic rice. The performance of non-transgenic rice treated 2d with cold showed the chilling injury symptomslow; the phenotype of transgenic rice did not chang, simultaneously. Low-temperature treated 10d, non-genetically modified rice leaves wilted and almost became entirely yellow; in the meantime, the leaves of transgenic rice crimpled, but still green. The experiment result demonstrated that the cold tolerance of the transgenic ICE1 rice was higher than non-transgenic rice.
     The level of activity of antioxidant enzymes of non-transgenic and transgenic rice was similar before low-temperature treated. The activity of antioxidant enzymes of rice plants raised with low temperature stress. SOD, CAT, APX and GR activity of non-transgenic rice went up to the maximum in 0.5d and then began to decline during the low temperature condition; the activity of POD reached the maximum in 2d and then declined. The activity of SOD, CAT, APX and GR of the transgenic rice reached the maximumin in the low-temperature treated 2d, 4d, 4d and 6d, respectively. The level of antioxidant enzymes activity of the transgenic rice plants was higher than non-transgenic plants, except POD, especially in the latter of the low temperature treated. The results above all implied that the antioxidant ability of the transgenic ICE1 rice was stronger than non-transgenic rice.
     3. Non-transgenic and transgenic rice ICE1 were used as the materials. We analyzed the variation of the rice proteomics after low temperature(0℃) treated 0d and 2d through the technology of two-dimensional gel electrophoresis. In this study, using mass spectrometry identified 35 proteins which differentially expressed. These proteins involved in the plant physiological processes in vivo, including signal transduction, protein post-translational modification and processing, photosynthesis, redox metabolism in various physiological balance. Their common role in the low-temperature(0℃) condition was to establish a new metabolic balance. The degradation rate of Rubisco large subunit of Transgenic rice was lower than non-genetically modified; the content of enolase, the new low-temperature response protein (hypothetical protein OsJ_28200) was higher than non-genetically modified rice. The results of these experiments suggested that physiological and biochemical metabolism of transgenic plants was higher than non-transgenic plants under low temperature stress.
引文
[1] Boyer S. Plant productivity and environment[J]. Science, 1982, 443~448
    [2] Cook D, Fowler S, Fiehn O, Thomashow M F. A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis[J]. Proc. Natl. Acad. Sci. USA, 2004, 101(42): 15243~15248
    [3] Chinnusamy V. Gene regulation during cold acclimation in plants[J]. Physiol. Plant., 2006, 126: 52~61
    [4] Vergnolle C. The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions[J]. Plant Physiol., 2005, 139: 1217~1233
    [5] Komatsu S. Over-expression of calcium-dependent protein kinase 13 and calreticulin interacting protein 1 confers cold tolerance on rice plants[J]. Mol. Genet. Genomics., 2007, 227: 713~723
    [6] William A. Structure and regulation of voltage-gated Ca2+ channels[J]. Annual review of cell and developmental biology, 2000, 16: 521~555
    [7] HoláD, LangrováK, Ko ováM, et al. Photosynthetic Parameters of Maize (Zea mays L.) Inbred Lines and F1 Hybrids: Their Different Response to, and Recovery from Rapid or Gradual Onset of Low-temperature Stress[J]. Photosynthetica, 2003, 41(3): 429~442
    [8]黄宗会,李明启.钙信使在植物适应非生物逆境中的作用[J].植物生理学通讯, 2001, 37(4): 330~335
    [9]吴耀荣,谢旗. ABA与植物胁迫抗性[J].植物学通报, 2006, 23(5): 511~518
    [10] Mie Kasuga, Setsuko Miura, Kazuo Shinozaki, et al. A Combination of the Arabidopsis DREB1A Gene and Stress-Inducible rd29A Promoter Improved Drought- and Low-Temperature Stress Tolerance in Tobacco by Gene Transfer[J]. Plant and Cell Physiology, 2004, 45(3): 346~350
    [11]简令成.植物抗寒机理研究的新进展[J].植物学通报, 1992, 9(3): 17~22
    [12]范妙华,李纪元,范正琪.植物脂肪酸脱饱和酶特性及转基因研究进展[J].生物技术通报, 2007, 6: 16~20
    [13]彭昌操,张光华.生物膜与植物抗性关系的研究进展[J].湖北民族学院学报, 1998, 16(6): 5~10
    [14] Wendy Craig, Paolo Lenzi, Nunzia Scotti, et al. Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance[J]. Transgenic Res., 2008, 17: 769~782
    [15] Murata N, Ishizaki-Nishizawa O, Higashi S, et al. Genetical yengineered alteration in the chilling sensitivity of plants[J]. Nature, 1992, 710~7113
    [16] Tang S Y, Huang J, Zhang H S, et al. Molecular cloning and expression analysis of an oleate desaturase gene DsFAD6 from Descurainia Sophia[J]. Mol Plant Breed China, 2007, 5: 1~6
    [17] Sanyuan Tang, Rongzhan Guan, Hongsheng Zhang, et al. Cloning and expression analysisof three cDNAs encoding omega-3 fatty acid desaturases from Descurainia Sophia[J]. Biotechnol Lett, 2007, 29: 1417~1424.
    [18]张岩.水稻低温生理及抗冷性的研究[D].延边大学, 2007
    [19]简令成.低温对番茄幼苗叶绿体结构的影响[J].植物学通报, 1983, 1: 17~23
    [20] Silva J M, Arrabaca M C. Contributions of soluble carbohydrates to the osmotic adjustment in the C4 grass Setaria sphacelata: a comparison between rapidly and slowly imposed water stress[J]. Plant Physiol., 2004, 161: 551~555
    [21]黄锦文,梁义元,林文雄.超级稻籽粒灌浆特性及其生理生化基础[J].福建农业学报, 2002, 17(3): 143~147
    [22]王毅,杨宏福,李树德.园艺植物冷害和抗冷性的研究[J].园艺学报, 1994, 21(3): 239~244
    [23]万清林,刘鸣远.芸香抗寒生理的初步研究[J].植物研究, 1997, 17(2): 190~194
    [24]代玉华,刘训言,孟庆伟,等.低温胁迫对类囊体膜脂代谢的影响[J].植物学通报, 2004, 21(4): 506~511
    [25] Worrall D, Elias L, Ashford D, et al. A carrot leucine-rich-repeat protein that inhibits ice recrystallization[J]. Science, 1998, 282(2): 115~117
    [26]汤章城.逆境条件下植物脯氨酸的累积及其可能的意义[J].植物生理学通讯, 1984, (1): 15~21
    [27]黄文功,殷奎德,高中超.植物抗冻基因工程研究进展[J].生物技术通报, 2006, 2: 1~4
    [28]陈翠莲,马平福.抗冷性不同的小麦、水稻品种脯氨酸含量的比较试验[J].华中农业大学学报, 1989, 8(2): 23~25
    [29] Nancy Roosens, Fawaz Bitar, Kristof Loenders, et al. Overexpression of ornithine-δ- aminotransferase increases praline biosynthesis and confers osmotolerance in transgenic plants[J]. Molecular Breeding, 2002, 9: 73~80
    [30] C-Y He, J-S Zhang, S-Y Chen. A soybean gene encoding a proline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses[J]. Theor Appl Genet, 2002, 104: 1125~1131
    [31] Kochetov A, Titov S, Kolodyazhnaya Y, et al. Tobacco transformants bearing antisense suppressor of proline dehydrogenase gene, are characterized by higher proline content and cytoplasm osmotic pressure[J]. Russian Journal of Genetics, 2004, 2: 216~218
    [32] Parvanova D, Popova A, Zahariev I, et al. Low temperature tolerance of tobacco plants transformed to accumulate proline, fructans or glycine betaine. variable chlorophyll fluorescence evidence[J]. Photosynthetica, 2004, 42(2): 179~185
    [33] Deirdre Gleeson, Marie-Anne Lelu-Walter, Michael Parkinson. Overproduction of proline in transgenic hybrid larch(Larix x leptoeuropaea (Dengler) cultures renders them tolerant to cold, salt and frost[J]. Molecular Breeding, 2005, 15: 21~29
    [34] Mittler R. Oxidative stress,antioxidants and stress tolerance[J]. Trends in plant science, 2002, 7: 405~410
    [35]杜秀敏,殷文漩,赵颜修,等.植物中活性氧的产生及清除机制[J].生物工程学报, 2001, 17(2): 121~125
    [36] Luxford C, Dean T, Davies J. Induction of DNA damage by oxidized amino acids and proteins[J]. Biogerontology, 2002, 3: 95~102
    [37] Joo B H.,Bae Y S. and Lee J S. Role of auxin-induced reactive oxygen species in root gravitropism[J]. Plant Physiol, 2001, 126: 1055~1060
    [38] Mullineaux M, Karpinski S. Signal transduction in response to excess light:getting out of the chloroplast[J]. Curr Opin Plant Biol, 2002, 5: 43~48
    [39] Vranova E, Inze D, Breusegem V. Signal transduction during oxidative stress[J]. J Exp Bot, 2002, 53: 1227~1236
    [40] Foyer H, Noctor G. Redox sensing and signaling associated with reactive oxygen in chloroplast, peroxisomes and mitochondria[J]. Physiol Plant, 2003, 119: 355~264
    [41] Wolff P. Free radicals,lipids and protein degradation[J]. Trends Biochem.Sci., 1986, (11): 27~31
    [42] Bowler C, Montagu M, Inze D. Superoxide dismutase and stress tolerance[J]. Annual Review of Plant Physiol and Plant Mol Bio. 1992, 43: 83~116
    [43] Zunsheng Wang, Zhuojing He, Qiong Shen, et al. Purification and partial characterization of recombinant Cu, Zn containing superoxide dismutase of Cordyceps militaris in E. coli. [J]. Journal of Chromatography B, 2005, 826: 114~121
    [44]马旭俊,朱大海.植物超氧化物歧化酶的研究进展[J].遗传, 2003, 25(2): 225~231
    [45] Mcord M, Fridovich I. Superoxide dismutase: an enzyme function for erythrocuprein (hemocuprein)[J]. Journal of Biological Chemistry, 1969, 244: 6049~6055
    [46] Brisson F, Zelitch I, Havir A. Manipulation of catalase levels produces altered photosynthesis in transgenic tobacco plants[J]. Plant Physiology, 1998, (116): 259~269
    [47]梁艳荣,胡晓红,张颖力,等.植物过氧化物酶生理功能研究进展[J].内蒙古农业大学学报, 2001, 24(1): 110~113
    [48]田国忠,李怀方,龚维蕾.植物过氧化酶研究进展[J].武汉植物学研究, 2001, 19(4): 55~57
    [49] Lee D H, Lee C B. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays[J]. Plant Seience, 2000, 159(l): 75~85
    [50]遂明辉,宋慧,李晓明,等.冷害过程中黄瓜叶片SOD、CAT和POD活性的变化[J].西北植物学报, 2005, 5(8): 1570~1573
    [51] Viswanathan Chinnusamy. Cold stress regulation of gene expression in plants[J]. TRENDS in Plant Science 2007, 12(10): 444~451
    [52]曾韶西,王以柔,李美茹.不同胁迫预处理提高水稻幼苗抗寒性期间蛋白质的变化[J].植物学报, 1997, 39(2): 130~136
    [53]郑东虎,葛晓光,张宪政,等.冷胁迫对番茄膜脂过氧化与抗氧化酶系统的影响[J].北方园艺, 2003, (4): 46~47
    [54]郭丽红,王德斌,王定康,等.热激对冷胁迫下玉米幼苗质膜透性和抗氧化酶活性的影响[J].西南农业学报, 2008, (21): 48~51
    [55] Bowler C, Slooten L, Vandenbrande S. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants[J]. EMBO, 1991, 10(7): 1723~1732
    [56] Breusegem F V, Slooten L, Stassart M, et al. Effects of overproduction of tobacco MnSOD in maize chloroplasts on foliar tolerance to cold and oxidation stress[J]. J Exp Bot, 1999, 50(332): 71~78
    [57] Miyagawa T, Tamoi M, Shigeoka S, Evaluation of the defense system in chloroplasts to photo-oxidative stress caused by paraquat using transgenic tobacco plants expressing catalase from Escherichia coli[J], Plant Cell Physiol, 2000, 41(3): 311~320
    [58] Polidoros N, Mylona V, Scandalios G. Transgenic tobacco plants expressing the maize CAT2 gene have altered catalase levels that affect plant-pathogen interactions and resistance to oxidative stress, 2001(10): 555~569
    [59] Mohamed A, Iwaki T, Munir I, et al, Overexpression of bacterial catalase in tomato leaf chloroplasts enhances photo-oxidative stress tolerance[J]. Plant Cell and Environment, 2003(26): 2037~2046
    [60] Nedelcu A, Miles I, Fagir A, et al. Adaptive eukaryote-to-eukaryote lateral gene transfer: stress-related genes of algal origin in the closest unicellular relatives of animals[J]. Journal of Evolutionary Biology, 2008, 21(6): 1852~1860
    [61] Halliwell B, Foyer C. Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography[J]. Plant Cell and Environment, 2003(26): 2037~2046
    [62] Nakano Y, Asada K. Hydrogen peroxide is scavenged byascorbate specific peroxidase in spinach chloroplasts [J]. Plant Cell Physio1, 1981, 22: 867~880
    [63]李惠华,赖钟雄.植物抗坏血酸过氧化物酶研究进展[J].亚热带植物科学研究, 2006, 35(2): 66~69
    [64] Alscher G. Biosynthesis and antioxidant function of glutamylcysteine synthetase in tomato cells selected for glutathione in plants[J]. Physiol Plant, 1989, 77: 457~464
    [65] Bowler C, Van Montagu M, InzéD. Superoxide dismutase stress tolerance[J]. Annual Review of Plant Physiol and Plant Mol Bio, 1992, 43: 83~116
    [66] Foyer CH, Lehandais M, Kunert KT. Photooxidative stress in plant[J]. Physiol Plant, 1994, 92: 696~717
    [67] Grant J, Loake G. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance[J]. Plant Physiol, 2000, 124: 21~29
    [68] Ping Lu, Wei-Guo Sang, Ke-Ping Ma. Differential Responses of the Activities of Antioxidant Enzymes to Thermal Stresses between Two Invasive Eupatorium Species in China[J]. Journal of Integrative Plant Biology. 2008, 50(6): 393~401
    [69]郭丽红,王德斌,王定康,等.热激对冷胁迫下玉米幼苗质膜透性和抗氧化酶活性的影响[J].西南农业学报, 2008, 21(1): 48~51
    [70] Kocsy G, Ballmoos P, Rüegsegger A, et al. Increasing the glutathione content in a chilling-sensitive maize genotype using safeners increased protection against chilling-induced injury[J]. Plant Physiol, 2001, 127: 1147~1156
    [71] Stockinger E, Gilmour J, Thomashow F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proc Natl Acad Sci USA, 1997, 1035~1040
    [72] Viswanathan Chinnusamy, Masaru Ohta, Siddhartha Kanrar, et al. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes and Development, 2003, 17: 1043~1054
    [73]简令成,吴素首.植物抗寒性的细胞学研究:小麦越冬过程中细胞结构的变化[J].植物学报, 1987, 13: 1~15
    [74] Levitt J. Responses of Plants Environmental Stresses: Chilling, Freezing and High temperature Stress[M]. New York: Academic Press, 1980
    [75] Guy C. Molecular responses of plants to cold shock and cold acclimation[J]. Mol Microbio Biotechnol, 1999, 231~242
    [76] Irena Zalunskait?, Rytis Rugienius, Jurgita Vinskien?, et al. Expression of COR gene homologues in different plants during cold acclimation[J]. Biologija, 2008, (54): 33~35
    [77] Motoaki Seki, Ayako Kamei. Molecular responses to drought, salinity and frost:common and different paths for plant protection[J]. Current Opinion in Biotechnology, 2003, 14: 194~199
    [78] Yamaguchi-Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature or high salt stress[J]. Plant cell, 1994, 251~264
    [79] Baker S, Wilhelm K, Thomashow F. The 5’-region of Arabidopsis thaliana corl5a has cis-acting elements that confer cold-drought-and ABA-regulated gene expression[J]. Plant Mol Biol, 1994, 24: 703~713
    [80] Fernanko N, Jose M. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis[J]. Plant Biology, 2004, 11: 3985~3990
    [81]向殿军.农杆菌介导水稻转ICE1基因的研究[D].黑龙江八一农垦大学, 2007
    [82] Artus N, Uemura M, Steponkus L, et al. Constutitive expression of the cold-regulated Arabidopsis COR15a gene affects both chloroplast and protoplast freezing tolerance[J]. Proc. Natl. Acad. Sci. USA, 1996, 93: 13404~1340913
    [83] Katsuhiro Nakayama, Kumiko Okawa, Tomohiro Kakizaki, et al. Evaluation of the Protective Activities of a Late Embryogenesis Abundant (LEA) Related Protein, Cor15am, during Various Stresses in Vitro[J]. Biosci. Biotechnol. Biochem., 2008, 72(6): 1642~1645
    [84] Hughes A, Dunn A. The molecular biology of planta acclimation to low temperature[J]. J Exp Bot, 1999, 47: 291~305
    [85] Lee Y, Fleming J, K?rner Ch. et al. Differential expression of the CBF pathway and cell cycle-related genes in Arabidopsis accessions in response to chronic low-temperature exposure[J]. Plant Biology, 2008, 11(3): 273~283
    [86] Hara M, Fujinaga M, Kuboi T. Radical scavenging activity and oxidative modification of citrus dehydrin[J]. Plant Physiol Biochem, 2004, 42: 657~662
    [87] Qiang Liu, Mie Kasuga, Yoh Sakuma, et al. Two Transcription Factors, DREB1 and DREB2, with an EREBP/AP2 DNA Binding Domain Separate Two Cellular Signal Transduction Pathways in Drought- and Low-Temperature-Responsive Gene Expression, Respectively, in Arabidopsis[J]. Plant Cell, 1998, 10: 1391~1406
    [88]黄文功.抗寒基因ICE1的克隆与转化烟草的研究[D].黑龙江八一农垦大学, 2006
    [89] Qiuyun Wang, Yucheng Guan, Yaorong Wu. et al. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice[J]. Plant Mol Biol, 2008, 67: 589~602
    [90] Lei Wang, Yanzhong Luo, Chunyi Zhang, et al. Isolation and Characterization of a C-repeat Binding Transcription Factor from Maize[J]. Journal of Intergrative Plant Biology, 2008, 50(8): 965~974
    [91] Kasuga M, Liu,Miura S, et al. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress inducible transcription factor[J]. Nature Biotechology, 1999, 17: 287~291
    [92] Amjad Masood Husaini, Malik Zainul Abdin. Development of transgenic strawberry (Fragaria x ananassa Duch.) plants tolerant to salt stress[J]. Plant Science, 2008, 174(4): 446~455
    [93] Fernanko N, Jose A. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis[J]. Plant Biology, 2004, 11: 3985~3990
    [94] Lee B-H. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1[J]. Plant Cell, 2005, 17: 3155~3175
    [95]黄家权.抗寒基因的克隆及根癌农杆菌介导的ICE1基因转化柑橘的研究博士论文[D].华中农业大学, 2005
    [96]黄文功,邓馨.利用冷诱导表达ICE1载体提高烟草抗寒性[J].中国烟草学报, 2008, (14), 5: 69~73
    [97]郑银英,崔百明.转拟南芥ICE1基因增强烟草抗寒性的研究[J].西北植物学报, 2009, 29(1): 75~79
    [98] Xiang Dian-jun, Hu Xiang-yang, Yin Kui-de,et al. Over-Expression of ICE1 Gene in Transgenic Rice Improves Cold Tolerance[J]. Rice Science, 2008, 15(3): 173~178
    [99] Oksana V, Fursova O. Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana[J]. Gene, 2009, 429: 98~103
    [100] Yu Ju, Song nian hu, Jun wang, et al. A Draft Sequence of the Rice Genome (Oryza sativa L. ssp .)[J]. Science, 2002, 296: 79~92
    [101] Goff A, Riceke, Tien-lung Lan, et al. A Draft Sequence of the rice genome (Oryza sativa L.ssp. Japoni)[J]. Science, 2002, 296: 93~100.
    [102] Harushima Y, Yano M, Shomura A, et al. A high-density rice ge-netic linkage map with 2 275 markers using a single Fulation[J]. Genetics, 1998, 148(1): 479~494
    [103] Sasaki T, Matsumoto T, Yamamoto K, et al. The genome sequence and structure of rice chromosome 1[J]. Nature, 2002, 420: 312~316
    [104] Komatsu S, Karibe H, Hamada T, Rakwal R. Phosphorylation upon cold stress in rice (Oryza sativa L.) seedlings[J]. Theor.Appl.Genet., 1999, 98: 1304~1310
    [105] Cui S, Huang F, Wang J, et al. A proteomic analysis of cold stress responses in rice seedlings[J]. Proteomics 2005, 5: 3162~3172
    [106] Yan P, Zhang Y, Tang C, et al. Comparative proteomic analysis provides new insights into chilling stress responses in rice[J]. Mol.Cell., 2006, 484~496
    [107] Imin N, Kerim T, Rolfe G, et al. Effect of early cold stress on the maturation of rice anthers[J]. Proteomics, 2004, 4: 1873~1882
    [108] Imin N, Kerim T, Weinman JJ, Rolfe BG.2006. Low temperature treatment at the young microspore stage induces protein changes in rice anthers[J]. Mol.Cell. Proteomics, 2005, 5: 274~292
    [109] Salekdeh H, Siopongco J, Wade J, et al. Proteomic analysis of rice leaves during drought stress and recovery[J]. Proteomics, 2002, 2: 1131~1145
    [110] Ali M, Komatsu S. Proteomic analysis of rice leaf sheath during drought stress[J]. Proteome Res, 2006, 5: 396~403
    [111] Salekdeh H, Siopongco J, Wade J, et al. Approach to analyzing drought and salt-responsiveness in rice[J]. Field Crops Res, 2002, 76: 199~219
    [112] Abbasi M, Komatsu S. A proteomic approach to analyze salt-responsive proteins in rice leaf sheath[J]. Proteomics, 2004, 4: 2072~2081
    [113] Kim W, Rakwal R, Agrawal K, et al. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf[J]. Electrophoresis, 2005, 26: 4521~4539.
    [114] Parker R, Flowers J, Moore L, et al. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina.[J]. Exp.Bot, 2006, 57: 1109~1118
    [115] Lin K, Chang C, Tsai G, et al. Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression[J]. Proteomics 2005, 5: 2140~2156
    [116] Agrawal K, Rakwal R, Yonekura M, et al. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings[J]. Proteomics 2, 947~959
    [117] Rakwal R, Agrawal K, Kubo A, et al. Defense/stress responses elicited in rice seedlings exposed to the gaseous air pollutant sulfur dioxide[J]. Env.Exp.Bot, 2003, 49: 23~235
    [118] Hajduch M, Rakwal R, Agrawal K, et al. High-resolution two-dimensional electrophoresis separation of proteins from metal stressed rice (Oryza sativa L.) leaves: Drastic reductions/ fragmentations of ribulose-1,5-bisphosphate carboxylase/oxygenase and induction of stress-relatedproteins[J]. Electrophoresis, 2001, 22: 2824~2831
    [119] Komatsu S, Yang S, Hayashi N, et al. Alterations by a defect in a rice G protein alpha subunit in probenazole and pathogen-induced responses[J]. PlantCell Env, 2004, 27, 947~957
    [120] Tanaka N, Matsuoka M, Kitano H, et al. gid1,a gibberellin- insensitive dwarf mutant,shows altered regulation of probenazole-inducible protein (PBZ1) in response to cold stress and pathogen attack[J]. Plant Cell Environ, 2006, 29: 619~631
    [121] Takahashi A, Kawasaki T, Wong L, et al. Hyperphosphorylation of a mitochondrial protein, prohibitin, is induced by calyculin A in a rice lesion-mimic mutant cdr1[J]. Plant Physiol, 2003, 132: 1861~1869
    [122] Tsunezuka H, Fujiwara M, Kawasaki T, et al. Proteome analysis of programmed cell death and defense signaling using the rice lesion mimic mutant cdr2[J]. Plant Microbe. Interact, 2005, 18: 52~59
    [123] Jung H, Lee H, Agrawal K, et al. The rice (Oryza sativa) blast lesion mimic mutant may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways[J]. Plant Physiol.Biochem, 2005, 43: 397~406
    [124] Fujiwara M, Umemura K, Kawasaki T, et al. Proteomics of Rac-GTPase signaling reveals its predominant role in elicitor-induced defense response of cultured rice cells[J]. Plant Physiol, 2006, 140: 734~745
    [125]黄文功,向殿军,殷奎德.植物耐寒基因ICE1的克隆[J].黑龙江八一农垦大学学报, 2006, 18(2): 16~18
    [126]张洪,马骏,胡国成,等. Reliability study on the response of HPT gene in transgenic rice to hygromycin by leaf assay[J].浙江农业学报, 2005, 17(6): 341~345
    [127] Sivamani E, Ping S , Natacha O, et al. Selection of large quantities of embryogenic calli from indca rice seeds for production of fertile plants using the biolistic method[J]. Plant Cell Reports , 1996, 15: 322~327
    [128]刘巧泉,陈秀花,王兴稳. A Rapid Simple Method of Assaying Hygromycin Resistance in Transgenic Rice Plants[J].农业生物技术学报, 2001, 9(3): 264
    [129]马丽华,许红霞,胡育昌. The rapid and simple kanamycin detection method of BT gen transformation cotton in the fields[J].中国棉花, 2000, 27(12): 11~12
    [130] Weide R, Koomeef M, Zabe1. A simple nondestructive spraying assay for the detection of an active kanamycin resistance gene intransgenic tomato plants[J]. Theor Appl Genet, 2000, 78: 169~172
    [131]刘红光,王中康,曹月青,等.应用常规RT-PC R和荧光定量RT-PCR植物病理学报检测柑桔衰退病毒[M]. 2008, 38(1): 24~30
    [132] Chun-Hua Xu, Shan-JinHuang, Ming Yuan. Dimethyl Sulfoxide Is Feasible for Plant Tubulin Assembly In vitro:A Comprehensive Analysis[J]. Journal of Integrative Plant Biology, 2005, 47(4): 457~466
    [133]陈秋明,尹慧,李晓艳,等.高温胁迫下外源水杨酸对百合抗氧化系统的影响[J].中国农业大学学报, 2008, 13(2): 44~48
    [134]李文君,沈永宝.‘紫柄籽银桂’桂花种子脱水耐性与抗氧化系统的关系[J].园艺学报, 2009, 36(2): 279~287
    [135] M. HUANG, Z. GUO. Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity[J]. Biologia Plantarum, 2005, 49(1): 81~84
    [136] Pallavi S, Dubey R. Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum[J]. Plant Cell Rep, 2007, 26: 2027~2038
    [137] Yan Luo, Yu Bo Liu, Yu Xiu Dong, et al. Expression of a putative alfalfa helicase increases tolerance to abiotic stress in Arabidopsis by enhancing the capacities for ROS scavenging and osmotic adjustment[J]. Journal of Plant Physiology, 2009, 166: 385~394
    [138] M. Nunez, P. Mazzafera, L M. Mazorra, et al. Influence ofa brassinsteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl[J]. Biol. Plant, 2003, 47: 67~70
    [139]林明,贺俐,徐波,等.辣椒疫霉作用下叶绿素a/b结合蛋白的表达[J].亚热带农业研究, 2007, 4(4): 297~301
    [140] Arto Soitamo, Mirva Piippo, Yagut Allahverdiyeva, et al. Light has a specific role in modulating Arabidopsis gene expression at low temperature[J]. BMC Plant Biology, 2008, 8
    [141] Urs Feller, Steven J, Michael E, et al. Moderately High Temperatures Inhibit Ribulose-1,5- Bisphosphate Carboxylase/Oxygenase (Rubisco) Activase-Mediated Activation of Rubisco[J]. Plant Physiol, 1998, 116: 539~546
    [142] Hendrickson L, Sharwood R, Ludwig M, et al. The effects of Rubisco activase on C4 photosynthesis and metabolism at high temperature[J]. Journal of Experimental Botany, 2008, 59(7): 1789~1798
    [143] Wu H R, Li L B, Jing Y X, et al. Over-and anti-sense expressions of the large isoform of ribulose-1,5-bisphosphate carboxylase/oxygenase activase gene in Oryza sativa affect the photosynthetic capacity[J]. Photosynthetica, 2007, 45(2): 194~201
    [144]严顺平.水稻响应盐胁迫和低温胁迫的蛋白质组研究[D].中国科学院研究生院, 2006
    [145] Wang L, Zhao C M, Wang Y J, et al. Overexpression of chloroplast-localized small molecular heat-shock protein enhances chilling tolerance in tomato plant[J]. Journal of Plant Physiology and Molecular Biology, 2005, 31(2): 167~174
    [146] F奥斯伯, R布伦特, R金斯顿等.精编分子生物学实验指南[M].科学出版社, 1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700