地震力作用下结构构件复杂反应特性的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
文中采用矩形、菱形、椭圆形位移加载模式分别对钢筋混凝土柱进行了拟静力实验。实验设备是美国MTS公司生产的电液伺服结构实验系统,在试件上安装了独立的位移传感器。实验中使用的是拟静力实验控制软件TUST和多维拟静力实验控制软件TUMT。通过对实验结果的分析,得到以下结论:
     1、施加轴力的试件滞回耗能曲线比较饱满,耗能能力较强,延性特性明显;施加扭转的试件,双水平方向的耗能能力较弱,表现出脆性的破坏特征。
     2、施加扭转的试件,当扭矩超过峰值点后下降很快,扭转耗能较差,而双水平方向的耗能较强,但是不如施加轴力作用下的滞回耗能强。
     3、在相同的加载模式下,扭转作用产生的损伤大于轴力作用下产生的损伤;随着加载循环周数的增多,试件的损伤有加快的趋势;在不同的加载模式下,只考虑取最不利的破坏状态计算的损伤指标相差不大,准确判断试件的破坏特性需要参照实际的破坏情况。
     4、钢筋混凝土柱在不同的加载模式下,不同加载方向计算的能量曲线不同,因此不能只是以混凝土柱一个方向消耗能量的多少作为构件抗震能力的依据。
     5、扭转滞回曲线出现较长的滑移段,中间捏拢,耗能能力差。钢筋混凝土柱两个受弯方向的滞回曲线形状呈梭形,滞回环饱满。在逐级增大的加载循环中,两个水平方向的抗弯能力衰减相对较慢,而抗扭能力衰减相对较快,各试件在扭转作用下的延性最差,扭矩超过峰值后刚度退化很快,表现为脆性破坏。
     6、用规范方法计算的位移值和实测的位移值相差较大,混凝土柱开裂后,在扭剪作用下刚度变化明显,所以在扭矩较大的情况下,需要考虑扭剪影响;实验结果表明,《钢筋混凝土规范》刚度计算式的截距已不是常数,离散性较大。
Three loading paths including rectangle path,diamond path and ellipse path are applied to the reinforced concrete columns in quasi-static test.The actuators and displacement sensors are installed i on the specimens.The control softwares are TUSTand TUMT in the test.The conlusions based on the test results are as follows:
     1、The specimens have more hysteresis dissipated energy under axial forces than those under torsional forces.
     2、The torsional moment value decreases rapidly when exceeding the maximum ,whose characteristic reveals brittleness.
     3、The damage caused by the torsion is larger than under axial force at the same applied loading.The damage evaluation must refer to the on-site situation, because the test results are hard to compare under different loading paths. With the enlargement of displacement, the damage quickens.
     4、The energy curves derived from the data tested by application of different loading on columns are different,therefore,the evaluation of damage grades must be founded on the entire test results.
     5、The curves of torsional hysteresis dissipated energy demonstrate long slippage and hold together in the middle.On the contrary, the curves of momental hysteresis dissipated energy,which is like shuttle shape, consume much more energy than those curves.With the development of the applied force, the torsional resistant ability attenuates far greatly and its ductibility becomes worse. The rigidity degenerates rapidly when the maximal torsion moment exceeds the peak value,which makes for a brittle damage to these reinforced concrete columns.
     6、The displacement data measured in the test are much larger than those calculated by the formulae in reinforced concrete code, especially after cracks produced. The effects of torsion and shear forces affecting columns should be think over on the condition of torsion force playing a much important role.
引文
[1]殷芝霖,张誉,王振东.抗扭[M].中国铁道出版社,1990
    [2] T.T.C Hsu.Torsion of Structural Concrete-A Summary on Pure Torsion[J].SP18,1968.
    [3] B.Thurliman.Torsion Strength of Reinforced and Prestressed Concrete Beams[J].CEB Approach,SP-59,1979
    [4]张誉,陈斌.钢筋混凝土受扭构件全过程分析[J].同济大学学报,1982,10(4):22-28
    [5]张誉,黄郁莺.钢筋混凝土构件在扭剪组合荷载下的非线性全过程分析[J].同济大学学报,1985, 13(5):20-27
    [6]焦俊婷,叶英华,刁波,等.双向压弯钢筋混凝土柱的侧向承载力性能分析[J].辽宁工程技术大学学报,2006,25(6),870-872.
    [7]赵静,张岩俊,齐永顺.纵筋对高强混凝土压弯构件抗剪承载力影响的有限元分析与试验研究[J].四川建筑科学研究,2008,34(1):52-56.
    [8]王茜,刁波,李淑春,等.不同加载角L形柱的试验及截面承载力分析[J].工业建筑,2008,38(9),53-58.
    [9]陈娟,陈滔,黄宗明.钢筋混凝土L形柱分析时平截面假定的适用范围[J].地震工程与工程振动,2006,26(1),111-115.
    [10]刘继明,李家富,门进杰.角柱在压弯剪扭复合受力下的延性[J].工业建筑,2004,34(4):46-48.
    [11]刘海卿,陈小波,王学庆,等.基于损伤指数的框架结构损伤演化研究[J].自然灾害学报,2008,17(3):29-35.
    [12]黄雅捷,梁兴文,王应生.钢筋混凝土异形柱框架结构楼层受剪承载力计算方法[J].世界地震工程,2004,20(2):145-150.
    [13]顾祥林,黄庆华,吴周偲.钢筋混凝土柱考虑损伤累积的反复荷载-位移关系分析[J].地震工程与工程振动, 2006,26(4):68-74.
    [14]张国军,吕西林.高强钢筋混凝土框架住的地震损伤模型[J].地震工程与工程振动,2005,25(2):100-104.
    [15]刁波,李淑春,叶英华.反复荷载作用下混凝土异形柱结构累积损伤分析及试验研究[J].建筑结构学报,2008,29(1):57-63.
    [16]徐丽,易委建,吴高烈.结构局部损伤诊断的应变模态方法-分析与应用[J].自然灾害学报,2006,15(3):157-163.
    [17]邱法维,刘中田,孙宪春,等.考虑双向耦合作用的钢筋混凝土柱弹塑性简化分析方法[J].建筑结构学报,2004,25(5):85-91
    [18]邱法维,李文峰,潘鹏,钱稼茹。钢筋混凝土柱的双向拟静力实验研究[J].建筑结构学报,2001, 22(5):26-31
    [19]刘钧,侯杰,邱法维.钢筋混凝土独柱式桥墩的拟动力试验研究[J].工程抗震与加固改造, 2006, 28(5):43-48
    [20]中华人民共和国建设部.GB50010-2002.混凝土结构设计规范.北京:中国建筑工业出版社,2002
    [21]中华人民共和国建设部. GB50011-2001.建筑抗震设计规范.北京:中国建筑工业出版社,2002
    [22]中华人民共和国建设部.JGJ 101296.建筑抗震试验方法规程.北京:中国建筑工业出,1997.
    [23]朱伯龙主编.建筑抗震试验[M].北京:地震出版社,1989
    [24]邱法维,钱稼茹,陈志鹏著.结构抗震实验方法[M].北京:科学出版社,2000
    [25] K.Takanashi.Seismic failure analysis of structures by computer-pulsator onl-ine system[J].Journal of the Institute Science,University of Tokyo,1974,26(11)
    [26]胡聿贤著.地震工程学[M].北京:地震出版社, 1988
    [27]王前信,伍国周,李云林.结构对地震多支点输入的反应[J].地震工程与工程振动,1984,4(2): 49-81
    [28] D.W.Clarke,C.E.Hinton.Adaptive control of materials-testing machines[J]. Automatica, Elsevier Science Ltd,1997,33(6):1119-1131
    [29] A.Filiatrault,R.Tremblay,B.K.Thoen,et al.A Second generation earthquake simulation system in Canada:description and performance,Paper No.1204,Eleventh World Conference on Earthquake Engineering,1996
    [30] R.T.Leon,G.G.Deierlein.Considerations for the use of quasi-static testing[J]. Earthquake Spectra,1996,12(1)
    [31] K.Takanashi,M.Nakashima.Japanese activities on on-line testing[J].engineering mechanics,ASCE,1987,113(7)
    [32] S.N.Bousias.Load-path effects in column biaxial bending with axial force[J]. Engineering Mechanics,ASCE,1995,121:(5): 596-605
    [33] M.Nakashima,H.Takai.Use of substructures in pseudodynamic testing[J].Bld.Res.Inst.Of Japan,Vol.111,Ministry of Constr.Tsukba,Japan,1985
    [34] H.Iemura.Testing R/C specimens by a substructure based hybrid earthquake loading system[J].Proc. of 9th WCEE,Tokyo-Kyoto Japan, 1988,4:35-40
    [35] C.R.Thewalt,S.A.Mahin.Hybrid solution techniques for generalized pseudodynamic testing[J].Report No.UCB/EERC 87-09,University of California , Berkeley , CA,1987
    [36] P.B.Shing,M.T.Vannan.On the accuracy of an implicit algorithm for pseudodynamic tests[J].Earthquake engineering and structural dynamics,1990,19:631-651
    [37] M.Kanda.Implicit integration scheme based on initial stress method for substructure online test ( in Japanese )[J].Structural Construction Engineering,AIJ,1995,473:75-84
    [38] T.Okada,M.Seki.Nonlinear earthquake response of equipment system anchored on RPC building floor[J].8th World Conference on Earthquake Engineering,San Francisco, Calif.,1988,5:1151-1158
    [39] K.Ohi,X.Lin,A.Nishida.Sub-structuring pseudodynamic test on semi-rigidly jointed steel frames[J].Paper No.410,11th WCEE,1996
    [40] H.Mutsuyoshi.Influence of member ductility on total seismic response of RC bridge piers using substructure pseudodynamic tests[J].Transactions of the Japan concrete institute,1993,(15):353-360
    [41] S.P.Schneider,C.W.Roeder.An inelastic substructure technique for the pseudodynamic test method[J].Earthquake engineering and structural dynamics,1994,23:761-775.
    [42] T.Usami,T.Suzuki,Y.Itoh.Pseudodynamic tests of concrete-filled steel columns with prototype details[J].土木学会论文集,No.525/1-33,55-67,1995
    [43] Y.Kitagawa .Correlation study on shaking table tests and pseudodynamic tests by R.C. models[J].Proc.of 8th WCEE,San Francisco,California,U.S.A.,1984,6:667-674
    [44] P.B.Shing,S.A.Mahin.Rate of loading effects on pseudodynamic test[J].structural engineering 1988:114(11):2403-2420
    [45] A.Machida,d H.Mutsuyoshi.Development of accurate pseudodynamic test method for R/C structures[J].Proc.of 10th WCEE, Balkema,Rotterdam, 1992,5:2647-2652
    [46] F.J.Molina.Pseudodynamic tests of a base-isolated steel frame[J].Paper No.1378,11th WCEE,1996
    [47] M.Nakashima.Development of real-time pseudodynamic testing[J].Earthquake engineeringand structural dynamics,1992,21:79-92
    [48] J.Murcek.Effective force seismic simulation for the earthquake engineering laboratory[J].Paper No.460,11th WCEE,1996
    [49] E.Kausal.New seismic testing method.In:fundamental concepts[J].Journal of Engineering Mechanics,ASCE, 1998,124(5):565-570
    [50] K.Tamura,H.Kobayashi.Real-time hybrid vibration experiments with a 2- degrees -of-freedom model[J],Thirtieth Joint Meeting U.S.-Japan Panel on Wind and Seismic Effects,UJNR Gaithersburg,MD,U.S.A.,1998
    [51] M.Nakashima .Real-time on-line test for MDOF systems[J].Earthquake engineering and structural dynamics,1999,28:79-92
    [52] T.T.Soong.Experimental simulation of degrading structures through active control[J].Earthquake engineering and structural dynamics,1998,27:143-154
    [53] T.Horiuchi,M.Inoue,T.Konno,W.Yamagishi.Development of a real-time-hybrid experimental system using a shaking table[J],日本机械学会论文集(C编),64卷622号(1998 -6),83-90
    [54]邱法维,国明超,李喧.采用微机开发的拟动力实验[J].地震工程与工程振动,1994,14(3): 91-96
    [55]邱法维.联机结构实验内的子结构技术及应用[J].实验力学,1995,10(4):335-342
    [56]邱法维,吕西林,卢文生.结构拟动力实验方法及其应用研究.土木工程防灾国家重点实验室课题总结报告,一九九六年十月
    [57]邱法维.隐式时间积分方法的拟动力实验[J].世界地震工程,1995,(3):44-48
    [58]邱法维.采用隐式积分方法和子结构技术的拟动力实验[J].土木工程学报,1997,30(2):27-33.
    [59]邱法维,钱稼茹.结构在多维多点地震输入下的拟动力实验方法[J].土木工程学报,1999,32(5):28-34
    [60]邱法维,杜文博,刘中田,等.结构在复杂加载路径下的拟静力实验方法及控制[J].土木工程学报,2003,36(12):8-13
    [61]邱法维,潘鹏,宋贻焱,等.结构多维拟静力加载实验方法及控制[J].土木工程学报,2001, 34(2):26-32
    [62]侯杰,刘钧,杜文博.架结构拟动力试验方法研究[J].工程抗震与加固改造,2006,28(6):66-70
    [63]李国强,崔大光.钢骨混凝土梁柱框支剪力墙试验与恢复力模型研究[J].建筑结构学报,2008,(04):73-80
    [64]王敏,曹万林,张建伟,等.不同轴压比下钢管混凝土边框组合剪力墙抗震性能研究[J].世界地震工程,2008,(02):32-36
    [65]司炳君,李宏男,王东升,等.基于位移设计的钢筋混凝土桥墩抗震性能试验研究(I):拟静力试验[J].地震工程与工程振动,2008,(01):123-129
    [66]王立长,李凡璘,朱维平,等.设置暗支撑钢筋混凝土剪力墙的抗震性能试验研究[J].建筑结构学报,2007,(S1),51-58
    [67]李俊华,王新堂,薛建阳,等.低周反复荷载下型钢高强混凝土柱受力性能试验研究[J].土木工程学报,2007,(07):11-18
    [68]李忠献,郝永昶,周兵,等.钢筋混凝土分体柱框架抗震性能的模型试验研究[J].建筑结构学报, 2003,24(06): 1-11
    [69]李忠献,张雪松,丁阳.翼缘削弱的型钢混凝土框架抗震性能研究[J].建筑结构学报,2007,(04): 18-24
    [70]熊仲明,史庆轩,王社良,等.钢筋混凝土框架-剪力墙模型结构试验的滞回反应和耗能分析[J].建筑结构学报,2006,(04):89-95
    [71]叶献国,王海波,孙利民,等.钢筋混凝土桥墩抗震耗能能力的试验研究[J].合肥工业大学学报(自然科学版),2005,(09):1171-1177
    [72]周长东,黄承逵.玻璃纤维聚合物约束混凝土柱轴压比限值研究[J].武汉理工大学学报,2004, (12):45-48
    [73]吕西林,李俊兰.钢筋混凝土核心筒体抗震性能试验研究[J].地震工程与工程振动,2002,(03): 42-50
    [74]蒋东红,王连广,刘之洋.高强钢骨混凝土框架柱的抗震性能[J].东北大学学报(自然科学版), 2002,(01):67-70
    [75]欧进萍,何政,吴斌,等.钢筋混凝土结构的地震损伤控制设计[J].建筑结构学报,2000, 21(1):63-76
    [76]欧进萍,何政,吴斌,邱法维.钢筋混凝土结构基于地震损伤性能的设计[J].地震工程与工程振动,1999,19(1):21-30
    [77]何政,欧进萍,钢筋混凝土结构基于改进能力谱法的地震损伤性能设计[J].地震工程与工程振动, 2000,(02):31-38
    [78] Powell G.H.,Allahabadi R..Seismic Damage Prediction by Deterministic Methods: Conceptand Procedures[J].Earthquake Engineering & Structural Dynamics, 1988, 16:pp.719-734.
    [79] Fajfa P.Equivalent Ductility Factors, Taking into Account Low-cyccle Fatigue[J]. Earthquake Engineering & Structural Dynamics, 1992,21:837-848
    [80] Park Y. J.,Ang A. H..Mechanistic Seismic Damage Model for Reinforced Concrete[J]. Struct. Engrg., ASCE, 1985, 111(4):722-739
    [81]李文峰.钢筋混凝土柱多维抗震性能研究:[硕士学位论文].北京:清华大学,2002
    [82]陈忠汉,劭永健,朱聘儒,等.不对称钢骨混凝土梁抗弯刚度的试验研究[J].世界地震工程,2001, 17(1),103-105
    [83]蒋秀根,梁宗敏,杨洪良.基于挠度控制的钢筋混凝土梁高确定方法[J].中国农业大学学报2004,9(6):72-75
    [84]潘景龙,王威,金熙男,等.偏心荷载作用下FRP约束钢筋混凝土短柱的特性研究[J].土木工程学报,2005,38(2): 46-50
    [85]翟爱良,张晓杰,王新元.碳纤维布加固钢筋混凝土梁刚度与挠度的实用计算[J].建筑技术开发, 2005,32(10),88-90
    [86]王琳鸽,张耀庭.压区粘钢加固钢筋混凝土梁的短期刚度与挠度[J].华中科技大学学报(城市科学版),2007,24(2),81-85
    [87]刘立新,李洪彦,张艳丽,等.500MPa级钢筋混凝土偏心受压柱受力性能的试验研究[J].郑州大学学报(工学版),2007,28(2):30-33
    [88]崔熙光,李静轩,王帅.CFRP加固混凝土翼缘受拉T形截面柱试验研究[J].沈阳建筑大学学报(自然科学版),2007,23(3),392-396
    [89]李文,张素梅.去除局部破损混凝土后钢筋混凝土梁受弯性能理论分析[J].工业建筑,2003, 33(4):49-52
    [90]高丹盈,赵军,B.Brahim.玻璃纤维聚合物筋混凝土梁裂缝和挠度的特点及计算方法[J].水利学报,2001,(8),53-58
    [91]周敉,贺拴海,宋一凡.基于挠度试验的梁式结构评估[J].长安大学学报(自然科学版),2004, 24(5):40-47
    [92]康洪震.双向水平荷载作用下钢筋混凝土柱全过程分析[J].河北理工学院学报,2000,22(2): 86-91
    [93]康洪震,江见鲸.不同加载路径下钢筋混凝土框架柱抗震性能的试验研究[J].土木工程学报, 2003,36(5):71-75
    [94]张浩,邓海,齐永顺.钢筋混凝土长柱偏心距增大系数计算分析[J].四川建筑,2001,21(3),42-43
    [95]郑建岚,郑作樵.钢纤维钢筋混凝土的变形与延性计算[J].工程力学,1999,16(1):56-66.
    [96]孙黄胜,臧晓光,刘继明.钢筋混凝土复合受扭构件的开裂扭矩计算[J].青岛建筑工程学院学报, 2001,22(3):5-8
    [97]孙黄胜,施卫星,刘继明.双向偏压剪反复扭构件抗震性能试验研究[J].同济大学学报,2003, 31(10):1151-1156
    [98]卢亦焱,童光兵,赵国藩.外包钢与碳纤维布复合加固钢筋混凝土偏压柱受力全过程分析[J].工程力学,2006,23(7):72-80
    [99]龙驭球,包世华.结构力学教程[M].北京:高等教育出版社出版,1993年5月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700