APE1 siRNA与p53联合基因治疗肝细胞癌的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝细胞性肝癌(hepatocellular carcinoma,HCC)是我国最常见的恶性肿瘤之一,由于难于早期发现,发病后患者的生存期很短、病死率高,目前临床采用的多种传统治疗手段都不能收到满意的效果。基因治疗是当代医学和生物学的一个新的的研究领域,随着分子生物学理论和技术的发展,基因治疗研究的重点逐渐由单基因缺陷所致的遗传病转向肿瘤这种多基因参与、多步骤形成的疾病。肿瘤发生、发展过程复杂,涉及多种基因异常,联合基因治疗成为当前肿瘤基因治疗研究的发展方向。
     脱嘌呤/脱嘧啶核酸内切酶(apurinic/apyrimidinic endonuclease 1,APE1)具有DNA损伤修复及氧化还原双重功能,是一种多功能蛋白,对维持DNA的稳定和调节细胞因子的表达具有重要作用。APE1蛋白的不正常表达、分布及功能改变与抗细胞凋亡、肿瘤发生密切相关。野生型p53基因是细胞凋亡的关键基因,p53基因突变与HCC发生密切相关。HCC细胞凋亡能力下降推测与APE1过表达及p53突变有关。本研究应用免疫组化检测肝癌组织中APE1和突变型p53的表达,分析其与肝癌演进及p53基因突变的关系,并在体内外应用重组腺病毒Ad5/F35-APE1 siRNA联合Ad-p53感染肝癌细胞,通过观察体内外肝癌细胞生长的抑制效果,探讨二者联合促进细胞凋亡的作用机制,为联合基因治疗提供新的思路和实验依据。
     研究目的
     1.探讨DNA损伤修复基因APE1在肝细胞癌组织中的表达与肿瘤演进及p53基因突变的关系;
     2.体外联合感染细胞实验研究对肝癌细胞生长的抑制协同效应;
     3.体内联合治疗实验研究对荷瘤裸鼠肿瘤生长的抑制协同作用。
     研究内容和方法
     1.肝癌组织APE1和p53蛋白表达及其临床意义:
     采用免疫组化方法检测肝癌组织APE1和p53蛋白表达,分析APE1表达与肝癌临床病理因素及p53突变之间的关系,为进一步以APE1和p53为靶点的基因治疗提供临床怖砘 ?
     2.重组腺病毒Ad5/F35-APE1 siRNA联合Ad-p53体外抑制肝癌细胞生长的实验研究:
     采用流式细胞术和免疫荧光检测Ad5/F35-APE1 siRNA和Ad-p53对肝癌细胞感染效率;Western blot检测Ad5/F35-APE1 siRNA对肝癌细胞APE1基因的沉默作用,及Ad-p53对肝癌细胞p53基因的增强作用;免疫组化检测Ad5/F35-APE1 siRNA和Ad-p53在肝癌细胞内转染目的基因与相应蛋白表达的时效关系;MTT法检测腺病毒感染滴度与细胞存活的关系;台盼蓝染色法绘制细胞生长曲线检测腺病毒联合抑制细胞生长的作用;TUNEL法检测SMMC-7721细胞凋亡。
     3.重组腺病毒Ad5/F35-APE1 siRNA联合Ad-p53体内抑制荷瘤裸鼠肿瘤生长的实验研究:
     建立肝癌裸鼠动物模型,观察Ad5/F35-APE1 siRNA联合Ad-p53对肝癌生长抑制的协同作用,测量肿瘤的生长,绘制肿瘤生长曲线,HE染色,光镜观察肿瘤的组织学变化,免疫组化和TUNEL法检测肿瘤细胞APE1和p53表达、细胞凋亡。
     研究结果
     1.肝癌组织APE1和p53蛋白表达及其临床意义:
     正常肝脏组织APE1呈胞核阳性,肝硬化和HCC组织APE1表达特征发生改变,呈胞核表达、单纯胞浆表达或核浆共同表达。APE1胞核表达在HCC、肝硬化及正常肝相互间比较均无显著差异;APE1核浆共表达在三组间比较均具有显著差异(p<0.01);APE1胞浆表达仅在4例HCC发现。APE1胞核阳性分度和胞浆阳性分度在正常肝、肝硬化、HCC中比较有显著差异(p<0.01),且与HCC组织学分级有关。HCC组织中p53阳性率60.2%,与APE1表达方式无相关性;APE1/p53不同表达状态的HCC组织学分级有明显差异(p<0.01),APE1异位表达/p53~+的HCC恶性程度高。
     2.重组腺病毒Ad5/F35-APE1 siRNA联合Ad-p53体外抑制肝癌细胞生长的实验研究:
     重组腺病毒Ad5/F35-APE1 siRNA和Ad-p53的最佳感染效率分别为20MOI、50MOI。Ad5/F35-APE1 siRNA能有效抑制肝癌细胞APE1的表达,48~72h达到最大抑制;Ad-p53能有效增强肝癌细胞p53的表达,48~72h达到最高。重组腺病毒Ad5/F35-APE1 siRNA和Ad-p53均能诱导细胞凋亡、抑制细胞生长,联合感染时对肝癌细胞的诱导细胞凋亡作用及抑制作用均明显增强(p<0.01)。
     3.重组腺病毒Ad5/F35-APE1 siRNA联合Ad-p53体内抑制荷瘤裸鼠肿瘤生长的实验研究:
     Ad5/F35-APE1 siRNA联合Ad-p53注射后肿瘤的生长抑制率为54.23%,显著高于单药组(p<0.01)。与对照组肿瘤细胞相比,两种腺病毒分别有效抑制了APE1或提高了p53蛋白表达水平。TUNEL法检测细胞凋亡情况显示,联合组肿瘤细胞凋亡率为(15.48±2.95)%,显著高于Ad5/F35-APE1 siRNA组(6.85±1.11)%、Ad-p53组(8.23±1.60)%以及对照组(3.06±1.35)%(p<0.01)。
     结论
     1.APE1蛋白在肝细胞中的表达异位及增强与HCC进展密切相关,当细胞浆内出现APE1表达时可作肝细胞早期癌变的指标之一。
     2.p53突变是HCC发生的高概率事件,在HCC组织中APE1异位表达与p53突变没有相关性。APE1异位表达和p53突变可能在肿瘤的发生、发展过程中具有协同促进作用,APE1和p53是肝癌治疗潜在的分子靶点,具有重要的临床应用价值。
     3.Ad5/F35-APE1 siRNA可特异性沉默肝癌细胞APE1的表达,沉默效率达到94.24%;Ad-p53能够提高细胞内野生型p53的表达,增强效率达到82.31%。
     4.Ad5/F35-APE1 siRNA联合Ad-p53能使肝癌细胞凋亡显著增多,抑制肿瘤生长作用显著增强,以APE1和p53为靶点的联合基因治疗可能成为今后肝癌治疗的新方法。
Hepatocellular carcinoma(HCC) is one of the most frequent and devastating malignancies in China,and early diagnosis is very difficult,therefore with poor prognosis and high mortality.Even with the combined use of the three classic treatment modalities: surgery,radiation,chemotherapy,little has changed over the last five years to alter the deathly outcome.The rapid development of molecular biology makes the gene therapy a kind of new treatment mode in clinical application.Because the carcinogenesis and progression of HCC is a complicate process involved many genes and several transforming steps,the combination gene therapy against HCC has emerged as a promising approach.
     The human apurinic/apyrimidinic endonuclease(APE1) is a ubiquitous multifunctional protein which has both DNA repair activity and redox regulatory activity.APE1 plays an important role in maintaining genomic integrity and regulating gene expression,and its abnormal expression is associated with anti-apoptosis and tumor progression.Wild-type p53 plays a key role in cell cycle control and apoptosis,and the mutation of p53 gene is correlated with the carcinogenesis and progression of HCC.So we hypothesis that the APE1 and mutant p53(mtp53) may contribute to the resistance to apoptosis in HCC.
     In this study,we first detected the expression of APE1 and investigated its correlation with the expression of mtp53 and clinic-pathological parameters in HCC.Then,we examined the effect of chimeric adenoviral vector Ad5/F35 carrying human APE1 siRNA combined with recombinant adenovirus carrying wild-type p53 on cell proliferation inhibition and apoptosis induction in human hepatocellular carcinoma cells in vitro and in vivo.The present study will present a new strategy for combined gene therapy against cancer.
     Objective
     1.To investigate the expression of APE1 and explore its correlation with the expression of mtp53 and clinic-pathological parameters in HCC.
     2.To investigate the inhibitory effects of Ad5/F35-APE1 siRNA combined with Ad-p53 on human HCC cells in vitro.
     3.To investigate the inhibitory effects of Ad5/F35-APE1 siRNA combined with Ad-p53 on human HCC cells in a tumor-bearing nude mice model.
     Materials and Methods
     1.Expression feature of APE1 and mtp53 and its significance in HCC:Expression of APE1 and mtp53 was detected by S-P immunohistochemical method in 10 cases of normal liver tissue,40 cases of liver cirrhosis and 103 cases of HCC.
     2.Study of inhibitory effects of Ad5/F35-APE1 siRNA combined with Ad-p53 on human HCC cells in vitro:The infection efficiency of Ad5/35-EGFP and Ad-EGFP to human HCC SMMC-7721 cell line was measured by flow cytometry and observed by fluorescence microscopy.The expression of human APE1 and p53 protein was detected after Ad5/F35-APE1 siRNA and Ad-p53 were transfered into SMMC-7721 cells by western blot analysis and immunohistochemical technique.The cellular proliferation capacity was observed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay. Cell growth curve was detected by trypanblau,and cell apoptosis was determined by TUNEL.
     3.Study of inhibitory effects of Ad5/F35-APE1 siRNA combined with Ad-p53 on human HCC cells in a tumor-bearing nude mice model:Nude mice hepatocarcinoma xenograft model was established by using human HCC SMMC-7721 cell line.When the tumor volumes reached 40~50 mm~3 on the sixth day after inoculation of SMMC-7721 cells, sixteen mice were randomly divided into four groups:control group,Ad5/F35-APE1 siRNA group,Ad-p53 group and Ad5/F35-APE1 siRNA combined with Ad-p53 group.The tumor volumes were measured and the tumor growth curves were plotted.The APE1 and p53 expression were observed by immunohistochemistry.Apoptosis index was detected by TUNEL technique.
     Results
     1.Expression feature of APE1 and mtp53 and its significance in HCC:In normal liver tissue,APE1 was detected in nucleus of cells,and the shifts of APE1 from nucleus to cytoplasm was observed in liver cirrhosis and HCC tissues.There was no significant difference in the positive nuclear expression rate of APE1,while there was a significant difference(p<0.01) in the positive cytoplasmic expression rate of APE1 among normal liver tissue,liver cirrhosis and HCC tissues.There was a significant difference(p<0.01) in the cytoplasmic and nuclear staining intensity of APE1 among normal liver tissue,liver cirrhosis and HCC tissues,and the cytoplasmic and nuclear staining intensity of APE1 was correlated with histological grade of HCC(p<0.01).The location of APE1 combination with the p53 status was significantly correlated with tumor grade,and the cytoplasmic APE1 expression/p53~+ status implied a higher tumor grade(p<0.01).
     2.Study of inhibitory effects of Ad5/F35-APE1 siRNA combined with Ad-p53 on human HCC cells in vitro:The results showed that the infection efficiency of Ad5/35-APE1 siRNA at 20 multiplicity of infection(MOI) and Ad-p53 at 50 MOI to SMMC-7721 cells was 99%and 85%,respectively.Infection of SMMC-7721 cells with Ad5/F35-APE1 siRNA resulted in a dose-dependent suppression of APE1 protein,and the APE1 protein expression lowest on 48~72h.Infection of SMMC-7721 cells with Ad-p53 resulted in a dose-dependent enhancement of p53 protein,and the p53 protein expression peaked on 48~72h.Apoptosis and inhibition of cell growth were induced by infection with Ad5/F35-APE1 siRNA or Ad-p53.Apoptosis index(AI) and inhibition effect of cell growth in Ad5/F35-APE1 siRNA combined Ad-p53 group was significantly higher,compared with Ad5/F35-APE1 siRNA or Ad-p53 alone(p<0.01).
     3.Study of inhibitory effects of Ad5/F35-APE1 siRNA combined with Ad-p53 on human HCC cells in a tumor-bearing nude mice model:Ad5/F35-APE1 siRNA suppressed significantly the expression of APE1 protein,and Ad-p53 enhanced significantly the expression of p53 protein in vivo.The tumor growth inhibition ratio and AI in Ad5/F35-APE1 siRNA combined with Ad-p53 group were significantly higher,compared with the control group,Ad5/F35-APE1 APE1 group and Ad-p53 group(p<0.01).
     Conclusion
     1.The shifts of APE1 from nucleus to cytoplasm and overexpression might play a pivotal role in the carcinogenesis and progression of HCC.Cytoplasmic expression of APE1 might be a useful marker for predicting carcinogenesis of hepatocyte.
     2.APE1 combination with the p53 status may be risk factors for HCC.It suggests that APE1 and p53 are potential molecular therapeutic targets of HCC.
     3.Ad5/F35-APE1 siRNA can specifically knock down the APE1 protein expression in HCC cells,and the inhibition rate of expression of APE1 protein reached in 95%.Ad-p53 can specifically raise the p53 protein expression in HCC cells,and the enhancement rate of expression of p53 protein reached in 95%.
     4.Ad5/F35-APE1 siRNA combined with Ad-p53 transfer can significantly inhibit the growth of HCC,promote tumor cells apoptosis.Therefore,the gene therapy with Ad5/F35-APE1 siRNA combined Ad-p53 may be a promising approach to treat HCC in the future.
引文
1. Zelenin A V, Kaigrorodov V A, Prasdov V A, et al. Gene Therapy Today and Tomorrow. Molecular biology, 2000, 32(2): 188-196.
    2. Shen JC, Loeb LA. Mutations in the alpha8 loop of human APE1 alter binding and cleavage of DNA containing an abasic site. J Biol Chem, 2003, 278(47):46994- 47001.
    3. Evans AR, Limp-Foster M, Kelley MR. Going APE over ref-1. Mutat Res, 2000, 461(2):83-108.
    4. Tell G, Pines A, Paron I, et al. Redox effector factor-1 regulates the activity of thyroid transcription factor 1 by controlling the redox state of the N transcriptional activation domain. J Biol Chem, 2002, 277(17): 14564-14574.
    5. Tell G, Damante G, Caldwell D, et al. The intracellular localization of APE1/Ref-1: more than a passive phenomenon? Antioxid Redox Signal, 2005, 7(3-4):367-384.
    6. Gros L, Ishchenko AA, Ide H, et al. The major human AP endonuclease (Ape1) is involved in the nucleotide incision repair pathway. Nucleic Acids Res, 2004, 32(1):73-81.
    7. Dong Wang, Demple B. Modulation of the 5'-deoxyribose-5-phosphate lyase and DNA synthesis activities of mammalian DNA polymerase beta by apurinic/apyrimidinic endonuclease 1. J Biol Chem, 2004, 279(24):25268-25275.
    8. Breier G, Blum S, Peli J, et al. Transforming growth factor-beta and Ras regulate the VEGF/VEGF-receptors system during tumor angiogenesis. Int J Cancer. 2002, 97(2): 142-148.
    9. Angkeow P, Deshpande SS, Qi B, et al. Redox factor-1: an extra-nuclear role in the regulation of endothelial oxidative stress and apoptosis. Cell Death Differ, 2002, 9(7):717-725.
    10. Hall JL, Wang X, Van Adamson V, et al. Overexpression of Ref-1 inhibits hypoxia and tumor necrosis factor-induced endothelial cell apoptosis through nuclear factor-kappab-independent and -dependent pathways. Circ Res, 2001, 88(12): 1247-1253.
    11. Gaiddon C, Moorthy NC, Prives C. Ref-1 regulates the transactivation and proapoptotic functions of p53 in vivo. EMBOJ, 1999, 18(20):5609-5621.
    12. Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol, 2002, 4(5):E131-136.
    13. Kastan MB, Canman CE, Leonard CJ. P53, cell cycle control and apoptosis: implications for cancer. Cancer Metastasis Rev, 1995, 14(1):3-15.
    14. Berno Tanner, Stephan Grimme, Ilka Schiffer, et al. Nuclear expression of apurinic/apyrimidinic endonuclease increases with progression of ovarian carcinomas. Gynecologic Oncology, 2004, 92:568-577.
    15. Gui GP, Puddefoct JR, Vinson GP, et al. Altered cell-matrix contact: a prerequisite for breast cancer metastasis? Br J Cancer Res, 1997, 75(5):623-633.
    16. Puglisi F, Barbone F, Tell G. Prognostic role of Ape/Ref-1 subcellar expression in stage Ⅰ-Ⅲ breast carcinomas. Oncol Rep, 2002, 9:11-17.
    17. Kakolyris S, Kaklamanis L, Giatromanolaki A, et al. Expression and subcellular localization of human AP endonucleasel (HAP1/Ref-1) protein: a basis for its role in human disease. Histopathology, 1998, 33(6): 561-569.
    18. Kakolyris S, Giatromanolaki A, Koukourakis M. Nuclear localization of human AP endonuclease 1(HAP1/Ref-1)associates with prognosis in early operable non-small cell lung cancer(NSCLC). J Pathol, 1999, 189:351-357.
    19. Dong Wang, Meihua Luo, Mark Kelley. Human apurinic endonucleasa 1 (APE1) expressiong and prognostic significance in osteosarcoma: Enhanced sensitivity of osteosarcoma to DNA damaging agents using silencing RNA APE1 expression inhibition. Mol Cancer Ther, 2004, 3(6) :679-686.
    20. Ono Y, Matsumoto K, Furuta T, et al. Relationship between expression of a major apurinic/apyrimidinic endonuclease (APEX nuclease) and susceptibility to genotoxic agents in human glioma cell lines. J Neurooncol, 1995, 25(3): 183-192.
    21. Bertrand JR, Pottier M, Vekris A, et al. Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun, 2002, 296(4): 1000-1004.
    22. Volpers C, Kochanek S. Adenoviral vectors for gene transfer and therapy. J Gene Med, 2004, Suppl 1:S164-71.
    23. Demple B, Harrison L. Repair of oxidative damage to DNA: enzymology and biology. Rev Biochern, 1994, 63:915-948.
    24. 王东, 史景泉.肝细胞癌肿瘤抑制基因 p53 蛋白过度表达及点突变的研究. 癌症, 1997, 16(2): 102-104.
    25. Itoh T, Shiro T, Seki T, et al. Relationship between p53 overexpression and the proliferative activity in hepatocellular carcinoma. Int J Mol Med, 2000, 6(2): 137- 142.
    26. Li JQ, Zhang YQ, Zhang WZ,et al. Randomized study of chemoembolization as an adjuvant therapy for primary liver carcinoma after hepatectomy. J Cancer Res Clin Oncol, 1995, 121(6):364-6.
    27. Kakolyris S, Kaklamanis L, Engels K. Human AP endonucleasel (HAP1) protein expression in breast cancer correlates with lymph node status and angiogenesis. Br J Cancer, 1998,77:1169-1173.
    28. Misra RR , Ratnasinghe D , Tangrea JA, et al. Polymorphisms in the DNA repair genes XPD , XRCC1 , XRCC3 , and APE/ref-1 , and the risk of lung cancer among male smokers in Finland. Cancer Lett, 2003, 191(2): 171-178
    29. Mol CD, Hosfield DJ, Tainer JA, et al. Abasic site recognition by two apurinic/apyrimidinic endonuclease families in DNA base excision repair: the 3' ends justify the means. Mutat Res, 2000, 460:211-229.
    30. Fritz G. Human APE/Ref-1 protein. Int J Biochem Cell Biol, 2000;32:925-929.
    31. Tell G, Scaloni A, Pellizzari L, et al. Redox potential controls the structure and DNA binding activity of the paired domain. J Biol Chem, 1998, 273(39):25062-25072.
    32. Kakolyris S, Kaklamanis L, Engels K, et al. Human AP endonuclease1 (HAP1) expression in a Colorectal adenoma-carcinoma sequence. Cancer Res, 1997, 57(9): 1794-1797.
    33. Canman CE, Chen CY, Lee MH, et al. DNA damage responses: p53 induction, cell cycle perturbations, and apoptosis. Cold Spring Harb Symp Quant Biol, 1994, 59:277-286.
    34. Suto T, Sugai T, Nakamura S, et al. Assessment of the expression of p53, MIB-1 (Ki-67 antigen), and argyrophilic nucleolar organizer regions in carcinoma of the extrahepatic bile duct. Cancer, 1998, 82(1):86-95.
    35. Garkavtsev I, Grigorian IA, Ossovskaya VS, et al. The candidate tumour suppressor p33ING1 cooperates with p53 in cell growth control. Nature, 1998, 391(6664):295-298.
    36. Huang LE, Arany Z, Livingston DM, et al. Activation of hypoxia-inducible transcription factor(HIF) depends primarily upon redox-sensitive stablization of its alpha subunit. J Biol Chem, 1996, 271(50): 32253-32259
    37. Ren SP, Wu CT, Huang WR, et al. Adenoviral-mediated transfer of human wild-type p53, GM-CSF and B7-1 genes results in growth suppression and autologous anti-tumor cytotoxicity of multiple myeloma cells in vitro[J]. Cancer Immunol Immunother, 2005;2:1-11
    38. Miyake H, Yamanaka K, Muramaki M, et al. Therapeutic efficacy of adenoviral-mediated p53 gene transfer is synergistically enhanced by combined use of antisense oligodeoxynucleotide targeting cluster in gene in a human bladder cancer model[J]. Neoplasia, 2005;7(2): 171-179
    39. Lee TK, Han JS, Fan ST, et al. Gene delivery using a receptor-mediated gene transfer system targeted to hepatocellular Carcinoma Cells[J]. Int J cancer, 2001, 93(3):393-400.
    40. Fung H, Demple B. A vital role for Ape1/Ref1 protein in repairing spontaneous DNA damage in human cells. Molecular Cell. 2005, 17(3): 463-470.
    41. Drozdik M, Qian C, Xie X, et al. Combined gene therapy with suicide gene and interleukin-12 is more efficient than therapy with one gene alone in a murine model of hepatocellular carcinoma. J Hepatol, 2000;32(2):279-286.
    42. Su H, Lu R, Ding R, et al. Adeno-associated viral-mediated gene transfer to hepatoma: thymidine kinase/interleukin 2 is more effective in tumor killing in non-ganciclovir(GCV)-treated than in GCV-treated animals. Mol Ther, 2000; 1(6): 509-515.
    43.Kagawa S,Fujiwara T,Tanaka N.Clinical study of adenoviral mediated p53 gene therapy for non-small-cell lung cancer in Japan.Gan To Kagaku Ryoho,2003,30(2):193-197.
    44.Sun HW,Tang QB,Cheng YJ,et al.Effects of dendritic cells transfected with full-length wild-type p53 and stimulated by gastric cancer lysates on immune response.World J Gastroenterol,2004;10(17):2595-2597.
    45.Baek JH,Agarwal ML,Tubbs RR,et al.In vivo recombinant adenovirus-mediated p53gene therapy in a syngeneic rat model for colorectal cancer.J Korean Med Sci,2004;19(6):834-841.
    46.Cross D,Burmester JK.Gene therapy for cancer treatment:past,present and future.Clin Med Res,2006,4(3):218-227.
    47.Cavazzana-Calvo M,Thrasher A,Mavilio F.The future of gene therapy.Nature,2004;427(6977):779-781.
    48.Adams A.RNAi inches toward the clinic.Scientist,2004;18(6):32.
    49.Peng Z.Current status of gendicine in China:recombinant human Ad-p53 agent for treatment of cancers.Hum Gene Ther,2005,16(9):1016-1027.
    50.Kroger A,Ortmann D,Krohne TU,et al.Growth suppression of the hepatocellular carcinoma cell line Hepal-6 by an activatable interferonregulatory factor-1 in mice.Cancer Res,2001,61(6):2609-2617.
    51.Ruiz J,Mazzolini G,Sangro B,et al.Gene therapy of hapatocellular carcinoma.Dig Dis,2001,19(4):324-332.
    52.Hirano T,Kaneko S,Kaneda Y,et al.HVJ-liposome-mediated transfection of HSV-tk gene by AFP promoter inhibits hepatic tumor growth of hepatocellular carcinoma in SCID mice.Gene Ther,2001,8(1):80.
    53.Huang J Z,Xia SS,Ye QF,et al.Effects of p16 gene on biological behaviours in hepatocellular carcinoma cells.World J Gastroenterol,2003,9(1):84-88.
    54.张佑彬,冷希圣,彭吉润,et al.重组腺相关病毒介导抑癌基因联合诱导人肝癌细胞系凋亡与生长抑制研究.中华普通外科杂志,2002,17(5):284-286
    55.Gupta GR Nguyen DX,Chiang AC,et al.Mediators of vascular remodelling co-opted for sequential steps in lung metastasis.Nature,2007,12;446(7137):765-770.
    56.Sun X,Kanwar JR,Leung E,et al.Angiostatin enhances B7-1-mediated cancer immunotherapy independently of effects on vascular endothelial growth factor expression.Cancer Gene Ther,2002,8:719-727.
    57.王东,仲召阳,李增鹏等.pSilence APE1对骨肉瘤诱导血管内皮细胞迁徙抑制作用的实验研究.第三军医大学学报,2006,28(2):93-96.
    58.王东,仲召阳,向德兵,et al.pSilence Apel与内皮抑素协同抑制骨肉瘤血管生成的研究.中华实验外科杂志,2006,8
    59.王东,仲召阳,李增鹏,et al..DNA损伤修复基因APE1在骨肉瘤中的表达及其与血管生成的关系.肿瘤防治杂志,2005,12(15):1121-1126
    60.Wang D,Zhong ZY,Li MX,et al.Vector-based Apel small interfering RNA enhances the sensitivity of human osteosarcoma cells to endostatin in vivo.Cancer Sci,2007,24;[Epub ahead of print]
    1. Lai H, Singh NP. Single and double-strand DNA breaks in rat brain cells after acute exposure to rodiofrequency electromagnetic radiation.Int J Radiat Biol, 1996,69(4): 513-521.
    2. Kolodner RD, Marsischky GT. Eukaryotic DNA mismatch repair. Curr Opin Genet, 1999,9(1):89-96.
    3. Lindahl T , Karran P , Wood RD. Curr Opin Genet Dev ,1997 ;7 (2): 158-169.
    4. Harrison L, Ascione G, Menninger JC, et al. Human apurinic endonuclease gene (APE): structure, Hum Mol Genet, 1992, 1 (9):677-680.
    5. Barzilay G, Hickson ID. Structure and function of apurinic/apyrimidinic endonucleases. Bioessays, 1995, 17(8):713-719.
    6. Xanthoudakis S, Miao GG, Curran T, The redox and DNA-repair activities of Ref-1 are encoded by nonoverlapping domains, Proc Natl Acad Sci USA, 1994, 91(1):23-27.
    7. Shen JC, Loeb LA. Mutations in the alpha8 loop of human APE1 alter binding and cleavage of DNA containing an abasic site. J Biol Chem, 2003, 278(47):46994-47001.
    8. Wong D, DeMott MS, Demple B. Modulation of the 3'→5'exonuclease activity of human apurinic endonuclease (Ape1) by its 5'-incised Abasic DNA product. J Biol Chem,2003, 278(38):36242-36249.
    9. Bennett RA, Wilson DM 3rd, Wong D, et al. Interaction of human apurinic endonuclease and DNA polymerase beta in the base excision repair pathway. Proc Natl Acad Sci USA, 1997, 94(14):7166-7169.
    10. Marsin S, Vidal AE, Sossou M, et al. Role of XRCC1 in the coordination and stimulation of oxidative DNA damage repair initiated by the DNA glycosylase hOGG1. J Biol Chem, 2003, 278(45):44068-44074.
    11. Stuart JA, Hashiguchi K, Wilson III DM, et al. DNA base excision repair activities and pathway function in mitochondrial and cellular lysates from cells lacking mitochondrial DNA. Nuc Aci Res, 2004, 32(7):2181-2192.
    12. Peddi SR, Chattopadhyay R, Naidu CV, et al. The human apurinic/apyrimidinic endonuclease-1 suppresses activation of poly(adp-ribose) polymerase-1 induced by DNA single strand breaks. Toxicology, 2006, 224(1-2):44-55.
    13. Sung JS, Demple B. Roles of base excision repair subpathways in correcting oxidized abasic sites in DNA. FEBS J, 2006, 273(8): 1620-1629.
    14. Kakolyris S, Kaklamanis L, Engels K, et al. Human apurinic endonuclease 1 expression in a Colorectal adenomacarcinoma sequence. Cancer Res, 1997, 57(9): 1794-17979.
    15. Berno Tanner, Stephan Grimme, Ilka Schiffer, et al. Nuclear expression of apurinic/apyrimidinic endonuclease increases with progression of ovarian carcinomas. Gynecologic Oncology, 2004;92:568-577.
    16. Puglisi F ,Barbone F ,Tell G, et al. Prognostic role of Ape/Ref-1 subcellar expression in stage Ⅰ -Ⅲ breast carcinomas. Oncol Rep ,2002 ;9 (1): 11-17.
    17. Kakolyris S, Kaklamanis L, Engels K, et al. Human AP endonuclease 1 (HAP1) protein expression in breast cancer correlates with lymph node status and angiogenesis. Br J Cancer, 1998, 77(7):1169-1173.
    18. Kubota Y,Nash RA ,Klungland A ,et al. Reconstitution of DNA base excision repair wit h purified human proteins : interaction between DNA polymerase beta and t he XRCC1 protein[J] . Embo J ,1996 ,15 :6662 - 6670.
    19. Shen MR , Jones IM , Mohrenweiser HW1 Nonconservative amino acid substitution variants exist at polymorphic f requency in DNA repair genes in healt hy humans [J]1 Cancer Res, 1998 , 58 (4) :604-608.
    20. Divine KK, Gilliland FD , Crowell RE , et all The XRCC1 399glutamine allele is a risk factor for adenocarcinoma of t he lung. Mutat Res ,2001 ,461 (4) :273-278.
    21. Park J Y, Lee SY, J eon HS , et all Polymorphism of t he DNA repair gene XRCC1 and risk of primary lung cancer [J]1 Cancer Epidemiol Biomarkers Prev ,2002 ,11 (1):23-27.
    22. Chen S , Tang D , Xue K, et all DNA repair gene XRCC1 and XPD polymorphisms and risk of lung cancer in a Chinese population. Carcinogenesis ,2002 ,23 (8):1321-1325.
    23. Ratnasinghe D , Yao SX , Tangrea JA , et all Polymorphisms of the DNA repair gene XRCC1 and lung cancer risk [J]1 Cancer Epidemiol Biomarker s Prev ,2001 ,10(2):119-123.
    24. Sturgis EM ,Castillo EJ ,Li L ,et al . Polymorphisms of DNA repair gene XRCC1 in squamous cell carcinoma of the head and neck. Carcinogenesis, 1999, 20:2125-2129
    25. Moullan N, Cox DG, Angele S, et al. Polymorphisms in the DNA repair gene XRCC1, breast cancer risk, and response to radiotherapy. Cancer Epidemiol Biomarkers Prev. 2003 Nov;12(11 Pt 1): 1168-1174.
    26. Duell EJ ,Millikan RC ,Pittman GS ,et al . Polymorphisms in the DNA repair gene XRCC1 and breast cancer [J]. Cancer Epidemiol Biomarkers Prev ,2001 ,10 :217 - 222.
    27. Kim SU ,Park SK, Yoo KY,et al. XRCC1 genetic polymorphism and breast cancer risk. Pharmaco-Genetics, 2002 ,12 :335-338.
    28. IshidaT, Takashima R, Fukayama M, et al. New DNA polymorphisms of human MMH/OGG1 gene: prevalence of one polymorphism among lung-adenocarcinoma patients in Japanese. Int J Cancer. 1999,80(1): 18-21.
    29. Kohno T, Shinmura K, Tosaka M, et al. Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene. 1998,16(25):3219-3225.
    30. Chevillard S , Radicella JP , Levalois C ,et al. Mutations in OGG1, a gene involved in the repair of oxidative DNA damage, are found in human lung and kidney tumours. Oncogene. Oncogene, 1998,16(23):3083-3086.
    31. Le Marchand L, Donlon T, Lum-Jones A , et al. Association of the hOGG1 Ser326Cys polymorphism with lung cancer risk. Cancer Epidemiol Biomarkers Prev. 2002,11(4):409-412.
    32. Sugimura H, Kohno T, Wakai K, et al. hOGG1 Ser326Cys polymorphism and lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev. 1999,8(8):669-674.
    33. Kondo S, Toyokuni S, Tanaka T, et al. Overexpression of the hOGG1 gene and high 8-hydroxy-2'-deoxyguanosine (8-OHdG) lyase activity in human Colorectal carcinoma: regulation mechanism of the 8-OHdG level in DNA. Clin Cancer Res, 2000,6(4): 1394-1400.
    34. Shinmura K, Kohno T, Kasai H, et al. Infrequent mutations of the hOGG1gene , that is involved in the excision of 82hydroxyguanine in damaged DNA , inhuman gastric cancer. Jpn J Cancer Res , 1998 , 89 :825-828.
    35. Ito H, Hamajima N, Takezaki T , et al. A limited association of OGG1 Ser326Cys polymorphism for adenocarcinoma of the lung.J Epidemiol.2002,12(3):258-265.
    36.Engelward BP,Dreslin A,Christensen J,et al.Repair-deficient 3-methyladenine DNA glycosylase homozygous mutant mouse cells have increased sensitivity to alkylation-induced chromosome damage and cell killing.EMBO J.1996,15(4):945-952.
    37.Coquerelle T,Dosch J,Kaina B.Overexpression of N-methylpurine-DNA glycosylase in Chinese hamster ovary cells renders them more sensitive to the production of chromosomal aberrations by methylating agents--a case of imbalanced DNA repair.Mutat Res,1995,336(1):9-17.
    38.王东,仲召阳,张沁宏等.DNA损伤修复基因MPG在人体骨肉瘤的表达及其治疗意义.第三军医大学学报,2005,27(17):1789-1792.
    39.Wood RD.DNA repair in eukaryotes.Annu Rev Biochem,1996;65:135-167.
    40.Ide F,Iida N,Nakatsuru Y,et al.Mice deficient in the nucleotide excision repair gene XPA have elevated sensitivity to benzo[a]pyrene induction of lung tumors.Carcinogenesis,2000,21(6):1263-1265.
    41.Hou SM,Falt S,Angelini S,et al.The XPD variant alleles are associated with increased aromatic DNA adduct level and lung cancer risk.Carcinogenesis,2002,23(4):599-603.
    42.Liang G,Xing D,Miao X,et al.Sequence variations in t he DNArepair gene XPD and risk of lung cancer in a Chinese population.Int J Cancer,2003,105(5):669-673.
    43.Tomescu D,Kavanagh G,Ha T,et al.Nucleotide excision repair gene XPD polymorphisms and genetic predisposition to melanoma.Carcinogenesis,2001,22(3):403-408.
    44.Grant DE Bessho T,Reardon JT,et al.Nucleotide excision repair of melphalan monoadducts.Cancer Res,1998,58(22):5196-5200.
    45.Mondello C,Nardo T,Giliani S,et al.Molecular analysis of the XP-D gene in Italian families with patients affected by trichothiodystrophy and xeroderma pigmentosum group D.Mutat Res,1994,314(2):159-165.
    46.由英,章扬培.国外医学遗传学分册,1997;20(3):159-160.
    47.de Laat WL,Jaspers NG,Hoeijmakers JH.Molecular mechanism of nucleotide excision repair.Genes Dev,1999,1;13(7):768-785.
    48.Melton DW,Ketchen AM,Nunez F,et al.Cells from ERCCl-deficient mice show increased genome instability and a reduced frequency of S-phase-dependent illegitimate chromosome exchange but a normal frequency of homologous recombination.J Cell Sci,1998,111(Pt 3):395-404.
    49.Zienolddiny S,Campa D,Lind H,et al.Polymorphisms of DNA repair genes and risk of non-small cell lung cancer.Carcinogenesis.2006,27(3):560-567.
    50.Cheng L,Spitz MR,Hong WK,et al.Reduced expression levels of nucleotide excision repair genes in lung cancer:a case-control analysis.Carcinogenesis,2000,21(8):1527-1530.
    51.Dabholkar M,Vionnet J,Bostick-Bruton F,et al.Messenger RNA levels of XPAC and ERCC1 in ovarian cancer tissue correlate with response to platinum-based chemotherapy.J Clin Invest,1994,94(2):703-708.
    52.Damia G,Imperatori L,Stefanini M,et al.Sensitivity of CHO mutant cell lines with specific defects in nucleotide excision repair to different anti-cancer agents.Int J Cancer,1996,66(6):779-783.
    53.Hays JB,Hoffman PD,Wang H.Discrimination and versatilityin mismatch repair.DNA Repair,2005,4(12):1463-1474.
    54.Edelmannn I,Umar A,Kan Yang,et al.The DNA mis-match repair gene Msh3 and Msh6 cooperate in intestinal tumor suppression.Cancer Res,2000,60:803.
    55.Xinarianos G,Liloglou T,Prime W,et al.hMLH1 and hMSH2 expression correlates wit h allelic imbalance on chromosome 3p in non-small cell lung carcinomas[J].Cancer Res,2000,60(15):4216-4221.
    56.庹新兰,何雁铭.肺癌组织中错配修复基因hMLH1、hMSH2表达的研究.数理医药学杂志,2005,8(6):547-549.
    57.Fink D,Aebi S,Howell SB.Clin Cancer Res,1998;4(1):1-6.
    58.Hawn MT,Ulmar A,Carethers JM,et al.Cancer Res,1995;55(17):3721-3725.
    59.Branch P,Aquilina G,Bignami M,et al.Defective mismatch binding and a mutator phenotype in cells tolerant to DNA damage.Nature,1993,362(6421):652-654.
    60.Maacke H,Jost K,Optiz S,et al.DNA repair and recombination factor Rad51 is over-expressed in human pancreatic adenocarcinoma.Oncogene.2000,923) 2791-2795.
    61.Maacke H,Optiz S,Jost K,et al.Over-expression of wild-type Rad51 correlates with histological grading of invasive ductal breast cancer.Int J Cancer.2000,88(6):907-913.
    62. Wick W, Petersen I, Schmutzler RK, et al. Evidence for a novel tumor suppressor gene on chromosome 15 associated with progression to a metastatic stage in breast cancer. Oncogene, 1996,12(5):973-978.
    63. Schuyer M, Berns EM. Is TP53 dysfunction required for BRCA1-associated carcinogenesis? Mol Cell Endocrinol, 1999,155(1-2): 143-152.
    64. Jakubowska A, Narod SA, Goldgar DE, et al. Breast cancer risk reduction associated with the RAD51 polymorphism among carriers of the BRCA1 5382insC mutation in Poland. Cancer Epidemiol Biomarkers Prev, 2003,12(5):457-459.
    65. Levy-Lahad E, Lahad A, Eisenberg S, et al. A single nucleotide polymorphism in the RAD51 gene modifies cancer risk in BRCA2 but not BRCA1 carriers. Proc Natl Acad Sci USA, 2001,98(6):3232-3236.
    66. Cui X, Brenneman M, Meyne J, et al. The XRCC2 and XRCC3 repair genes are required for chromosome stability in mammalian cells. Mutat Res, 1999,434(2):75-88.
    67. Rafii S, O'Regan P, Xinarianos G, et al. A potential role for the XRCC2 R188H polymorphic site in DNA-damage repair and breast cancer. Hum Mol Genet, 2002,11(12):1433-1438.
    68. Matullo G, Palli D, Peluso M, et al. XRCC1, XRCC3, XPD gene polymorphisms, smoking and (32)P-DNA adducts in a sample of healthy subjects. Carcinogenesis, 2001,22(9): 1437-1445.
    69. David-Beabes GL, Lunn RM, London SJ, et al. No association between the XPD (Lys751Gln) polymorphism or the XRCC3 (Thr241Met) polymorphism and lung cancer risk. Cancer Epidemiol Biomarkers Prev, 2001,10(8):911-912.
    70. Wang Y, Liang D , Spitz MR , et al. XRCC3 genetic polymorphism, smoking, and lung carcinoma risk in minority populations. Cancer, 2003,98(8): 1701-1706.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700